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Abstract: A major challenge in traffic-related air pollution exposure studies is the lack of 20 

information regarding pollutant exposure characterization. Air quality modeling can 21 

provide spatially and temporally varying exposure estimates for examining relationships 22 

between traffic-related air pollutants and adverse health outcomes. A hybrid air quality 23 

modeling approach was used to estimate exposure to traffic-related air pollutants in support 24 

of the NEXUS epidemiology study conducted in Detroit, Michigan. Model-based exposure 25 

metrics, associated with local variations of emissions and meteorology, were estimated 26 

using a combination of the AERMOD and RLINE dispersion models, local emission 27 

source information from the National Emissions Inventory, detailed road network locations 28 

and traffic activity, and meteorological data from the Detroit City Airport. The regional 29 

background contribution was estimated using a combination of the CMAQ and the STOK 30 

models. To capture the near-road pollutant gradients, refined “mini-grids” of model 31 

receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and 32 

its components (EC and OC) were predicted at each home location for multiple time 33 

periods including daily and rush hours. The exposure metrics were evaluated for their 34 

ability to characterize the spatial and temporal variations of multiple ambient air pollutants 35 

compared to measurements across the study area. 36 
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1. Introduction 1 

Studies of health effects associated with exposure to traffic-related air pollutants have typically used 2 

surrogates of exposure, such as residential proximity to roadways, traffic volumes on nearby roadways, 3 

and land-use regression techniques, to estimate exposure for the study population (Health Effects 4 

Institute, 2010; Cakmak et al., 2012; Rosenbloom et al, 2012; Chen et al., 2013; Gehring et al., 2013; 5 

Miranda et al., 2013).  While these exposure metrics are relatively simple to generate and have 6 

minimal data requirements, they do not capture potentially important influences on spatial variability, 7 

and perhaps more importantly, temporal variability of traffic-related air pollutants such as factors that 8 

affect dispersion (Batterman et al., 2014).  Traffic-related air pollutants can have significant temporal 9 

variability due to traffic activity patterns (e.g., rush hour peaks, higher during weekdays vs. weekends), 10 

emission profiles that vary with temperature, and the influence of meteorology, which are not captured 11 

by static exposure estimates based on geographic parameters (i.e. proximity to roadway, traffic 12 

intensity, lane use, etc.) that are often used in traffic studies.   13 

Health studies of the effects of traffic-related pollutants have historically relied on exposure metrics 14 

such as those listed above because available central site measurements often do not adequately capture 15 

local influences from traffic.  Data from regulatory monitoring sites may capture temporal variations 16 

for some pollutants (e.g., NOx, CO), but spatial coverage within an urban area is generally limited to 17 

one or two sites.  Studies deploying multiple monitors to provide spatial coverage are costly, so 18 

samplers with lower temporal resolution (daily to weekly) are often used (e.g. Wheeler et al., 2008; 19 

Matte et al., 2013).  The spatial impact of traffic emissions also varies by pollutant due to their 20 

chemical and physical characteristics (Karner et al., 2010), therefore a number of different monitors 21 

are needed to obtain data for the various traffic-related air pollutants.   22 

To address the limitations of available monitoring data and the various metrics of exposure, recent 23 

studies utilized emission/dispersion models and daily activity locations to derive air pollution 24 

exposures for epidemiological studies (Beckx et al., 2010; Hatzopoulou et al., 2010; McConnell et al., 25 

2010; Gruzieva et al., 2012; Sørensen et al., 2012; Sarnat et al., 2013; Gurram et al., 2014).  Two main 26 

types of air quality models are relevant for this purpose: grid-based chemical transport models and 27 

plume dispersion models.  Grid-based chemical transport models, such as the Community Multiscale 28 

Air Quality (CMAQ) model, estimate concentrations for large geographic areas at high time resolution 29 

but cannot resolve features smaller than a grid cell, usually several kilometers across (Byun et al., 30 

2006).  Plume dispersion models, such as AERMOD (Cimorelli et al, 2005), can provide locally 31 

resolved concentration gradients such as those occurring close to roadways but require estimates of 32 

background concentrations to compare model results to measurement data (Cook et. al., 2008).   To 33 

account for the limitations of each type of model, a hybrid approach can be used where output from 34 

both a grid-based chemical transport model and a plume dispersion model are merged to provide 35 

contributions from photochemical interactions, long-range (regional) transport, and details attributable 36 

to local-scale dispersion (Dionisio et. al., 2013; Isakov et. al., 2009).  37 

The Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS) is investigating the 38 

respiratory health impacts of exposure to traffic-related air pollutants for children with asthma living 39 

near major roads in Detroit, MI (Vette et al., 2013).  Air quality modeling was included in the design 40 

of NEXUS to estimate exposure to traffic-related air pollutants that varied both spatially and 41 
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temporally. Exposure estimates will be used for evaluating associations with daily health 1 

measurements collected during a 14-day period in each of four seasons for each study participant over 2 

a 1.5 year period.  This paper describes application of the hybrid air quality modeling approach.  The 3 

hybrid modeling components are described along with the specific inputs used for application to the 4 

Detroit study area and NEXUS participant locations.  Model results are compared with available 5 

measurement data from regulatory monitoring sites within Detroit and intensive field studies 6 

conducted during NEXUS.  The various exposure metrics produced from the model output which 7 

include the mobile source contribution to total exposure are provided for use in related NEXUS 8 

epidemiologic analysis, and described and compared here. 9 

2. Air Quality Modeling Approach for Estimating Exposure Metrics 10 

We use a combination of local-scale dispersion models, regional-scale models and observations to 11 

provide temporally and spatially-resolved pollutant concentrations for the epidemiologic analysis. 12 

Local variations in emissions and meteorology were estimated using a combination of AERMOD and 13 

RLINE (Snyder et. al., 2013; Venkatram et. al., 2013) dispersion models.  RLINE is a research-level, 14 

line-source dispersion model developed by U.S. EPA’s Office of Research and Development as a part 15 

of the ongoing effort to further develop tools for a comprehensive evaluation of air quality impacts in 16 

the near-road environment. This model incorporates traffic activity and primary mobile source 17 

emissions estimates to model hourly exposures to traffic emissions for the NEXUS participants. 18 

Exposures to air pollution from stationary sources such as manufacturing facilities and other non-road 19 

mobile sources were modeled using AERMOD. The input data including the source locations, 20 

emission rates, source parameters and other information were obtained from the 2008 official version 21 

of the National Emissions Inventory (NEI) from the U.S. EPA, the latest available at the time of the 22 

study (USEPA, 2008).   23 

To generate the total exposure of the NEXUS study participants, the urban background contribution 24 

must be added to the local estimates of exposure provided by AERMOD and RLINE models. The 25 

background contribution was estimated using a combination of the Community Multiscale Air Quality 26 

(CMAQ) model and the Space/Time Ordinary Kriging (STOK) model (Arunachalam et al, 2014).  27 

Two CMAQ model simulations were conducted: the baseline simulation represented all emissions in a 28 

broad region (covering the eastern US); the second removed all anthropogenic emissions in the 29 

NEXUS study domain.  The ratios of concentrations predicted by CMAQ in these two simulations in 30 

the Detroit region along with measurements from the routine observational network in the region were 31 

used to estimate background pollutant concentrations at the NEXUS study locations.   32 

The modeling provided hourly pollutant concentrations for CO, NOx, total PM2.5 mass, and its 33 

components such as elemental carbon (EC) and organic carbon (OC), and benzene. Hourly 34 

concentrations were processed to calculate daily and annual average exposure metrics for each study 35 

participants’ home and school location.  The model-based exposure metrics provided the necessary 36 

inputs for use in the epidemiologic analyses to determine if children in Detroit, MI with asthma living 37 

in close proximity to major roadways have greater health impacts associated with traffic-related air 38 

pollutants than those living farther away, particularly for children living near roadways with high 39 

diesel traffic. Children were recruited on the basis of the proximity of their residence to roadways in 40 
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three exposure groups:  children living within 150 m of high traffic and high diesel (HD) roads, 1 

defined as having traffic that exceeds 6,000 commercial vehicles/day (commercial annual average 2 

daily traffic; CAADT) and 90,000 total vehicles/day (annual average daily traffic; AADT); children 3 

living within 150 m of high traffic low diesel (LD) road, defined similarly but only including roads 4 

with CAADT below 4,500; and children living in low traffic (LT) areas, defined as at least 300 m from 5 

any road with over 25,000 AADT (Figure 1).   6 

Figure 1. Modeling domain for the NEXUS study. Major highways are shown as red and 7 

blue lines (for > 7% diesel and 4-7% diesel fraction) and other roads – as black lines. 8 

Model receptors are shown in red, blue and green circles for the HD, LD and LT traffic 9 

exposure group, respectively. Stationary sources are shown as black dots (symbol size 10 

indicates the magnitude of PM2.5 annual emissions). 11 

 12 

We first estimated pollutant-specific local-scale air concentrations for stationary and area sources 13 

using AERMOD.  This model utilized information on local emission sources for these two sectors and 14 

local meteorological conditions to estimate hourly average concentrations at multiple receptors in each 15 

of the three exposure groups.  Emission data for major stationary sources and airport sources were 16 

obtained from the NEI. For mobile sources, we used a recently developed line source dispersion model 17 

RLINE (Snyder et. al., 2013, Venkatram et. al., 2013).  Roadway emissions were estimated using 18 

detailed road network locations and a bottom-up methodology for roadway emissions (Cook, et al. 19 

2008), and further elaborated in Snyder et al (2014).   20 

An analysis of wind patterns for the year 2010 based on hourly meteorological observations from 21 

the NWS stations within and around the study area (Detroit City airport, Detroit Metro airport, 22 

Windsor airport) determined that the Detroit-City airport station was most representative of the 23 

NEXUS modeling domain, and which also had the most data completeness objective.  Hourly surface 24 

observations from Detroit City, in combination with data from the nearest upper air station (DTX-25 
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72632 Oakland County) were used for the simulation period to drive the modeling.  The land 1 

characteristics around the station were determined and the AERSURFACE model was applied. The 2 

AERMET program was used to process the meteorological data from the Detroit City airport and DTX 3 

upper air station for input into AERMOD. 4 

Emissions within the 30 x 40 km source region centered on the NEXUS participants in Detroit were 5 

extracted from the NEI 2008 by major source categories (area, point, onroad and off-road mobile) for 6 

the pollutants of interest. Sources located in Macomb, Oakland, and Wayne counties in Michigan, and 7 

Essex County in Ontario, Canada were included.  Area sources such as port- and airport-type sources 8 

in the study area were also included.  9 

For stationary point sources, the location, emission rate, and individual stack parameters (e.g., stack 10 

height, exit velocity) were used. Other non-stack emissions (such as smaller sources with no stack 11 

parameters, fugitive emissions, and emissions from nonroad mobile sources) were modeled as area 12 

sources.  County-level NEI area source emissions were spatially re-allocated to 1kmx 1km grid-cell 13 

resolution using spatial surrogates within the SMOKE emissions processor (Houyoux et al, 2000). 14 

Airport area sources with a polygon-shaped area corresponding to their actual locations were used as 15 

an input to the model.  Stationary sources were temporally allocated using SMOKE.  The SMOKE 16 

processor contains monthly, weekly, diurnal-weekday and diurnal-weekend profiles.  A seasonal 17 

profile was calculated from the monthly profiles.  The final temporal allocation yields an emission rate 18 

for each hour of the weekday/Saturday/Sunday for the entire year. 19 

For onroad mobile source emissions, the methodology described in Cook et al. (2008) is followed 20 

that produces a spatially and temporally resolved mobile source emissions inventory (i.e., hourly 21 

emissions for all pollutants modeled, by vehicle class and road link).  This methodology was 22 

successfully applied in previous studies for New Haven, Atlanta and Baltimore (Lobdell et. al., 2011, 23 

Isakov et. al., 2009, Sarnat et. al., 2013). In this study, detailed information including the geometry of 24 

the road network, traffic volumes, temporal allocation factors, fleet mixes and pollutant-specific 25 

emission factors, assembled from a variety of sources, were used in combination with meteorological 26 

inputs to generate link-based emissions for use in dispersion modeling to estimate pollutant 27 

concentrations due to traffic (Snyder et. al., 2014). The total emissions were calculated from emission 28 

factors multiplied by traffic activity for each road link to provide inputs for RLINE model simulations 29 

across the NEXUS study domain for a 1.5 year period (Fall 2010 – Spring 2012). In order to evaluate 30 

the differences in near-road pollutant gradients between the three selected traffic exposure groups (low 31 

diesel LD, high diesel HD and low traffic LT), the receptor grids were refined within each NEXUS 32 

sub-area (including the participants homes and schools). A mini-grid of receptors was placed near each 33 

NEXUS participant’s home and school consisting of a rectangular receptor grid on 50 m centers as 34 

indicated in Figure 2. Depending on the number of receptors used, mini-grids gave anonymity to 50 or 35 

100 m, a distance sufficient to protect the participants' identity. 36 

 37 

 38 

 39 
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Figure 2. Model receptors near roadways: 24-receptor mini-grid network. 1 

 2 

 3 

Exposure metrics were calculated from mini-grids to produce estimates for each NEXUS location.  4 

For NEXUS locations in the near road group, there are 85 near-road grids. The near-road grids contain 5 

24 modeled receptors, and a weighted interpolation between modeled grid rows was performed based 6 

on the actual distance between the participant’s home and the nearest major roadway to estimate the 7 

hourly concentration. Other locations were modeled with 5-point receptor grids (using five receptors 8 

on and around the home) and the hourly concentration was estimated by taking an average of the 9 

modeled concentrations at the five points. 10 

From hourly concentration, exposure metrics were calculated for the following time periods: 24-11 

hour (daily); 1-6 (a.m. off-peak); 7-8 (a.m. peak); 9-14 (mid-day); 15-17 (p.m. peak); and 18-24 (p.m. 12 

off-peak). These hours correspond to the reported local-time (e.g. hour 1 represents from 12:01 a.m. – 13 

1:00 a.m.). These are calculated with a 70% completeness criterion for the hourly meteorology in each 14 

time period. These daily exposure metrics for CO, NOx, PM2.5 and its components (EC and OC), 15 

capturing spatial and temporal variability across health study domain (Fall 2010 – Spring 2012) were 16 

used in the epidemiologic analyses. 17 

3. Results and Discussion 18 

Model results were compared to ambient monitoring data in Detroit. There are two sets of 19 

monitoring data for model evaluation: 1) from the routine observational network (AQS); and 2) from 20 

the intensive monitoring campaign which was part of the NEXUS study. There are five AQS 21 

monitoring stations in the modeling domain: four PM2.5 monitors (Allen Park, Dearborn, Newberry 22 

School, Ambassador Bridge) and one NOx monitor (East 7 mile road), as indicated in Figure 3. A 23 

comparison between modeled daily average PM2.5 concentrations for one-year period of 2010 at 24 

observed PM2.5 concentrations at all four AQS sites is shown in Figure 4. Model results correlate well 25 

with observed data (r ranges from 0.78 to 0.94) and are generally within a factor of two from 26 

observations. The Allen Park site near I-75 and southwest of stationary sources has best comparison 27 

versus other sites closer to large sources. There is more scatter at the “Newberry” and “Ambassador 28 
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Bridge” sites, likely due to uncertainties in spatial allocation of emissions near these locations. These 1 

sites are impacted by local emission sources modeled as 1km x 1km area sources in AERMOD. In 2 

contrast, the “Dearborn” site is impacted by industrial sources modeled as stacks with their known 3 

locations. For NOx, only one monitoring site was available in the modeling domain. The “East 7 mile” 4 

site is in the North-Eastern corner of the modeling domain, away from major highways. Figure 5 5 

compares time series of modeled and observed hourly NOx concentrations at the “East 7 mile” site for 6 

September-November 2010. Modeled concentrations generally follow the time series of observed data, 7 

however there are some over-predictions at certain hours likely due to uncertainties in emissions from 8 

traffic. The monitoring site is away from major highways, therefore the observed concentrations are 9 

influenced by emissions from local roads and regional sources. Unlike major highways, estimating 10 

emissions from local roads is more challenging because of uncertainties in road locations, traffic 11 

activity and fleet distribution. The results of statistical analyses (i.e. Mean Bias, Mean Error, R, FAC2) 12 

comparing the modeled and measurement data from five AQS monitoring stations in the modeling 13 

domain are summarized in Table 1. 14 

  15 
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Figure 3. Locations of PM2.5, black carbon (BC) and NOx monitors at NEXUS (●, ▲) and 1 

AQS sites (■). (Notes: Colors of symbols denote roadway classification as described in 2 

Figure 1; numbers next to the NEXUS site locations indicate measurement site ID). 3 

 4 

Figure 4. Model to monitor comparison: daily average PM2.5 concentrations for one-year 5 

period of 2010 at four AQS sites in the Detroit modeling domain. 6 

 7 
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Figure 5. Model to monitor comparison: time series of hourly NOx concentrations at the 1 

AQS site 26-163-0019 (E. 7 Mile Road) for three-month period September-November 2 

2010. 3 

 4 

Table 1.   Statistics metrics for the model-to-monitor comparison at the five AQS 5 

monitoring stations for PM2.5 and NOx. 6 

 7 

Pollutant PM2.5 NOx 

Site 261630001 261630033 261630038 261630039 261630019 

Obs. Mean 10.865 11.694 11.050 11.619 32.656 

Model Mean 10.370 13.646 14.233 18.243 62.255 

Mean Bias -0.495 1.952 3.183 6.624 29.598 

Mean Error 2.420 4.254 5.798 7.834 35.654 

R 0.760 0.624 0.480 0.502 0.515 

FAC2 0.965 0.905 0.818 0.787 0.616 

Pairs 8365 8438 8297 8455 8100 
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The modeling provides an opportunity to compare the relative contributions of various sources: 1 

stationary sources (i.e. AERMOD), roadways (i.e. RLINE), urban background (i.e. STOK), and total 2 

(Hybrid). Figure 6 compares distributions of modeled and observed concentrations for PM2.5 (all four 3 

AQS sites combined) and NOx (one AQS site) for 2010, and also shows relative contributions of 4 

various sources. As can be seen from Figure 6, the relative contribution of roadways is very small for 5 

PM2.5 but quite high for NOx, whereas urban background is more significant for PM2.5 than for NOx. 6 

The difference in relative contribution of roadway emissions to the total concentration between 7 

pollutants is further illustrated in Figure 7 using a single receptor site near the I-94 freeway as an 8 

example. The model predicts steep gradients of near-road concentrations for all pollutants (CO, NOx 9 

and PM2.5) at the modeled receptor site near I-94. However, the background contribution is different 10 

for these pollutants. For CO, the roadway contribution is high within 100m from the roadway, but after 11 

100m it diminishes to levels below the background. For NOx, the background is low and roadway 12 

impact dominates at this site. For PM2.5, the background dominates and primary impact of roadway 13 

emissions contributes only about 10-25% of the total concentration. 14 

Figure 6. Distributions of modeled and observed PM2.5 and NOx concentrations for 2010 at 15 

the AQS monitoring sites. (all four PM2.5 averaged, and one NOx site) 16 

 17 

Figure 7. Near-road pollutant gradients of CO, NOx and PM2.5 concentrations (2010 annual 18 

average) from a mini-grid of 24 model receptors near the I-94 freeway. 19 

 20 

 21 
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Measurements of air pollutant exposures also have uncertainties, such as from the measurement 1 

method or instrument, as well as whether the measurement captures actual air pollutant exposures or is 2 

a surrogate for it (e.g. central site monitors).  Although the sub-daily modeled exposure metrics may 3 

have greater uncertainty than daily or longer-term averages, few monitoring methods exist that can 4 

measure exposures with time resolution below daily averages.  Collecting limited high-time resolution 5 

measurements for comparison with model predictions is one approach to help identify potential 6 

contributors to the modeling uncertainty. In addition to observational data from the routine monitoring 7 

network, we also used monitoring data from the 2010 intensive monitoring campaign of the NEXUS 8 

study. During the September-November 2010 study period, black carbon (BC) measurements were 9 

made at 25 NEXUS home locations and NOx was measured at 9 NEXUS homes (Figure 3). Figure 8 10 

compares modeled and observed concentrations at selected NEXUS homes for NOx and BC. As can be 11 

seen from the figure, the model generally captures the time series of observed NOx concentrations. 12 

However, at some sites and for some specific hours, the model under-predicts concentrations (e.g. at 13 

site ID=33133 or ID=32177, 6-8 a.m. on 9/29/2010) or over-predicts (e.g. at site ID=33426, 6-8 a.m. 14 

on 9/29/2010) concentrations at some locations.  This discrepancy can be explained by the uncertainty 15 

in hourly traffic activity at the road link level. Typically, time-resolved traffic information at a link 16 

level is not available and sophisticated algorithms are used to estimate such traffic emissions for 17 

individual road links. Nevertheless, except for some events, the model can capture the magnitude and 18 

time patterns of near road pollutant concentrations, critical for the exposure and health studies. For BC, 19 

the model performance was similar to NOx, if not better at the sites shown.  20 

The model-based exposure metrics for CO, NOx, PM2.5 and its components (EC and OC), were 21 

calculated from hourly predictions and were able to capture the spatial and temporal variability across 22 

the health study domain. The modeling approach also allowed estimating relative contributions of 23 

roadways versus stationary sources and urban background. Figures 9 and 10 show spatial maps of 24 

modeled daily NOx and PM2.5 concentrations averaged over the study period (Sep-Oct 2010) and the 25 

relative contributions of mobile sources, stationary sources, and urban background as well as the total 26 

(hybrid). For both NOx and PM2.5, the urban background was nearly uniform across the domain, while 27 

mobile source contributions varied across the domain – with higher concentrations next to major 28 

roadways and lower concentrations away from roads. The overall mobile source contribution, 29 

however, was not the same for NOx and PM2.5. For NOx, urban background contributes less than half of 30 

total concentrations, whereas for PM2.5, the urban background dominated and the local impact of 31 

mobile sources was less than 30%. Also, stationary source contributions for PM2.5 were of similar 32 

range to mobile sources. 33 

 34 

 35 

 36 

 37 
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Figure 8. Comparison of modeled exposure metrics and observed concentrations for NOx 1 

at six different NEXUS monitoring sites. 2 

 3 

  4 
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Figure 9. Spatial maps of modeled daily NOx concentrations averaged during Sep-Oct 1 

2010, showing contributions from mobile sources (top left), stationary sources (top right), 2 

urban background (bottom left), and total (bottom right). 3 

 4 

  5 



 14 

 

 

Figure 10. Spatial maps of modeled daily PM2.5 concentrations averaged during Sep-Oct 1 

2010, showing contributions from mobile sources (top left), stationary sources (top right), 2 

urban background (bottom left), and total (bottom right). 3 

 4 

 5 

4. Summary and conclusions  6 

Here we presented an application of a hybrid modeling approach to estimate traffic-related 7 

exposures in support of an urban scale epidemiologic study of exposures to traffic-related pollutants 8 

for children with asthma living near major roadways in Detroit, Michigan. The modeling approach 9 

involved the development and use of a detailed emissions inventory and multiple dispersion models to 10 

estimate ambient air pollution concentrations.  The emissions inventory was based on a detailed 11 

geometry of the road network, traffic volumes, temporal allocation factors, fleet mix, and pollutant 12 

specific emission factors. These road-link emissions were used as inputs to RLINE, the newly 13 

developed dispersion model specifically designed for near-road applications. Thus, the model-based 14 
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exposure metrics provided the temporal and spatial resolution needed for the epidemiologic study. 1 

Using a novel mini-grid approach, the modeling was able to resolve near-road air pollutant gradients. 2 

The hybrid modeling approach also provided an opportunity to compare relative contributions of 3 

various sources: stationary sources, roadways, urban background, and total. While near-road gradients 4 

of roadway emissions within 300 meters were strong for all pollutants, their relative contributions to 5 

the total concentration varied by pollutant. 6 

The hybrid modeling approach used in NEXUS provides new information regarding exposure to 7 

traffic-related air pollutants that is not captured by simpler exposure metrics (such as traffic intensity 8 

and distance to roads) commonly used in environmental epidemiology studies of traffic-related air 9 

pollution.  Such additional information on strong spatial and temporal variation of pollutant 10 

concentrations and the relative contribution of various source categories to the total concentration 11 

could benefit future traffic-related health assessments. The hybrid modeling approach used in NEXUS 12 

could be also used for estimating exposures in other epidemiological studies where adequate 13 

measurements of traffic- or other source-related air pollutants are not feasible. 14 
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