Steps towards assessing sources of ozone damages to human health and ecosystems with the CMAQ adjoint
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l. Motivation lll. Evaluating Degradation of Human Health

The Clean Air Act supports the establishment of a national standard for ambient concentrations of atmospheric pollutants to protect » MortalltY'baSEd AdjOl nt FOfClng
human health and public welfare (CAA, 1990). The primary standard has been viewed as sufficient for also protecting public welfare. 3 TI— _ _ v e _ June-July-August average
We seek to explore how emissions affect these regulatory endpoints differently in the CMAQ chemical transport modeling framework. ) ENG. AT T - 3 -
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Figure 6. Baseline mortality rate. Figure 7. Six-month average maximum hourly ozone Figure 8. Distribution of human population above 30
concentrations used in Jerrett et al. (2009) mortality years of age.
function based on CMAQ model output for 2007.

et B \ - , | ‘ Recent work by Jerrett et al. (2009) has associated long-term exposure to ozone with death from respi-
L(;pulgiion lgersons) ' 0 1 2 r ratory causes. The following equation provides a relationship between modeled ozone concentra- To assess the relative contribution of emissions through-
ol by Yiel hel Ny : : : : : : :
. . — ‘ _comtedbushel) tions and increased mortality rates. out the episode to the mortality associated with long-
Figure 1. Gridded human population in 2010 Figure 2. Gridded corn yield in bushels. -9 .
term ozone exposure, we prepare an adjoint forcing array

that spans the spatial and temporal extent of the modeled

B(exp [—B ConC]) domain. Similar to the method of Pappin et al. (2013), we
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distribute the forcing, 8J, in a manner commensurate with
he mortali Iculation. 0 2 4
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Generally, dense human populations are located separately from sensitive ecosystems. Urban non-attainment areas often contain a (Morta I |ty)

vegetation, but the majority of crops and timber are located in more rural areas where ozone monitors may be more scarce. The — M Pop

separation of these vulnerable populations in space allows the possibility that emissions influences on each endpoint are unique. a (CO NC ) 0 (
[

>30)

U N | ue response re | mes where M, represents the baseline mortality rate in each grid cell (Figure 6). Conc. is the maximum six- B . B
q p g month rr(m)ean of the hourly maximum concentration of ozone in each grid cell (Fig. 7). Pop ,, repre- a (J) a (Morta I ltY) 0J/0[0s] (deaths / ppb O3)

sents the humans in each grid cell above 30 years of age. B is a coefficient determined in the study =
(0.04 increased mortalities due to respiratory illness per 10 ppb increase in ozone metric) (Jerrett et al., a ([O ]) 1 82 a (ConC.) 1 Figure 9. The adjoint forcing function attributes the increased mortality throughout the episode to each
2009). The offline manner of calculating the adjoint forcing function is particularly useful in this and 3 B " =Imax 1-hr [03 1 grid cell. The forcing is non-zero only in the hour during which the maximum ozone concentration for the
similar cases where the variable of interest is a function of concentration over a long period of time. day occurs.

Epidemiological studies have revealed association between peak Plants also demonstrate reduced productivity when exposed to
ozone concentrations and increased mortality rates (Bell et al, elevated ozone concentrations (e.g., Lesser et al., 1990, Mills et al.,
2004; Schwartz, 2005; Jerrett et al.,, 2009); therefore, reducing 2007). However, cumulative exposures to lower concentrations
peak ozone concentrations has been the focus of the primary have been shown to reduce yield of crops (and decrease the
standard, which is formulated as a limit on the 4th highest daily biomass production of trees (EPA REA, 2012). In addition to
maximum 8-hr average ozone concentration. Over the last three responses varying with ozone concentration, the water vapor
decades, a 25% reduction in this metric has been achieved concentration, to which stomata respond, also affects the
nationally. influence of ozone on plant health.

. B IV. Assessing Influence on Crop Yield O(Crop Loss) _ dW126 oRYL oYL
120 |- W126 = fogrgt dC,, OW126 dRYL

1+4403 exp(—126 Co, ) In a manner similar to human exposure-response calculations, we consider the effect of ozone exposure on crop
yield. Although a number of different ozone metrics exist that are relevant to ecosystem health, the cumulative
peak-weighted index, W126, is the most widely accepted metric in the U.S. The seasonal value is calculated as follows:
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from plants primarily grown in the summer
months, which typically have higher ozone
concentrations. The relative yield loss to W126
relationships are shown (Fig. 10) and calculated
as follows
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Figure 3. 4th greatest maximum 8-hr average monitored O, concentrations  Figure 4. Method for weighting the effect of ozone concentration on plant
have declined over past decades due to emissions controls. life, which can be summed over daylight hours in growing season.

Although further refinement of and mechanistic explanations for each dose-response relationship are active areas of research in both
human and plant populations, current understanding reveals that both cumulative, lower-concentration and acute,
higher-concentration ozone exposure can degrade human health and public welfare. Thus, the relative roles of emissions sources in
each endpoint may very well be distinct, potentially warranting consideration of unique regulatory treatment.

| The differences in the spatial
patterns and magnitude be-
tween corn and soybeans
arise from unique Yyields,
W126 dose-responses, and
ozone concentrations at the
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Figure 11. The yield of corn (a) and soybean (b) in due to ozone exposure
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