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ABSTRACT 18 

Passive samplers deployed at 25 sites for three, week-long intervals were used to characterize 19 

spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in 20 

Cleveland, OH in summer 2008. The size and composition of individual particles determined 21 

using computer-controlled scanning electron microscopy with energy-dispersive X-ray 22 

spectroscopy (CCSEM-EDS) was then used to estimate PM10-2.5 concentrations (µg m-3) and its 23 

components in 13 particle classes. The highest PM10-2.5 mean mass concentrations were 24 

observed at three central industrial sites (35 µg m-3, 43 µg m-3, and 48 µg m-3), whereas 25 

substantially lower mean concentrations were observed to the west and east of this area at 26 

suburban background sites (13 µg m-3 and 15 µg m-3). PM10-2.5 mass and components associated 27 

with steel and cement production (Fe-oxide and Ca-rich) exhibited substantial heterogeneity 28 

with elevated concentrations observed in the river valley, stretching from Lake Erie south 29 

through the central industrial area and in the case of Fe-oxide to a suburban valley site. Other 30 

components (e.g., Si/Al-rich typical of crustal material) were considerably less heterogeneous. 31 

This work shows that some species of coarse particles are considerably more spatially 32 
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heterogeneous than others in an urban area with a strong industrial core. It also demonstrates 1 

that passive sampling coupled with analysis by CCSEM-EDS is a useful tool to assess the spatial 2 

variability of particulate pollutants by composition.  3 

1. INTRODUCTION 4 

Exposure to fine atmospheric particulate matter (PM2.5) has been associated with increased 5 

adverse cardiopulmonary health effects (Brook, Rajagopalan et al. 2010, Hoek, Krishnan et al. 6 

2013), although effect estimates vary significantly among studies with heterogeneity in fine 7 

particle composition suspected as a factor of considerable uncertainty (Hoek, Krishnan et al. 8 

2013). The evidence is less clear for adverse health effects associated with exposure to coarse 9 

particulate matter (PM10-2.5), with recent meta-analyses reporting a lack of evidence for 10 

mortality (Hoek, Krishnan et al. 2013), but ‘suggestive evidence’ for increased morbidity and 11 

mortality not explained by simultaneous co-exposure to PM2.5 (Adar, Filigrana et al. 2014). These 12 

meta-analyses stress the need to better characterize the heterogeneity of particulate matter 13 

exposures by composition to reduce uncertainty in effect estimates, especially for PM10-2.5.  14 

The combination of varying sources and short atmospheric lifetimes often leads to substantial 15 

heterogeneity in the concentration and chemical makeup of PM10-2.5. Coarse atmospheric 16 

particles are emitted primarily by widely varying mechanical and resuspension sources, leading 17 

to a complex mixture of material from roads, soil, wear of automotive parts (e.g., tires and 18 

brakes), and biological material from vegetation (Kelly and Fussell 2012). Particle settling 19 

velocity scales with diameter squared causing coarse particles to settle substantially faster than 20 

fine particles (Seinfeld and Pandis 2012, Zhang and He 2014). Consequently, the use of data 21 

from spatially sparse networks of regulatory samplers can result in substantial exposure 22 

misclassification for PM10-2.5 that can attenuate the power of  epidemiological studies (Chang, 23 

Peng et al. 2011).  24 

Networks of active samplers—samplers that collect particles from an aspirated volume of air—25 

have been used to measure the spatial variability of PM10-2.5 in urban settings. Burton, Suh et al. 26 

(1996) used paired PM10 and PM2.5 filter samplers at eight sites to show that coarse particles 27 

(calculated by subtraction: PM10 – PM2.5) were heterogeneously distributed across Philadelphia, 28 

PA. This subtraction method, however, is subject to multiple measurement error from two filter 29 

samplers, introducing measurement uncertainty in gravimetric measurement that is amplified in 30 

chemical analysis (Goldman, Mulholland et al. 2011). Using a two impactors in series, 31 

Thornburg, Rodes et al. (2009) measured coarse particles separately from particles of other size. 32 

They found that PM10-2.5 measured at five sites in Detroit, MI were temporally correlated and 33 

had low spatial heterogeneity. The spatial heterogeneity of PM10-2.5 and its components has 34 

been studied intensively in Los Angeles, CA with networks of cascade impactors (Cheung, Daher 35 

et al. 2011, Cheung, Olson et al. 2012, Fruin, Urman et al. 2014). At 10 downtown and suburban 36 

sites, PM10-2.5 mass was observed to be moderately heterogeneous (Pakbin, Hudda et al. 2010) 37 

with greater heterogeneity observed for components of coarse particles (Cheung, Daher et al. 38 



 

 

2011, Cheung, Olson et al. 2012). _ENREF_7Fruin, Urman et al. (2014) identified substantial 1 

within-community heterogeneity in PM10-2.5.  2 

Networks of passive samplers have been used to investigate the spatial and temporal variability 3 

in PM10-2.5. Compared to active sampling, passive samplers are relatively inexpensive, require no 4 

electricity to operate, and can be deployed at numerous locations easily and cost-effectively 5 

(Wagner and Leith 2001a). Ott, Kumar et al. (2008) used passive samplers at 30 sites with 6 

analysis by light microscopy to show that coarse PM was highly heterogeneous at a spatial scale 7 

of 4.4 km in a medium-sized Midwest city. Lagudu, Raja et al. (2011) used a network of 25 8 

passive samplers with analysis by computer-controlled scanning electron microscopy 9 

coupled with energy-dispersive X-ray spectrometry (CCSEM-EDS) to show PM10-2.5 mass and 10 

its components were highly heterogeneous at a spatial scale of 2 km across Rochester, 11 

NY.  12 

Less work has been done to assess the spatial heterogeneity of PM10-2.5 in cities with substantial 13 

industrial activity, such as Cleveland, OH. Cleveland, OH is a ‘rust belt’ city with substantial steel 14 

and cement production in a central river valley. In a previous publication, the spatial 15 

heterogeneity of iron-containing particles within the Cleveland metropolitan area was 16 

investigated using arrays of passive samplers analyzed by CCSEM-EDS (Ault, Peters et al. 2012). 17 

Results indicated that anthropogenic iron-containing coarse particles were highly 18 

heterogeneous and subject to physicochemical transformation as they moved away from their 19 

source.  20 

The goal of the present work was to more broadly investigate the spatial heterogeneity of PM10-21 

2.5 mass and compositional components in Cleveland, OH using a network of passive samplers 22 

coupled with single particle analysis by CCSEM-EDS. Particles were classified into 13 23 

compositional classes based on their X-ray spectra. The spatial variability of PM10-2.5 and the 13 24 

components were evaluated with visual and quantitative indicators of heterogeneity. We report 25 

that anthropogenic particles from the industrial core are more heterogeneous than crustal 26 

material. These results may be important for interpreting epidemiological data for cities with 27 

strong industrial cores. Moreover, passive sampling with single particle analysis represents an 28 

alternative exposure assessment method for the epidemiology of PM10-2.5.  29 

2. METHODS 30 

2.1 Study Area 31 

Sampling was conducted in the Cleveland, OH metropolitan area (Figure 1). Included in the 32 

study area is Cleveland’s Flats District, a low-lying topography along the banks of the lower 33 

Cuyahoga River from the river’s mouth at Lake Erie stretching south approximately 8 km. The 34 

elevation of the river surface is approximately 180 m above sea level. The surrounding bluffs 35 

start at an elevation of 213 m and extend to a height of approximately 365 m above sea level. 36 



 

 

The river valley width varies from 0.8 km at its narrowest point and widens to approximately 2.4 1 

km. 2 

Within the Flats, large quantities of steel are produced by integrated and electric arc furnace. 3 

Steel production uses large quantities of aluminum and calcium, some of which results in slag, a 4 

waste byproduct composed mostly of alumina, lime, and trace metals (van Oss 2009). Slag is 5 

then used as a raw material in the manufacturing of cement, another industry common to the 6 

Flats. Other industries in this area include asphalt, gravel, petroleum, and aluminum processing, 7 

along with road salt production and storage. 8 

2.2 Site Selection 9 

A method designed to optimize the capture of spatial variability in PM10-2.5 was used to select 10 

sampling sites. As described by Kumar, Chu et al. (2011), a preliminary ‘demand surface’ of PM10 11 

with a high spatial resolution (90 m) was generated for the study area, using the empirical 12 

relationship between satellite-based aerosol optical depth and ground-based PM10 13 

measurements. PM10 was used as the best available surrogate for PM10-2.5. Sites were identified 14 

and ranked that would maximize the variability observed in the preliminary surface. This 15 

approach, unlike classical sample site selection, was adopted to minimize redundancy in sites by 16 

controlling for spatial autocorrelation. The locations of optimal sites were adjusted by moving 17 

them to the closest schools, churches, fire stations, and private homes as practical for logistic 18 

and security reasons. One sampler was damaged during the first week, and this site was 19 

dropped from the remainder of the study, leaving a total of 25 sites for the study. 20 

2.3 Sampling and Sample Analysis 21 

A UNC passive aerosol sampler (Wagner and Leith 2001) housed in a protective shelter (Ott and 22 

Peters 2008) was deployed for one week at each site over three consecutive weeks in August 23 

2008. The shelter was designed to shield the passive sampler from precipitation and to minimize 24 

dependence of particle deposition on wind speed. Samplers were changed out over a period of 25 

three hours on Tuesday of each week. The weather over the study period was typical of summer 26 

in this area and fairly consistent between weeks. Mean temperatures (Week 1: 22°C; Week 2: 27 

23°C; and Week 3: 21°C) and mean relative humidity (Week 1: 64%; Week 2: 59%; and Week 3: 28 

69%) were similar between weeks. Rainfall was observed only during Week 2 (3 mm during one 29 

hour) and Week 3 (15 mm during one hour on two separate days). Winds from N and NNE were 30 

observed on all weeks. The highest winds were from the SW in Week 1, from the NNE in Week 31 

2, and from the E and SE in Week 3.  32 

The size and elemental composition of individual particles deposited on the passive sampler 33 

were determined by CCSEM-EDS. Samples were analyzed using a Personal SEM™ or PSEM (FEI 34 

Aspex, Delmont, PA) (Hopke and Casuccio 1991). Each passive sample was coated with a thin 35 

film (~ 200 Å) of conductive carbon to prevent sample charging during SEM analysis. The PSEM 36 

was operated in the backscattered electron detection mode at an accelerating voltage of 20 kV.  37 



 

 

Particles were detected rastering the electron beam across the sample surface until the 1 

backscattered electron signal exceeded a preset background threshold level. Particles with 2 

diameters between 1 µm and 15 µm were selected for further characterization including 3 

measuring the particle size, acquiring a digital image of the particle, and collection of an EDS 4 

spectrum to determine the particle’s composition.  The process of identifying and characterizing 5 

particles was repeated until 1000 particles in the 1-15 µm size range were analyzed or until the 6 

entire sample area was covered (~20 mm2). 7 

The mass of each particle was estimated by multiplying the particle volume by particle density. 8 

Following Wagner and Leith (2001), a volume shape factor (1.6) was used to convert the 9 

projected area diameter from SEM imaging to an equivalent volume diameter, which was then 10 

used to compute particle volume. The density of the particle was estimated from analysis of x-11 

ray spectrum assuming that the particle was in the form of an oxide. An empirical deposition 12 

velocity model was used to convert the deposited mass to ambient PM10-2.5 (Wagner and Leith 13 

2001, Ott, Cyrs et al. 2008). After CCSEM-EDS analysis, the particle micro-images were manually 14 

reviewed as a quality check to reject false positive artifacts and to assist in particle classification 15 

based on morphology (e.g., pollen). 16 

2.4 Particle Classification 17 

After analysis, particles were classified into groups with similar elemental composition using 18 

rules based on the elemental composition of particles. Initially, pre-defined particle classification 19 

rules were used and then modified to minimize the number of particles classified as 20 

‘Miscellaneous’. The final rules included 13 compositional classes as shown in Table 1. These 21 

rules were applied sequentially top down, beginning with Rule 1, to sort particles into distinct 22 

compositional classes: pollen, carbon-rich (C), sodium chloride (NaCl), sodium-rich (Na-rich), 23 

calcium/sulfur rich (Ca/S-rich), silica/aluminum-rich (Si/Al-rich), iron-oxide (Fe oxide), aluminum-24 

rich (Al rich), silica-rich (Si-rich), metal rich (metal-rich), iron-rich (Fe-rich), calcium-rich (Ca-rich) 25 

and a “catch all” (miscellaneous) class. Table 1 also provides a listing of potential sources of 26 

particles in these classes in the Cleveland airshed. Images and EDS spectra of particles 27 

representative of several compositional classes are shown in Supplemental Information (Figure 28 

S1). 29 

Following Leith et al. (2007), the limit of detection (LoD) by mass was calculated for PM10-2.5 and 30 

each of its components as the mean µg/m3 concentration per blank (determined from three 31 

field blanks and three trip blanks) plus three times the standard deviation. The limit of 32 

quantitation (LoQ) by mass was determined as the mean concentration per blank plus ten times 33 

the standard deviation. The percentage of sites having mean concentrations over the three 34 

week sampling period greater than the LoD and LoQ were then determined. The results are 35 

compiled by component in Table 2. The first column shows the mean number of particles with 36 

physical diameters between 1.5 µm and 15 µm (plus standard deviation) detected in blanks, 37 

which may be useful for planning future studies. Nine components including PM10-2.5 were 38 

detected above the LoD at the majority of sites, but only PM10-2.5, Ca-rich and Ca/Si exceeded 39 



 

 

their LoQs at more than half the sites. For Ca/S, Ca/Si, Na-rich and Pollen, it was not possible to 1 

determine LoDs and LoQs because no particles in this size range were detected in the blanks. As 2 

a best guess for these components, we used the LoD and LoQs for NaCl, which had a similar 3 

mean particle count in the blanks.  4 

2.5 Spatial and Temporal Analysis 5 

The Pearson correlation coefficient (r) was computed as an indicator of temporal correlation 6 

among measurements at different sites. The correlation coefficient was computed in a 7 

spreadsheet (Excel, Microsoft, Redmond, WA) from 300 site pairs. The spatial heterogeneity of 8 

observed concentrations was investigated through graphical and quantitative analyses. 9 

Normalized mean mass concentration maps were prepared to visually investigate the spatial 10 

heterogeneity of PM10-2.5 and each of its components. For each component, the normalized 11 

mean mass concentration was calculated for each site by dividing the mean observed at that 12 

site by the mean observed for all samples (3 weeks x 25 sites = 75). These normalized mean 13 

concentrations were krigged and then plotted with mapping software (ArcMap Version 9.3, 14 

Redlands CA). 15 

Spatial heterogeneity was also investigated for each component using two quantitative 16 

indicators: coefficient of divergence (COD) and percent spatial heterogeneity (SH%). Following 17 

Wongphatarakul, Friedlander et al. (1998), COD was computed from 300 site pairs as follows: 18 

 19 

����� � �1	
��� � ���� � ����
�
���  

where xij and xjk represent the mass concentration for week i at sampling site j, k is the number 20 

of sites, and p is the number of observations. Following Li and Reynolds (1995), SH% was used as 21 

an alternative approach to quantify spatial heterogeneity. SH% was calculated as:  22 

��% � 	���	��� � ��� 	�	100% 

where psill is the partial sill and nug is the nugget. The partial sill and the nugget were 23 

determined from the a semivariogram of the natural log of concentrations using the 24 

geostatistical wizard within mapping software (ArcMap Version 9.3, Redlands CA). The nugget 25 

represents the random or stochastic component of the variability, the partial sill represents the 26 

spatial heterogeneous component, and total variance (referred to as the sill) can be expressed 27 

as (psill + nug). Thus, SH% represents the portion of the total variance attributed to spatial 28 

heterogeneity and highlights the presence of spatial structure within a data set (Wagner and 29 

Fortin 2005). 30 



 

 

2.6 Concentrations in Flats Compared to Valley and  1 

Non-Valley Suburban Sites 2 

Three sites were selected to compare concentrations observed in the Flats to those observed at 3 

suburban locations. Site 20 located within the Cuyahoga River Valley was selected to represent 4 

the Flats District. Site 30 was selected as a suburban background site within the Cuyahoga River 5 

Valley, and Site 34 was selected as a suburban non-valley background site. Kruskal-Wallis one-6 

way analysis of variance (ANOVA) was used to compare the concentration means between Sites 7 

20, 30 and 34 for each compositional class. Median concentration 95% confidence intervals 8 

were generated (Minitab, Version 17, State College, PA) to compare the Flats industrial sites to 9 

suburban background sites. Kruskal-Wallis analysis was conducted because the assumption of 10 

normality was met for some of the components but not others and log-transformation of the 11 

data did little to improve normality.  12 

3. RESULTS 13 

Normalized concentration maps are presented in Figure 2 for: a) PM10-2.5; b) Si/Al-rich 14 

component of PM10-2.5; c) Ca-rich component of PM10-2.5; and d) Fe-oxide component of PM10-2.5. 15 

These normalized plots allow visualization of spatial heterogeneity with dark regions indicating 16 

concentrations greater than the mean and light regions indicating those less than the mean. 17 

Actual concentrations observed for PM10-2.5 and its components are shown in Figure 3c. PM10-2.5 18 

exhibited substantial heterogeneity with elevated concentrations observed in the river valley, 19 

stretching from Lake Erie south through the central industrial area (Figure 2a). The composite 20 

mean PM10-2.5 over all sites was 22 µg m-3 with a range from 13 to 48 µg m-3. The highest PM10-2.5 21 

means were observed in the Flats (35 µg m-3 at Site 1; 43 µg m-3 at Site 35; and 48 µg m-3 at Site 22 

20), whereas lower means were observed to the west and east of this area. The lowest PM10-2.5 23 

means were observed at the suburban background sites (13 µg m-3 at Site 34; and 15 µg m-3 at 24 

Site 30). A similar elongated shape of higher concentrations in the Flats area was observed for 25 

Ca-rich (Figure 2c) and Fe-oxide components of PM10-2.5 (Figure 2d). In contrast, the spatial 26 

distribution of the Si/Al-rich (Figure 2b) class was less heterogeneous compared to the other 27 

compositional classes, although the highest values were still observed at the south end of the 28 

Flats.  29 

A quantitative indicator of spatial heterogeneity, COD, is presented for PM10-2.5 and components 30 

in Figure 3a. A COD of zero indicates no difference between site concentrations (homogeneous), 31 

whereas a COD greater than 0.2 is considered to indicate substantial spatial heterogeneity 32 

(Wilson et al. 2005). COD values fell into two distinct groups (high and low), but all components 33 

had median CODs > 0.2. Median CODs for the highest group ranged from 0.64 to 0.76 as follows 34 

(COD values in parenthesis): metal-rich (0.64); Fe-rich (0.64); Ca/S-rich (0.65); Fe-oxide (0.66); 35 

and Al-rich (0.76). Median CODs for the lowest group ranged from 0.24 to 0.39 as follows: PM10-36 

2.5 (0.24); C-rich (0.26); Si/Al-rich (0.29); Si-rich (0.32); miscellaneous (0.35); and Ca-rich (0.39).  37 



 

 

Temporal associations for concentrations observed between sites can potentially be inferred 1 

from Pearson correlation coefficient (r) determined from site pairs (300) over the three week 2 

study (Figure 3b). Values of r can range from negative one to positive one with greater positive 3 

values indicating a stronger temporal association in the concentrations observed at different 4 

sites. For every PM10-2.5 component, concentrations measured at one or more site pairs were 5 

highly correlated (near 1) and highly anti-correlated (near -1), producing the wide range of r 6 

values plotted in Figure 3b. PM10-2.5 had a median r-value of 0.09, and median correlations were 7 

within +/- 0.4 for all remaining components, except Ca-rich (median r = 0.6) and Si/Al-rich 8 

(median r = 0.5).  9 

Percent spatial heterogeneity (SH%) for PM10-2.5 and its components are presented in Figure 4. 10 

SH% ranged from 0% for Si/Al-rich to 100% for Fe-rich. SH% was near 100% for many 11 

components (misc., pollen, Na-rich, Ca-rich, metal-rich, and Fe-rich) and for PM10-2.5. SH% was 12 

34% for Si-rich, between 55% and 65% for NaCl, C-rich, and Al-rich, and 80-85% for Fe-oxide and 13 

Ca/S-rich.  14 

In Figure 5, median concentrations of PM10-2.5 and components observed in the Flats are 15 

compared to valley and non-valley suburban sites. PM10-2.5, Ca-rich, Ca/S-rich, Fe-rich, metal-rich 16 

and miscellaneous concentrations observed in the Flats were substantially and statistically 17 

higher than those observed at either suburban site. There was no statistical difference in Fe-18 

oxide, Si/Al rich, Si-rich, Al-rich, and C-rich concentrations when compared to Site 30. Compared 19 

to background Site 34, concentrations observed at Site 20 within the Flats were significantly 20 

higher for all compositional classes except Fe-oxide, Al-rich, and C-rich. For all classes except 21 

Si/Al-rich and Al-rich, the variability in concentrations was greater within the Flats (Site 20) than 22 

at suburban background sites. For all classes except Ca rich and miscellaneous, the variability in 23 

concentrations was also greater at Site 30 than at Site 34. 24 

4. DISCUSSION 25 

This work demonstrates that some components of coarse particles are considerably more 26 

spatially heterogeneous than other components and PM10-2.5 mass in general. The Si/Al-rich 27 

component of PM10-2.5 was more evenly distributed throughout the airshed (Figure 2b) than 28 

other components, such as Ca-rich (Figure 2c) and Fe-oxide (Figure 2d), with substantially higher 29 

concentrations in the Flats compared to outlying areas. These visual observations of 30 

heterogeneity were consistent with quantitative indicators of spatial heterogeneity. 31 

Heterogeneity indicators for the Si/Al-rich component (COD = 0.3; SH% = 0%) were substantially 32 

lower than the Ca-rich (COD = 0.4; SH% = 100%) and Fe oxide components (COD = 0.65; SH% = 33 

80%). All median CODs exceeded 0.2, a level suggested by EPA to indicate substantial 34 

heterogeneity (EPA 2004). The median COD for PM10-2.5 mass was 0.25 with greater CODs 35 

observed for all 13 components of PM10-2.5. Median CODs for components ranged from 0.26 for 36 

C-rich to 0.82 for pollen. Percent spatial heterogeneity (SH%) ranged from 0% (low spatial 37 

heterogeneity) for Si/Al-rich to 100% (high spatial heterogeneity) for Fe-rich.  38 



 

 

The COD results for PM10-2.5 mass observed in this study can be compared to those observed in 1 

other cities. The median COD of 0.25 for PM10-2.5 mass is similar to values observed in Los 2 

Angeles, CA [COD range: 0.15 to 0.33 (Krudysz, Froines et al. 2008); COD median: 0.24 (Pakbin, 3 

Hudda et al. 2010)], Iowa City, IA (COD range: 0.21 to 0.36) (Ott, Kumar et al. 2008), and 4 

Birmingham, United Kingdom (COD mean: 0.2 ± 0.1) (Lianou, Chalbot et al. 2007), but lower 5 

than values observed in Rochester, NY (CODmin: 0.365; CODmax:> 0.7) (Lagudu, Raja et al. 2011). 6 

Compared to the COD observed in this study, CODs for PM10-2.5 were higher in Helsinki, Finland 7 

(COD mean: 0.5 ± 0.1) and Athens, Greece (COD mean: 0.6 ± 0.1) and lower in Amsterdam, The 8 

Netherlands (COD mean: 0.07 ± 0.01) (Lianou, Chalbot et al. 2007).  9 

Pearson correlation coefficients (Figure 3b) suggest that concentrations were not strongly 10 

temporally associated. With only 3 data points per site pair, however, any correlations must be 11 

viewed with caution. For most components, median correlations were near zero, indicating little 12 

temporal association across the region over the three, week-long sampling periods. However, 13 

median correlations for Ca-rich and Si/Al-rich classes were positively skewed with median r 14 

values greater than 0.5, indicating some positive temporal relationship. The higher median 15 

correlation for the Si/Al-rich class is consistent with a PM10-2.5 component that is more regional in 16 

nature. 17 

The spatial heterogeneity observed for components in this study are generally consistent with 18 

suspected sources of coarse particles in Cleveland. Substantially higher concentrations were 19 

observed in the Flats for Fe-oxide (Figure 2d) and Ca-rich components (Figure 2c). COD and SH% 20 

values were relatively high for Si-rich, Al-rich, Fe-oxide, Fe-rich, Ca-rich, Ca/S-rich, C-rich, and 21 

metal-rich components. These spatial patterns and higher quantitative indicators of 22 

heterogeneity are consistent with emissions from steel and cement industries common in the 23 

Flats.  24 

Significantly higher concentrations for Ca-rich, Ca/S-rich, Fe-rich, and metal-rich components 25 

observed in the Flats (Site 20) when compared to either background site (Figure 5) are 26 

consistent with local emissions of coarse particles that tend to settle near the source. The band 27 

of high concentrations in the map for the Ca-rich component (Figure 2c) is restricted to the flats 28 

area suggesting limited transport. In contrast, there is evidence that the Fe-oxide component is 29 

transported from the Flats along the Cuyahoga River Valley. The band of high concentrations for 30 

Fe-oxide stretches along the entire valley to Site 30 (Figure 2d). As shown in Table S1, winds 31 

from N and NNE were observed on all weeks, which could account for this transport. Further 32 

analysis of correlations among meteorological data from multiple stations in the Cleveland area 33 

and observed concentrations of the components of coarse particles will be the subject of a 34 

future manuscript.  35 

Those components with low spatial heterogeneity suggest regional or ubiquitous sources. 36 

Relatively low COD and SH% values were observed for Si-rich (median COD = 0.3; SH% = 35) and 37 

Si/Al-rich (median COD = 0.3; SH% = 0). These components are associated with crustal earth 38 

material expected as a source prevalent throughout the airshed. As seen in Figure 2b, Si/Al-rich 39 



 

 

concentrations were more evenly distributed than other components consistent with a more 1 

broadly distributed regional source. Although not statistically significant, higher median 2 

concentrations and greater variability in the Si/Al-rich component were observed at the Flats 3 

and at the valley background site (Site 30) compared to the other background site (Site 34; 4 

Figure 5). Compared to suburban environments where vegetation acts as a natural sink for PM, 5 

there are substantially more hard paved surfaces, traffic volume, and density of buildings within 6 

the Flats, which may enhance coarse particulate re-suspension. Possibly Si/Al-rich particles are 7 

re-suspended and transported along the valley.  8 

Percent relative spatial heterogeneity may be a more meaningful quantitative indicator of 9 

heterogeneity than COD. Although COD and SH% provided consistent information in most cases, 10 

SH% values were sometimes more consistent with visual interpretation of concentrations maps. 11 

A visual rank order of the maps in Figure 2 from least to most spatial heterogeneity of the maps 12 

is consistent with rank order by SH% but not COD: Si/Al-rich, SH% = 0, COD = 0.3 (Figure 2b); Fe-13 

oxide, SH% = 80, COD = 0.65 (Figure 2d); PM10-2.5, SH% = 100, COD = 0.25 (Figure 2a); and Ca-rich, 14 

SH% = 100, COD = 0.4 (Figure 2b). This finding is attributed to the fact that SH% is computed 15 

from elements of the semivariogram, which by definition depicts the spatial autocorrelation in 16 

data. Thus, SH% relates directly to spatial patterns in the data, whereas COD is a statistical 17 

construct providing an indicator of measurement differences without regard to distance 18 

between sites.  19 

However, in the limited comparison of PM10-2.5 and Ca-rich, SH% as applied in this work is not as 20 

sensitive as visual observation of the maps. For both, the SH% was 100, although visually PM10-2.5 21 

appears less spatially heterogeneous than Ca-rich. In this case, CODs were consistent with the 22 

maps with COD = 0.25 for PM10-2.5 lower than COD = 0.4 for Ca-rich. More work is needed to 23 

investigate ways to apply information from the semivariogram to arrive at a more sensitive 24 

estimate of spatial heterogeneity.  25 

 Our results are limited to a three-week period in one season and may not be representative of 26 

coarse particle concentrations in this airshed more generally. Also, the samples collected in this 27 

study were limited to a one week sampling duration, which for many samples resulted in 28 

particle loadings that were low for CCSEM-EDS analysis.  The analysis of LoD and LoQ 29 

summarized in Table 2 provides important information for future work. These results reinforce 30 

the importance of clean blanks and adequate sampling time. LoDs and LoQs would be lower had 31 

the blank substrates used in this work been cleaner, and the average particle counts for each 32 

component measured in the field samples would be greater for sampling times longer than one 33 

week. Longer sampling times, two weeks or more, may have been more appropriate from a 34 

particle loading perspective and aligned with the study of chronic health effects. Alternatively, a 35 

passive sampler with a larger collection surface would provide more particles for analysis for the 36 

study of short-term health effects.  37 

In conclusion, a network of passive samplers analyzed by CCSEM-EDS was used to determine the 38 

spatial variability of PM10-2.5 and its components in Cleveland, OH. The concentrations of some 39 



 

 

PM10-2.5 components were substantially more spatially heterogeneous than others. PM10-2.5 and 1 

components associated with steel and cement production (Fe-oxide and Ca-rich) were higher in 2 

the industrial Flats district, whereas those components associated with crustal earth material 3 

(Si/Al-rich) were more uniformly observed throughout the airshed. There is some evidence that 4 

certain components are transported from the industrial Flats to downwind suburban valley 5 

sites. Lastly, percent spatial heterogeneity (SH%) may be a more meaningful indicator of 6 

heterogeneity than the commonly used coefficient of divergence (COD). SH% leverages the 7 

underlying spatial autocorrelation in a dataset being calculated from components of the 8 

semivariogram, whereas the COD is a statistical construct that does not account for the 9 

distances between sites.  10 

These findings demonstrate the potential of a passive sampling network coupled with 11 

automated single particle analysis to assess the spatial and temporal variability of PM10-2.5 mass 12 

and composition. This measurement methodology could substantially reduce exposure 13 

misclassification in the epidemiological study of adverse health effects associated with exposure 14 

to PM10-2.5. The methodology may also be a valuable tool to attribute observed concentrations 15 

to specific sources. 16 
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Table 1: Rules for sorting particles by composition into components of PM10-2.5. Numbers 1 
shown in rules are the percentage of the given element with reference to the 2 
total x-ray spectrum. 3 

Class 

# 
Component Rule 

Potential Sources in the  

Cleveland Airshed 

1 pollen P ≥ 3 and Ca ≥ 3 

and C ≥ 80  

Naturally occurring plant material  

2 C-rich C ≥ 50 Material rich in carbon including plant 

material other than pollen, soot, tire 

rubber, etc. 

3 NaCl (Na+Cl) > 70 and 

Na > 20 and Cl > 

30 

Rivers and Lake Erie; Road salt (but 

unlikely in summer) 

4 Na-rich Na ≥ 40 Salts; Lake Erie; Na-S from various 

industrial processes 

5 Ca/S-rich Ca ≥ 20 and S ≥ 

20 

Steel making; cement production; 

gypsum used in construction; by-product 

of atmospheric reaction of Ca with S. 

6 Si/Al-rich Si ≥ 30 and Al ≥ 

10 

Crustal material consistent with soil,  

road dust, fly ash 

7 Fe-oxide Fe ≥ 75 Spherical: combustion processes used in 

steel making; coal fired power plants;  

Non-spherical: steel making; rust 

8 Al-rich Al ≥ 70 Aluminum manufacturing; contamination 

from the sampler or shelter  

9 Si-rich Si ≥ 60 Crustal material consistent with soil 

(quartz) 

10 metal-rich Ti > 5 or Cr > 5 

or Mn > 5 or Ni > 

5 or Cu > 5 or Zn 

> 5 or Ba > 5 or 

Pb > 5 

Various industrial sources including steel 

making or coal-fired power plants; Cu, 

Ba, Zn may be from brake and tire wear;  

Ti, Mn and Ba may also be related to 

crustal material 

11 Fe-rich Fe ≥ 40 Steel making (potential kish); rust 

12 Ca-rich Ca ≥ 40 Naturally occurring crustal material 

(calcium carbonate or calcium oxide); 

steel making; cement production; 

construction activities 

13 miscellaneous Catch all  

 4 
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Table 2: Summary of blank analysis conducted to determine limit of detection (LoD) and 1 

limit of quantitation (LoQ). Components marked with * were absent in the blanks in the 2 

2.5–10 µm size range. The LoD and LoQ values for these components were estimated to 3 

be similar to those for NaCl, which had a similar number of mean blank counts in the 1.5-4 

15 µm size range.    5 

 6 

Component 
Blank Counts  

Mean  (Std. Dev) 
LOD (µg/m

3
) LOQ (µg/m

3
) 

%sites > 
LoD 

%sites > 
LoQ 

PM10-2.5 60 (37) 1.4 3.4 100 100 

Ca-rich 1.2 (1.0) 0.12 0.37 100 100 

Ca/Si* 0 (0)  ~ 0.14 ~0.40 100 60 

Ssteel 0.3 (0.5) 0.01 0.03 76 48 

Al-Si 1.3 (1.0) 0.43 1.28 96 44 

Fe-rich 1.3 (1.2) 0.05 0.14 96 44 

Fe-oxide 1.5 (0.5) 0.08 0.22 92 40 

Si-rich 8.8 (7.5) 0.70 1.89 100 32 

Misc. 1.5 (1.5) 0.07 0.20 84 32 

Ca/S* 0.2 (0.4)  ~ 0.14 ~0.40 40 4 

Al-rich 1.7 (2.3) 0.16 0.50 36 0 

Metal-rich 5.7 (6.2) 0.58 1.59 32 0 

C-rich 35.7 (30.4) 0.38 1.05 20 0 

Na/Cl 0.3 (0.5) 0.14 0.40 4 0 

Na-rich* 0.2 (0.4)  ~ 0.14 ~0.40 0 0 

Pollen* 0.5 (0.5)  ~ 0.14 ~0.40 0 0 
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 1 

Figure 1: Map of Cuyahoga County, OH showing passive sampler locations and PM10-2.5 2 
concentrations by site. Key reference points are identified: Lake Erie, 3 
Cleveland’s Flats District (dotted line rectangle), Lower Cuyahoga River, high 4 
PM10-2.5 in the Flats (Sites 1, 20, 35), and comparison suburban sites (valley 5 
Site 30; non-valley Site 34). Elevation contours are lines weighted by 6 
thickness: 213 m (line thickness light), 262 m (line thickness medium), and 7 
308 m (line thickness heavy). Numbers represent sample site identification 8 
number and names represent municipal boundaries. 9 
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 1 

Figure 2: Maps of normalized concentration for: (a) PM10-2.5; (b) Si/Al-rich; (c) Ca-rich; 2 
and (d) Fe-oxide. Normalized concentration scale bar in panel b applies to all 3 
maps. Dots with numbers represent sample locations and identification 4 
number. 5 
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Figure 3:  Coefficient of divergence (COD) by compositional class (a: top plot). COD 1 
values greater than 0.2 (bold dashed line) are considered spatially 2 
heterogeneous. Pearson correlation (r) by compositional class (b: middle plot). 3 
Concentration (µg m

-3
) by compositional class (c: bottom plot). Box plots 4 

represent minimum, maximum, 1st and 3rd quartiles, outliers, and medians.   5 
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 3 

Figure 4: Percent spatial heterogeneity composite for all weeks for PM10-2.5 and by 4 
component. 5 
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Figure 5:   Concentrations of PM10-2.5 and components observed at the Flats District (Site 1 
20) compared to those observed at Valley Suburban (Site 30) and Non-Valley 2 
Suburban (Site 34) sites. Box plots represent medians and 95% confidence 3 
intervals for the medians. Double asterisk (**) indicate that the medians were 4 
significantly different with a p-value < 0.08. 5 
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Table S1. Summary of meteorological data from Cleveland Hopkins International Airport.   1 

 Week 1 Week 2 Week 3 

 8/12/2008 – 8/19/2008 8/19/2008 – 8/26/2008 8/26/2008 – 9/2/2008 

Winda 

 
 

 

Rainfall 
Total, 
mm 

0 3 15 

 Min Mean Max Min Mean Max Min Mean Max 

Temp, C 13.0 21.5 29.0 13.0 22.7 32.3 13.9 21.1 29.4 

RH, % 31 64 93 24 59 90 27 69 96 
a direction from which the wind was blowing 2 

 3 
Data were obtained from http://www.epa.ohio.gov/dapc/model/modeling/metfiles.aspx as AERMOD surface files (SFC). Wind roses were 4 
prepared using WRPlot (Version 7.0, Lakes Environmental). Descriptive statistics on rainfall and temperature were compiled using MiniTab 5 
(Version 17.1). 6 

http://www.epa.ohio.gov/dapc/model/modeling/metfiles.aspx
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 22 

 23 

Figure S1: X-ray spectra and scanning electron microscopy images of individual 24 
particles. These include: Ca rich, carbon, crustal, miscellaneous (other), Fe 25 
oxide, and Fe rich classes. 26 
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HIGHLIGHTS  

 Examined spatial variability of PM10-2.5 and components in Cleveland, OH. 

 Used passive samplers with automated microscopy to classify particles. 

 Components associated with steel and cement production highest in industrial area. 

 Components associated with crustal material more uniformly distributed. 

 Method may be useful to reduce exposure misclassification in epidemiological studies. 
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