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Many Nanomaterials and Little 
Bioactivity/Toxicity Data

1
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http://www.nanowerk.com/phpscripts/n_dbsearch.php. (Accessed July 26 2012)
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Over 2,800 pristine nanomaterials (NMs)1 and 
numerous nanoproducts are already on the market

http://nrc.ien.gatech.edu/sites/default/files/NanoProductsPostercopy.jpg

We have toxicity data for 
only a small number of them
Traditional mammalian tox 

testing for all NM is not 
practical

Estimated $249 million to 
$1.18 billion for NM 
already on the market  in 
20092

http://www.nanowerk.com/phpscripts/n_dbsearch.php
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ToxCast - Toxicity Forecaster 
Part of EPA’s computational toxicology research
Initial goal is chemical prioritization
Find correlations of in vitro bioactivity signatures and in vivo 

toxicity endpoints
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High-throughput 
screening (HTS)
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NM Testing in ToxCast  

Goals: 
 Evaluate ToxCast HTS 

assays for screening NMs
• Compatibility of assays
• Suitability of endpoints

 Prioritize NMs for further 
research/hazard 
identification

 Identify key nanomaterial 
physicochemical 
characteristics influencing 
activities

3

Profile 
Matching

Physical 
chemical 
properties 
of NM

>1000 chemicals; 
~60 NMs (Ag, Au, 
TiO2, SeO2, ZnO, 
SiO2, Cu, etc)

HTS assay 
results

ENPRA
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Current ToxCast Nano Data

HTS of bioactivity 
completed for 67 samples (62 
unique materials)
6 to 10 concentrations
Mammalian cellular assays
Zebrafish embryo 

development assay

Characterization/analysis 
of NM physicochemical 
properties in progress
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nano micro ion
Ag 5+2* 1 1

Asbestos 3 

Au 1

SWCNT 
MWCNT

8

CeO2 4 1 1

Cu 4+2# 2+1# 2

SiO2 5 1

TiO2 9 4

ZnO 2 1 1

* IAT NP and IAT NP infused with Ag ion
# purified sample with no/low ions
Not listed: Dispersant of one of the nano-Ag
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Consistent 
Handling Protocol: 
Stock Preparation 
as an Example

Adapted from Keld Astrup Jensen developed in FP7 
ENPRA (www.enpra.eu) 

Nanomaterial in 
ultrapure water + 2% serum

Ice

Sonication at 400 W for 16 min

• All stocks made by 
one lab
• Used for bioactivity 
testing within 2 weeks

Testing 
Concentrations: 
Based on 

Reported potential 
occupational 
inhalation exposure

Estimated 
lung  retention

Gangwal et al. Environ Health Perspect 119:1539-
46, 2011.
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Characterization Data Coverage
Endpoints

Method (by CEINT, 
unless specified)

Samples

As received (Re)suspended

Dry  
material

Sus-
pension

In stock 
(H2O+serum)

In 4 testing 
mediums, 2 conc

size distribution 
and shape

TEM, SEM,  DLS
nano and 
micro √ √ √ √ (2 time points)

surface area
BET (by NIOSH and 
NIST), calculate 
from DLS

nano and 
micro √ √ √ (3)

chemical 
composition

XRD, TOC all samples √ √

crystal form XRD
applicable 
samples √ √

impurity XPS CNT √
total metal 
concentration

metallic 
samples √ √ (1)

total non-metal 
concentration

non-metallic 
samples √

ion concentration ICP-MS and others applicable √ √ (3)

zeta potential,
surface charge

zetasizer
nano and 
micro √
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Example TEMs

8
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CNTs Have Different Impurities

Weight percent of impurities in CNTs, measured by XPS

10

  C Fe Co Ni 
N010 
N011 97.46 1.09 1.44 0.00
N012 99.31 0.69 0.00 0.00
N013 99.03 0.97 0.00 0.00
N014 99.46 0.00 0.54 0.00
N015 100.00 0.00 0.00 0.00
N016 
N017 
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DNA

RNA

Protein

Function/
Phenotype

HTS Assay Coverage 
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•Transcription factor activation, 48 endpoints (Attagene)

Main type of 
result by assay 
platform

# of 
endpoint 
measured

# of 
direction 
(time points)

# of potential 
LEC/AC50 per 
NM per conc.

• Transcription 
factor activation 48 NA 48

• Protein 
biomarker 87 2 174

• Cell growth 
kinetics 1 1 1
• Toxicity
phenotype 19 NA (2) 38
• Developmental 
malformation 

Aggregated
to 2 NA 2

Total   > 260
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Assay Platforms

Selected endpoints
 Effects on transcription factors 

in human cell lines (Attagene)
 Human cell growth kinetics 

(ACEA Biosciences)
 Protein expression profiles in 

complex primary human cell 
culture models (BioSeek)

Cellumen/AppredicaAttageneACEABioSeek

 Toxicity phenotype effects (DNA, mitochondria, lysosomes etc.) in 
human and rat liver cells through high-content screening/ fluorescent 
imaging (Apredica)

 Developmental effects in zebrafish embryos

Zebrafish embryos
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Screening Logistics
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Samples from international sources to EPA
Samples prepped at Duke University CEINT
Samples shipped to testing labs: NC (2), CA (3), MA (1)
Data sent back to EPA
Physicochemical characterization at CEINT simulating testing 
conditions
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Cell Growth Kinetics in Human Lung Carcinoma 
Cell Line (A549) (ACEA Biosciences)

14

Nano-Ag CNT
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Principle Component Analysis (PCA) of 
Transcription Factor Activity (Attagene)

Zn (nano, micro)

Ag (ion, nano)

Cu (ion, nano)

X

X
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Principle component #1:  12 (out of 53) observed 
variables account for 39% variations

Pax6
EGR
Xbp1
Oct-MLP
CRE
Sox

HSE
Sp1
NRF1
MRE
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Principle component analysis (PCA) 
mapping of all transcription factor in 
Cis assay

HSE
Sp1
NRF1
MRE
C/EBP
NRF2/ARE

Associated 
with 

general 
cellular 

stress and 
death

Heat shock

Metal 
response

Oxidative 
stress



Office of Research and Development
National Center for Computational Toxicology

Oxidative stress vs. Metal response
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SiO2
(Oxidative stress/ 

no metal response)

Cu and Ag
(Oxidative stress/ 
metal response)

Zn (Oxidative stress/ 
strong metal response)
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Technology Platform: High-Content 
Cellular Imaging Toxicity Phenotypes

Description
 HepG2 human hepatoma cell line
 Rat primary hepatocytes
 Cellular toxicity phenotypes
 Apredica

Endpoints (20)
 Cytotoxicity
 Oxidative stress
 DNA damage
 Mitochondrial function
 Apoptosis
 Steatosis
 Cell cycle

Result Summary:
 Cell-selective cytotoxicity (Ag, ZnO, 

Cu, SiO2)
 Steatosis (Ag, ZnO, SiO2)
 Apoptosis (Ag, ZnO, SiO2, Cu)
 DNA Damage (Ag, ZnO, SiO2, Cu)
 AC50 > 1ug/ml (except Ag and 

HepG2 cytotoxicity)
 Soluble ion and nano effects 

generally similar

18
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HCS Images
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Steatosis
DMSO

nAg

Apoptosis
DMSO

nAg

H2AX/Oxidative Stress
DMSO

nAg
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Primary Human Cell Systems 
(BioSeek)

20
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Inferred Mechanism of Toxicity: 
nano Ag

21

• Ciclopirox – inhibitor of Na+ K+ ATPase
• Toxicity of silver is associated with inhibition of 
Na+K+ATPase (PMID: 6240533)

Nano Ag; Duke; GA capped; 6 nm; 8 mg/ml
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Similarity of Asbestos Inflammation 
Profiles

22

 R009 (micro amosite), R011 (micro tremolite) and R015 (micro 

amphibole) had highly similar profiles and were primarily active in 

epithelial cell-containing BioMAP systems (3C, 4H, LPS, SAg)
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• Asbestos at highest 
test concentrations had 
similar profiles

• Same CNT at different 
concentrations, had 
similar profiles

• CNT and asbestos did 
not appear similar in 
BioSeek assays

CNT and Asbestos Differences in Inflammatory 
Response Profiles

Similarity clustering (Pearson’s correlation coefficient > 0.7)
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CNTs Showed Sample-Specific 
Response Profiles

24

N014
N015

N016 N017



Office of Research and Development
National Center for Computational Toxicology

Zebrafish Embryo Developmental 
Assay

26

Day 6:

Day 3:

Day 1:

Abnormal
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NM Screening Results

27

Cell Stress

Cytotoxicity

Immune Response
Inflammation Acute

Inflammation Chronic

Inflammation Down

Mitochondria
Oxidative Stress

Tissue Remodeling
Vascular

Zebrafish

Ag Cu Zn Ce TiO2 CNT Ab SiAu

ninnnnnnmciinnnnnnmmminnminnnnmnnnnnnnnnnmmmmnnnnnnnnmmmmnnnnn
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Proposed Nanomaterial Mechanisms 
of Toxicity

28

Nel et al., Acc. Chem. Res. 46, 607-621, 2013.
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Summary of Screening

Ag, Cu, Zn much more active than other materials
 Primarily cell stress/oxidative stress and cytoxicity
 Ion and nano had very similar behavior; micro generally lower 

activity
 Supports ion shedding as mechanism of toxicity of these metal 

nanomaterials
CNTs, SiO2, TiO2 had lower levels of activity
 Wider range of individual sample variation
 Primarily inflammatory endpoints upregulated
 Low cytotoxicity
Au, Ce, additional CNTs, SiO2, TiO2 had very low activity
 Little to no cytotoxicity or cell stress markers induced
 Few inflammatory markers induced

29
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Summary of Challenges

Characterization of NM physicochemical properties is 
limited by available technology and time

Testing materials were not selected specific for testing 
structure-activity relationship 

Assay predicting power is unknown
For predicting chronic effects: most assays are 24 hr 

exposure
Assay model may not be appropriate: e.g. lung effects may 

depend on macrophages phagocytizing NMs
Very limited in vivo data available

30
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Conclusions
HTS for profiling NMs is feasible
Critical to couple physicochemical analysis to HTS testing (which 
may be rate-limiting)
What is dose?
 Aggregation
 Sedimentation
 Dissolution
 Cell permeability
Could design to address specific questions, e.g. SAR for ROS 
generation with modified experimental design
Probably much more significant in vitro to in vivo extrapolation 
problems than soluble chemicals due to poor modeling of ADME 
in vitro

 How to disperse?
 Flow needed?
 3D and/or co-cultures needed?

31
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