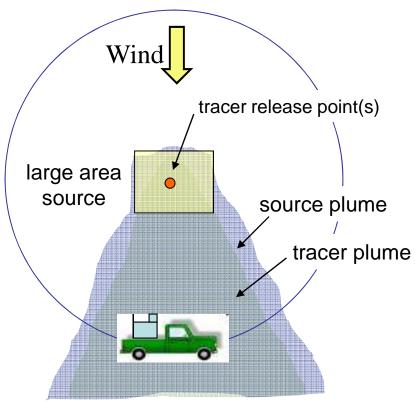
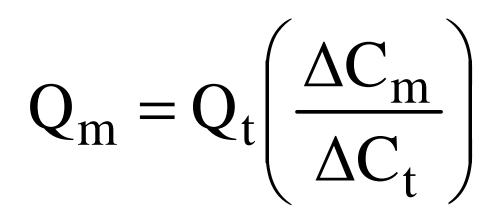
Development of the Mobile Tracer Correlation Approach for Quantification of Emissions from Landfills and Other Large Area Sources

AWMA Symposium on Air Quality Measurement Methods and Technology Abstract #9: April 25, 2012 Tracey Footer, ERG


- Large area sources like landfills present many emissions measurement challenges:
 - Large in extent, spatially variable emissions
 - Temporally variable, difficult to model
- Measurement tools such as flux boxes and EPA OTM 10 provide a "picture" of emissions from parts of a landfill
- A technique that provides whole-facility emissions measurements is a valuable complementary tool

- Tracer correlation is a simple approach for measuring large area source emissions
- Use mobile monitor to map target source and tracer plumes
- Calculate dilution ratio based on known tracer release rate



Background

- Conventional tracer correlation equipment used in the literature is rather complicated (Quantum cascade lasers and FTIRs)
- This projects tests the tracer correlation approach with high performance but simple to use instruments and with acetylene as a tracer release gas
- This work supports development of an EPA preliminary method for tracer correlation measurement of large area sources
- This method is part of EPA's Geospatial Measurement of Air Pollution (GMAP) Program. It is called Remote Emissions Quantification by Tracer Correlation (REQ-TC)

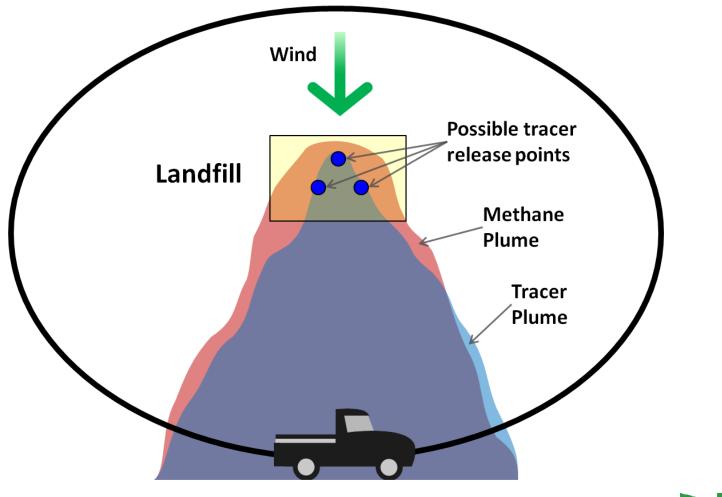
Background: GMAP-REQ-TC Calculation

Where:

- Q_m = whole-facility methane emission rate
- Q_t = tracer gas release rate
- ΔC_m = elevation of methane concentration above background levels
- ΔC_t = elevation of tracer gas concentration above background levels

Project Timeline

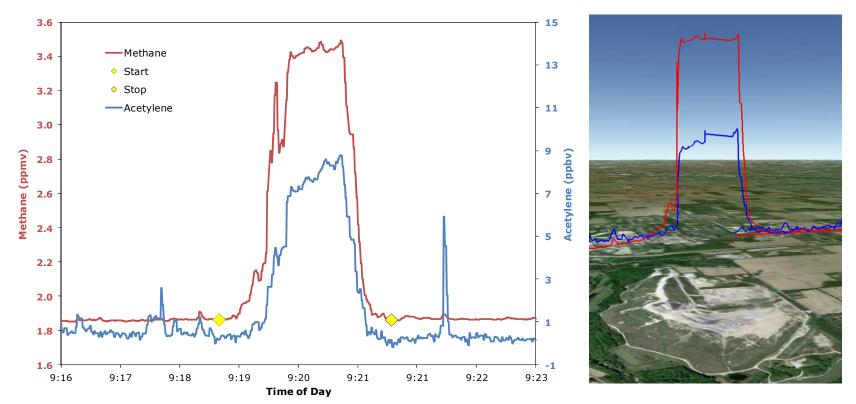
- <u>Campaign 1 (2009)</u>
 - Proof-of-concept and
 - determination of analytical performance
- Campaign 2 (2010)
 - Development of sampling/on-site procedure
- Campaign 3 (2011)
 - Data processing and analysis
- Campaign 4 (2012)
 - Improvement in the efficiency of method application and
 - quantification of measurement uncertainty



Project Timeline: Real-world Field Work by Industry

Dates	Facility	Location	Dates	Facility	Location
Campaign 1			Campaign 3		
May 18 – 21, 2009	Twin Bridges	Danville, IN	June 1 – 3, 2011	Turkey Run	Lone Oak, GA
October 5 – 7, 2009	Redwood	Novato, CA	June 14 – 16, 2011	Turkey Run	Lone Oak, GA
October 18 – 22, 2009	Altamont	Livermore, CA	August 9 – 10, 2011	Centerpoint	Centerpoint, IN
Campaign 2			August 24 – 25, 2011	Twin Bridges	Danville, IN
July 21 – 23, 2010	Twin Bridges	Danville, IN	August 31, 2011	South Wells	Liberty Center, IN
July 30, 2010	Outer Loop	Louisville, KY	September 7 – 8, 2011	Centerpoint	Centerpoint, IN
August 17 – 18, 2010	Twin Bridges	Danville, IN	September 13 – 14, 2011	Twin Bridges	Danville, IN
August 24 – 26, 2010	Stony Hollow	Dayton, OH	September 21 – 22, 2011	South Wells	Liberty Center, IN
August 31 – September 2, 2010	Suburban	Glenford, OH	October 11 – 12, 2011	Centerpoint	Centerpoint, IN
September 8 & 10, 2010	Outer Loop	Louisville, KY	October 25, 2011	South Wells	Liberty Center, IN
September 14 – 15, 2010	Twin Bridges	Danville, OH	November 2 & 4, 2011	Twin Bridges	Danville, IN
September 16 – 17, 2010	South Wells	Liberty Center, IN	November 16 – 18, 2011	Turkey Run	Lone Oak, GA
September 21 – 22, 2010	Stony Hollow	Dayton, OH	November 30, 2011	Centerpoint	Centerpoint, IN
September 23, 2010	Springfield	Springfield, OH	December 1, 2011	Twin Bridges	Danville, IN
October 19 – 21, 2010	Springfield	Springfield, OH	December 6, 2011	South Wells	Liberty Center, IN
October 26 – 27, 2010	Stony Hollow	Dayton, OH	December 14 & 16, 2011	Valencia	Los Chavez, NM
November 2, 2010	Seneca East	Republic, OH		ampaign 4	,
November 4, 2010	South Wells	Liberty Center, IN			
November 9 – 10, 2010	Centerpoint	Centerpoint, IN		TBD	
November 11 – 12, 2010	Twin Bridges	Danville, IN			
November 16 – 17, 2010	Suburban	Glenford, OH			
December 1 – 2, 2010	Outer Loop	Louisville, KY			

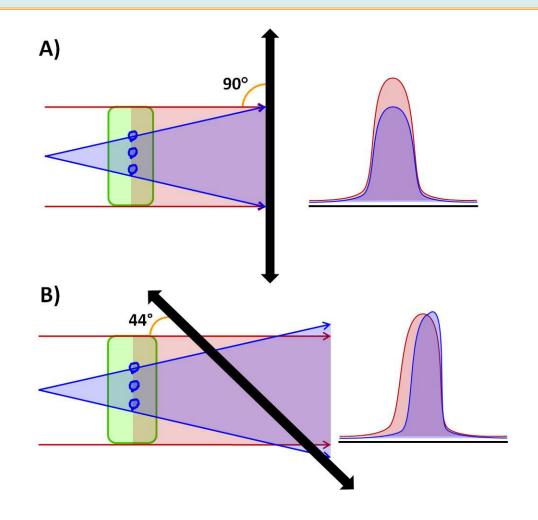
Campaign 1: Proof-of-Concept


(Can we perform TC with simple instruments?)

Campaign 1: Proof-of-Concept

(Can we perform TC with simple instruments?)

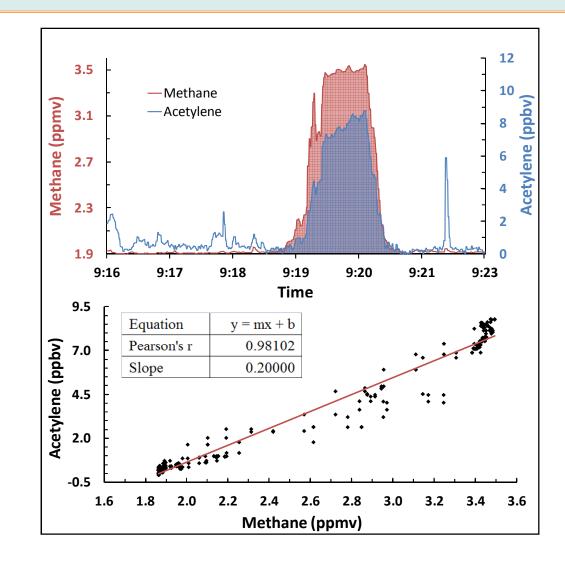
Work with Picarro Inc. to develop and test a simple approach for TC work. A single CRDS instrument to measure methane and acetylene and record meteorological and GPS location data.



Campaign 2: Measurement Quality Objectives (MQOs)

Measurement Parameter	MQO		
GPS Data Acquisition	TBD*		
Proper MFC Function	MFC release rate within ±20% of cylinder weight- determined release rate *		
Wind Speed	> 1.8 km/h		
Instrumental Performance: Methane	Accuracy:±5% Drift:±2%		
Instrumental Performance: Acetylene	Accuracy:±10% Drift:±2%		
Instrumental Performance: Resolution	< 2.0 seconds		
Mobile Path: Distance from Landfill Midpoint	> 0.65 km		
Mobile Path: Absolute Angle	Ideally 90°, but no less than 45°		

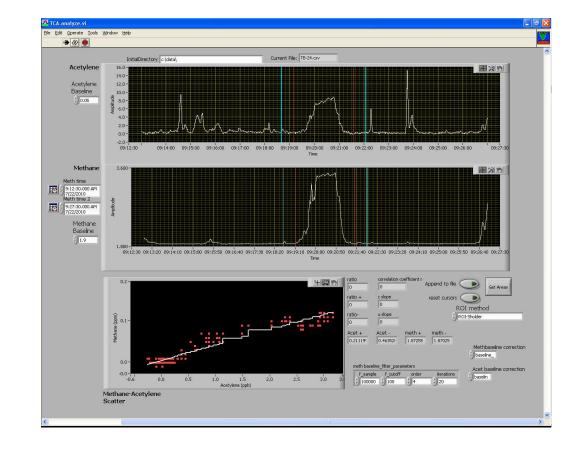
Campaign 2: Determining MQOs



Campaign 3: Data Quality Indicators (DQIs)

Measurement Parameter	DQI Specification	
Distance from Landfill Midpoint	> 0.65 km	
Direction Relative to Landfill Midpoint	± 60°	
Relative Percent Difference (RPD): Mobile Transects	< 20%	
RPD: Stationary Measurements	< 40%	
Pearson Correlation Coefficient	Mobile: > 0.80 Stationary: > 0.75	
Wind Speed	TBD*	
Wind Direction	TBD*	
S:N Ratio	TBD*	

Campaign 3: Determining DQIs


Campaign 4: Refining the Method

- Working with industry to further refine method application (what works in the real world)
- Improved sample inlet and met station design
- Improved data collection, processing, and analysis software
- Addressing transferability and QA protocols

Campaign 4: (Refining to Practice) Example Improvements

Summary

- Work has shown that the GMAP REQ TC approach using simple (but powerful) spectroscopic instruments and acetylene as a tracer is useful
- The approach is "out of the lab" and is being tested in the field by industry
- The approach very transferable and is being documented as a method for submission to EPA OAQPS for posting consideration as an alternate test method for area sources (2013)

- Thank you!
- Any questions?

