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Abstract PBTK Models Parameterized In Vitro

Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those e

A o : ) B SN o * We have curated sufficient HTTK data to predict human steady- ' imitati 5k
identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R tat trati C i it F; n val ttyth Modellng Measurement Limitations A R
software package, vLiverPBPK. For the thousands of chemicals without in vivo TK data, all four TK models were designed to be parameterized S a_e sgrum concen r.a ions ( ss» N ynl S of mg/L) equwa_ efl 1(31 . gio_ N ‘ ...." o
with high-throughput (HT) in vitro TK experiments and structure-based physico-chemical property predictions. The models make two general activation concentrations observed in vitro for 350 chemicals**/°19: £ lev02 o g
types of predictions: steady-state serum concentration resulting from repeated exposures for use in reverse toxicokinetic (RTK) studies, and « 75 pharmaceuticals, ~ o ‘g e ;.’,.-‘
prediction of TK time course metrics such as C,,,, and time-integrated plasma concentration (Area Under the Curve or AUC) for evaluating model « 275 ToxCast chemicals 2 The HTPBTK model Pred'Ct'OnS for the area under = A L
prediction by comparison to in vivo data. In predicting the concentrations of a chemical over time, the HTTK models primarily use in vitro data for « 41 NHANES chemicals g the plasma concentration versus time curve (AUC —  Zicio0- 1
both the fraction of chemical unbound to plasma and the hepatic clearance, as well as structure-derived physicochemical properties for the o shown in A) and the maximum concentration fora £ L :
calculation of partition coefficients and ratios of blood flows and tissue volumes to body weight for the models with multiple compartments. We , N : : g single dose (C,,, — Shown in B) correlate well with g 1T
have performed simulation studies using the more sophisticated high-throughput (PBTK) model to evaluate key assumptions in the simpler three- In Wetmore et al. (2012_) popqlatlon variability was Slmulgted via ® the in vi\Tngata taken from various literature o0z * :
compartment, steady-state model used in previous RTK studies and have found that although the majority of chemicals reach steady state Monte Carlo methoc_l using S_|mC_YP_2 th? EPA/NCCT V|—|V9|'PB_PK o SOUTCes
within seven weeks, some never reach steady state within a typical human lifespan. We were also able to predict average steady state package replaces SImCYP with distributions that better reflect in £ :
concentrations resulting from discrete dosing with predictions based on the infusion dosing assumption used in previous RTK studies; many of Vvitro measurement i ; 0o 10000
the chemicals that quickly reached lower steady state concentrations reached maximum concentrations of more than double the average steady © Predicted AUC (mg/L*h)
state concentration. The package can currently make predictions for 350 chemicals, including 75 pharmaceuticals and 275 ToxCast chemicals, Plasma Protein Binding (Fraction Unbound in Plasma) o _ : e Route vl po Bl sc
and we will continue adding chemicals as more data comes available. This abstract does not necessarily reflect US EPA policy. cvoprinsic Hepatic Clearance (Cli) Css Predicted (mg/L) with Refined Assumptions _
RED Method: Waters et al. (2008) yopreserved hepatocyte Method: \\ e Class ® Other (8) 4 Pharmaceutical (14)
_ Coeit Shibata et al. (2.002) . \ Percentile © 5 = 50 - 95 ”
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Introduction: Bridging ToxCast and ExpoCast w = e e, Cuantiles for each chemical are s under oy
comecid {6 donor sampearane = syt and 1t connecte a line. The 95% _ _ 2 O - -
L encomponnd 3 P it hafor o it - The HTPBTK model assume 100% bioavailability 3 B
membrane to one (slope of line) is the ¥ " 2 saturation of quantlle (hlgheSt CSS for a flxed £ i
| | o Hope of e is t P et q : itive t i for oral doses and should therefore usually over O < N
* There are thousands of chemicals in el (i ‘ enzymes. ose) is sensitive to assumptions predict in vivo measurements, as in A and B g S e
. . epatocytes H H H ) . A L
our environment to which we are P about the protein binding assay. 5 PR
regularly exposed, many of which with Te03 | T A .t
little information for prioritizations 3 ' ToxCast ) over
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minimal information to known I Exposure Prediction . : : : P _ .
toxicant a3 I =y Most chemicals reach a steady state concentration (Cy) in a we— Steady-state g C) The number of days it takes a chemical to reach
oxicants S 1 g A Brerai manner similar to the way it is reached in the figure on the . TRIRTN centration: 5 cteady state ranaes from 2 davs to over 100 vears with
. @ E . Hilm | right. The horizontal line represents the steady state reached 1 _ C % b tyh If takin gl than Y r The den ¥ f
o Exp()CastS allows h|gh throughput § - . ith th infusi dosi . de i Concentration ss 5 apou : alf taking less than a Yea . e density o
.. . with the constant Infusion dosing assumption maae In Wetmore . £ chemicals decreases as the time to steady state
exposure predictions for comparison 2 g et al. (2012) 3_30_ from repeated 2., ( y
with bioactivity data (point and X 1o - ' ExpoCast _E dosing Increases.
vertical bar in figure at right I . Exposure » The equation on theright is £
indicates median and upper 95% | used in the Monte Carlo oral dose rate Ezo_
interval) Red indicates chemicals with Sampler and Wetmore et al. Cy = cl. s 0-
some near-field (e.g. indoor, (2012). The equations is equal (GFR F“"){Q' g Q.+Fb*CIJ = e Days "= e
consumer L_Jse_) sources of_expOSl_Jre b, / /4 to the steady state 10- 1 mg/kg/day )
while blue indicates chemicals with g 7 ToxCast Chemicals concentration of the liver in the 3 doses per day D // D) Th : trati t steadv stat
without partition coefficients 0- does not vary significantly from the average
. : : . o ’ 0 5 10 15 20 concentration. For a few of the chemicals with
 Each black circle in the figure above corresponds to the dose needed to cause 50% activity in an in vitro assay _ _ _ _ _ _ Day _ lower steady state concentrations it can be up to a
Different chemicals have different numbers of active assays, e.g., if the assay dose-response was best described by a flat * Using HTPBTK we can simulate discrete doses to better approximate discrete dosing from proximate (near-field) factor of 1.35 larger at three doses per day
line (no response) then no circle is plotted. sources. We can then compare the maximum concentration with the infusion dosing results at steady state, which

are equivalent to the average of the discrete dosing steady states.

*The ratio of oral equivalent dose for activity to predicted exposures (activity:exposure ratio, AER)® allows prioritization of
limited testing resources for chemicals of higher concern
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» The steady state concentration from 1 mg/kg/day dosing is used to calculate the dose needed to reach any steady

_ _ o , state for that chemical using the linear dose-concentration relationship of the model. ;
* In vitro measurements of TK determinants have allowed ToxCast activities to be translated into human® and rat1® oral P
equivalent doses needed to reach steady state o 1000
Average Concentration at Steady State (uM)
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« Although we have characterized the uncertainty in exposure predictions, there is a great need for characterizing the e
uncertainty of in vitro predictions of toxicokinetics (HTTK) « The models at the left and right are > LungBiood —
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HTPBPK Model : : : :
« Our models predict that some chemicals with long half lives never reach steady state.

U.S. Environmental Protection Agency

Office of Research and Development « These models show that the steady-state concentrations predicted with discrete and infusion dosing
assumptions are consistent and significantly different from the peak concentration at steady state.
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