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Abstract 25 

A critical aspect of air pollution exposure assessment is the estimation of the time spent by 26 

individuals in various microenvironments (ME). Accounting for the time spent in different ME 27 

with different pollutant concentrations can reduce exposure misclassifications, while failure to do 28 

so can add uncertainty and bias to risk estimates. In this study, a classification model, called 29 

MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and 30 

outdoors at home, work, school; inside vehicles; other locations) from global positioning system 31 

(GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates 32 

were compared to 24 h diary data from nine participants, with corresponding GPS data and 33 

building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% 34 

of the daily time spent by the participants. The capability of MicroTrac could help to reduce the 35 

time-location uncertainty in air pollution exposure models and exposure metrics for individuals 36 

in health studies. 37 

 38 

 39 

.  40 

41 
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Introduction 42 

Many epidemiologic studies have found associations between air pollutant concentrations 43 

measured at central-site ambient monitors and adverse health outcomes.1 Using central-site 44 

concentrations as exposure surrogates, however, can lead to exposure misclassification due to 45 

time spent in various microenvironments (ME) with pollutant concentrations that can be 46 

substantially different from central-site concentrations. 2,3 This exposure misclassification can 47 

lead to uncertainty and bias to risk estimates.2,3 To reduce exposure misclassification, we are 48 

developing an air pollution exposure model for individuals (EMI) in health studies.4-6 The EMI 49 

predicts personal exposures based on outdoor concentrations, meteorology, questionnaire 50 

information (e.g., building characteristics, occupant behavior related to building operation and 51 

indoor sources), and time-location information. This study describes a critical aspect of EMI: the 52 

development and evaluation of a classification model, called MicroTrac, that estimates time of 53 

day and duration spent by individuals in eight ME (indoors and outdoors at home, work, school; 54 

inside vehicles; other locations) based on global positioning system (GPS) data and geocoded 55 

(geographic coordinates expressed as latitude and longitude) boundaries of buildings.  56 

Exposure models can account for the variations in the time people spend in different 57 

locations by using time-weighted pollutant concentrations in each ME.7 For population-level 58 

exposure assessments, exposure models rely on databases of time-activity diary information from 59 

other exposure studies,8-10 such as the Consolidated Human Activity Database.11 For individual 60 

exposure assessments, diaries from the study participants can be used.4,12,13 However, diaries 61 

have limitations, including burden on participants, inaccuracies due to recall and reporting errors, 62 

and missing data. 63 
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To address the limitations of diaries, there is an increasing use of common mobile 64 

electronic devices such as smartphones, which often have embedded GPS receivers, and 65 

dedicated GPS dataloggers to collect personal time-location information.14 Some advantages of 66 

GPS include automated logging, high time resolution, and an electronic format that does not 67 

require manual coding of handwritten diaries. However, manual processing of GPS data to 68 

determine time spent in different ME is limited due to several challenges, including (1) datasets 69 

that are large (potentially thousands of data points per person per day) and multidimensional 70 

(location, speed, time, satellite signal quality), (2) missing data due to no GPS signal reception 71 

while inside certain (e.g., steel/concrete) buildings, (3) GPS spatial inaccuracies due to temporal 72 

and spatial variations in the satellite geometry (i.e., spatial distribution of satellites used),15,16 (4) 73 

localized transient spatial errors due to signal reflection (multipath errors) from nearby objects 74 

(e.g., water surfaces, buildings, hills, trees),17 and (5) difficulty discriminating among certain ME 75 

(e.g., most detached homes, townhomes, and low-rise apartments in the United States are 76 

wooden structures with no substantial indoor/outdoor differences in satellite signal strength). The 77 

lack of a consistent and comprehensive solution to these problems has limited the use of GPS in 78 

personal exposure and health studies.18 To address these limitations, we developed MicroTrac, 79 

an automated classification model for GPS data. 80 

Using MicroTrac to determine the time spent in different indoor and outdoor locations 81 

can improve exposure estimates. For outdoor air pollutant concentrations Cout assumed to be at 82 

steady-state conditions (i.e., short-term changes of concentrations are considered negligible 83 

compared with long-term average concentrations), the steady-state exposure Etrue can be 84 

described by: 85 

                          Etrue = fin Finf Cout + (1-fin)Cout                 (1) 86 



5 
 

where fin is the fraction of time spent indoors and Finf is the fraction of Cout that enters and 87 

remains airborne indoors (i.e., infiltration factor).7 Setting Finf=0.56 based on a reported median 88 

value for airborne particles (diameter=2.5 µm) for homes,7 Etrue for people who spend 30% 89 

(fin=0.3) and 100% (fin=1.0) of their time indoors are 0.87 and 0.56 times Cout, respectively. 90 

Using central-site air pollutant concentrations as an exposure surrogate, the exposure Ecentral is 91 

Cout, which yields relative exposure differences (|Ecentral- Etrue|/ Etrue) of 15% and 79% for fin=0.3 92 

and 1.0, respectively. This scenario analysis demonstrates that exposure differences are greater 93 

for people who spend more time indoors, and using MicroTrac to account for the time-location 94 

of individuals can substantially improve exposure assessments. 95 

MicroTrac supports the recommendations of the National Research Council (NRC) report 96 

on exposure science in the 21st century19 to link personal GPS and accelerometry (motion 97 

sensors) data from mobile electronic devices with exposure and lung dosimetry models, 98 

respectively. The NRC report recommends applying these sensors and models to reduce 99 

exposure and dose misclassifications for health studies, and to play a critical role in processing 100 

the large data from ubiquitous sensing networks, which collect personal exposure information 101 

using citizen scientists.  102 

In this paper, we describe the development and evaluation of the MicroTrac. We first 103 

describe the panel study used to collect GPS data and create time-location diaries. We then 104 

describe the MicroTrac algorithm and method used for evaluation.  105 

 106 

Methods 107 

Time-Location Panel Study  108 
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A panel study consisting of nine participants was conducted by the National Exposure Research 109 

Laboratory of the U.S. Environmental Protection Agency (EPA). The participants lived in central 110 

North Carolina and worked at the EPA campus in Research Triangle Park, North Carolina. Each 111 

participant carried a GPS data logger (model BT-Q1000XT; Qstarz International, Taipei, 112 

Taiwan) for a continuous 24 h period. Seven participants collected GPS data on a workday (five 113 

in summer, two in fall), and two participants collected GPS data on a non-workday (one in 114 

summer, one in fall).  115 

Before each 24 h deployment, the GPS memory was cleared using QTravel software 116 

(version 1.2; Qstartz International, Taipei, Taiwan) and the battery was fully charged. The GPS 117 

was programmed using QTravel to sample every 5 sec and to collect the time, position (latitude, 118 

longitude), speed, number of satellites used (NSAT), and position dilution of precision (PDOP, 119 

dimensionless value ≥ 1 that indicates accuracy of GPS position due to the satellite geometry; 120 

larger spatial distributions of satellites used yield smaller PDOP and more accurate positions).16 121 

GPS data were acquired and each sample was electronically marked in the GPS memory as 122 

either a scheduled or waypoint GPS sample. A scheduled GPS sample was collected 123 

automatically based on the programmed settings. A waypoint GPS sample was collected 124 

manually by pressing the waypoint button on the GPS, which was used to create time-location 125 

diaries. When transitioning between two ME, the participants pressed the waypoint button and 126 

manually recorded their corresponding starting and ending ME. The sampled data 127 

(approximately 17,280 scheduled samples per participant and 13-34 waypoint samples that 128 

varied across participants) were stored in the GPS memory during the 24 h sampling period, and 129 

then downloaded and stored using QTravel into two types of GPS files: a keyhole markup 130 

language (KML) file to view the GPS tracks as overlays in Google Earth (version 6.1.0.5001; 131 
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Google, Mountain View, CA, USA), and a text file for the classification algorithm described 132 

below.  133 

The time-location diaries were used to determine the time of day and duration that 134 

participants spent in eight ME. The ME are: (1) indoors at the participant’s home (Home-In); (2) 135 

outdoors near the participant’s home (Home-Out); (3) indoors at the participant’s workplace 136 

(Work-In); (4) outdoors near the workplace (Work-Out); (5) indoors at the school of the 137 

participant’s children (School-In); (6) outdoors near the school (School-Out); (7) inside a vehicle 138 

(In-Vehicle); and (8) Other. Any time spent inside a vehicle, even if at Home-Out, Work-Out, or 139 

School-Out, was considered to be In-Vehicle. These eight ME are the same ME used by 140 

MicroTrac.  141 

The accuracy of the time-location diaries (i.e., times when a participant transitioned 142 

between two ME) was verified manually for each participant’s 24 h GPS data. For each waypoint 143 

GPS sample collected when entering a building that blocked GPS signal reception (e.g., work), 144 

the KML files, which overlay the scheduled and waypoint GPS samples in Google Earth, were 145 

used to verify that the waypoint sample occurred near the building boundary. For each waypoint 146 

GPS sample collected when entering or leaving a vehicle, the text files, which chronological list 147 

the scheduled and waypoint GPS samples, were used to verify that the waypoint sample occurred 148 

when speeds changed from driving speeds to walking speeds (e.g., In-Vehicle to Home-Out) or 149 

vice versa (e.g., Home-Out to In-Vehicle). Any suspected diary errors were discussed with the 150 

participant. If any diary error was confirmed, new 24 h GPS and diary data were collected.   151 

 152 

Microenvironment Tracker Algorithm (MicroTrac)  153 
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We developed and evaluated an algorithm to determine which one out of the eight ME 154 

corresponds to the location of an individual at each GPS sampling time. Below, we describe the 155 

classification model, and then the temporal filtering of GPS speed samples, identification of GPS 156 

samples with poor signal quality (PSQ), and segmentation of building boundaries from aerial 157 

images. We then describe the method for evaluation of MicroTrac. 158 

 159 

Microenvironment Classification Model  160 

Our model is based on the time-course of GPS position (POS), speed (SPD), and signal quality 161 

(NSAT, PDOP); and geocoded boundaries of building rooftops for participant homes, 162 

workplaces, and schools. The model consists of eight parameters with seven parameters assigned 163 

values without using GPS data (i.e., no model fitting), and one parameter (PDOP threshold) 164 

assigned a value based on GPS data. We first describe the classification algorithm for time 165 

intervals with GPS samples, and then describe the algorithm for time intervals with missing GPS 166 

samples. The classification model was written and evaluated using MATLAB software (version 167 

R2011b; Mathworks, Natick, MA, USA).   168 

 169 

Classification with GPS Samples and Building Boundaries 170 

The details of the classification model are shown in the decision tree (Figure 1A) and described 171 

in the Supplementary Information. In summary, to classify a GPS sample as Home-In, there are 172 

three decision tree paths, which are unique pathways starting at the model inputs and ending at 173 

the classified ME. For the first decision tree path, the model determines whether the GPS 174 

position is within the home building boundary. To account for GPS spatial errors and since 175 

people tend to spend more time indoors than outdoors,20 the model includes a 5 m spatial buffer 176 



9 
 

for the home building boundary. The 5 m spatial buffer was assumed to be two times the GPS 177 

accuracy (2.5 m) specified by the manufacturer (model BT-Q1000XT; Qstarz International, 178 

Taipei, Taiwan). To account for transient GPS spatial errors greater than 5 m, the model includes 179 

a 15 s temporal buffer to determine whether any GPS position within 15 s is inside the spatial-180 

buffered building boundary. Since the temporal buffer can introduce misclassifications when a 181 

person transitions from indoors to outdoors, a reasonably short duration (15 s) was assumed for 182 

the temporal buffer. 183 

For the second decision tree path, a GPS sample is classified as Home-In when the GPS 184 

position is within 1 km of home and the GPS sample has PSQ, which can occur while indoors. 185 

The 1 km distance from home was assumed based on a reasonable surrounding area of home. To 186 

account for large transient spatial errors in the GPS position from multipath conditions that occur 187 

near structures that reflect GPS signals (e.g., tall buildings), the model uses a 15 s temporal 188 

buffer of the GPS position and PSQ data. 189 

For the third decision tree path, a GPS sample is classified as Home-In when the GPS 190 

position is within 1 km of home, the GPS filtered speed (FSPD) is less than 18 km/h, and GPS 191 

sampling time is when there is no natural light outdoors (DARKNESS; period between 192 

astronomical dusk and dawn). The DARKNESS condition accounts for any GPS spatial errors 193 

that may occur when the GPS receiver is not moving for extended periods of time (e.g., 194 

sleeping). To account for multipath errors that can produce large transient spatial errors and large 195 

positive speed spikes, the FSPD condition is examined after the temporal-buffered GPS position 196 

and PSQ conditions. The 18 km/h speed threshold for the classifying as In-Vehicle was assumed 197 

based on an attempt to include slow moving vehicles (i.e., vehicle speeds slightly greater than 18 198 
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km/h) and to exclude people walking, running, and cycling. We assumed the typical speeds for 199 

walking, running, and cycling are less than 18 km/h. 200 

For the work and school ME that have segmented building boundaries, the three paths 201 

described above for the home ME (Home-In, Home-Out) are used. One exception is the 202 

DARKNESS condition, which is not included for the work and school MEs.   203 

If a GPS sample is not classified as a home, work, or school ME, the sample is classified 204 

as Other when PSQ15s or FSPD<18 km/h. Otherwise, the GPS sample is classified as In-Vehicle.  205 

 206 

Classification with Missing GPS Samples 207 

The details of the classification model for missing data are shown in the decision tree 208 

(Figure 1B). When the GPS device does not receive a sufficiently strong signal from four or 209 

more satellites, no GPS sample is recorded. Since GPS signals can be attenuated by different 210 

building materials (e.g., concrete/steel), the model classifies a time interval with missing GPS 211 

samples as either Home-In, Work-In, School-In, or Other. The model first identifies any missing 212 

GPS samples by calculating the time difference between each pair of consecutive GPS samples. 213 

The number of missing GPS samples between consecutive GPS samples is the time difference 214 

divided by the GPS sampling period (5 s), then minus one. The model then classifies all 215 

consecutive missing GPS samples as the same ME. To classify a time interval with missing GPS 216 

samples as Home-In, the model determines whether any GPS sample within 60 s before the time 217 

interval with missing GPS samples is classified as Home-In or Home-Out. The 60 s duration was 218 

assumed for missing GPS samples based on a reasonable period that can account for possible 219 

misclassifications due to multipath errors immediately before satellite reception is lost when 220 

entering certain types of buildings. As shown in Figure 1B, a similar method is used to classify a 221 



11 
 

time interval with missing GPS samples as Work-In or School-In. A time interval with missing 222 

GPS samples is classified as Other when no GPS sample within 60 s before the time interval is 223 

classified as Home-In, Work-In, or School-In.  224 

 225 

Temporal Filtering of GPS Speed Samples  226 

A GPS sample is classified as In-Vehicle based on exceeding a speed threshold. Since GPS 227 

speeds are at or near zero during brief periods due to stop lights, traffic, and other factors, we 228 

applied temporal filtering to the GPS speed data to remove negative transient speed spikes. The 229 

GPS speed is filtered across the entire time-course of GPS samples with a temporal filter.21 The 230 

filter was designed to remove negative speed spikes with durations of approximately 2 min or 231 

less. The 2 min duration was assumed for the temporal filter based on reasonable waiting periods 232 

at traffic lights. The details of the filter are described in the Supplementary Information. This 233 

automatic filtering process is implemented in a conservative manner to produce an enhanced 234 

speed time-course with reduced negative transient spikes, while leaving any positive transient 235 

speed spikes and overall speeds relatively undisturbed.  236 

 237 

Identification of GPS Samples with Poor Signal Quality 238 

The PSQ from objects that obstruct the signal from satellites and decrease NSAT can occur 239 

outdoors near large tall structures (e.g., dense clusters of trees, buildings, hills) and indoors 240 

within steel/concrete buildings. Also, PSQ can occur when the time-varying positions of the 241 

satellites used by the GPS are not well distributed across the sky (i.e., poor satellite geometry), 242 

which increases PDOP.16 For our classification algorithm, a GPS sample is considered PSQ 243 

when NSAT ≤ 4 or PDOP > 3.0. The NSAT threshold was set to 4 since a minimum of 4 244 
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satellites are needed to determine positions. The PDOP threshold was set to 3.0 since measured 245 

PDOP were consistently less than 2.5 under good signal quality conditions (NSAT > 8). When 246 

PSQ is detected, the GPS sample is classified as the indoor ME (Home-In, Work-In, School-In or 247 

Other) that corresponds to the location (home, work, school, or other) of the previously classified 248 

GPS sample.  249 

 250 

Segmentation of Building Boundaries 251 

To discriminate between GPS positions indoors and outdoors at home, work, and school, we 252 

created geocoded boundaries for these three types of buildings. In this panel study with nine 253 

participants, building boundaries were marked for nine homes (eight detached homes, one 254 

apartment), one workplace (five story office complex with five connected buildings), and two 255 

schools (one story detached buildings visited by two participants to drop off and pick up their 256 

children). The outline of each building’s rooftop was manually segmented using the “Add Path” 257 

tool in Google Earth. For the evaluation of MicroTrac, the GPS tracks were not visible during 258 

segmentation. In Google Earth, the tilt angle was set for a view perpendicular to the ground, and 259 

the image zoom was adjusted to achieve a large display of the rooftop and a clear view of the 260 

rooftop edges. Before segmentation, the buildings were identified in the geocoded aerial images 261 

of Google Earth by entering the building addresses provided by the participants into Google 262 

Earth, and verified by using the KML GPS files to overlay the GPS tracks (displays placemarks 263 

for the GPS positions and line segments connecting the placemarks in chronological order) on 264 

the Google Earth images. After the buildings were identified and any GPS track overlays were 265 

removed, the rooftop boundaries were segmented and stored as KML building files for the 266 

classification model described below.  267 
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 268 

Evaluation of MicroTrac Performance 269 

To quantitatively evaluate MicroTrac, we compared the estimated ME at each sampling time to 270 

its corresponding actual ME, as reported in the time-location diaries. To assess the daily 271 

differences between the actual and estimated time spent in each ME, we calculated the duration 272 

and percentage of day in each ME. To evaluate the model error for each ME, we determined the 273 

number of samples correctly identified as positive (true positive, TP) and negative (true negative, 274 

TN), and incorrectly identified as positive (false positive, FP) and negative (false negative, FN). 275 

We also identified the misclassified ME for each FP and FN. We then calculated the true positive 276 

fraction (TPF=TP/(TP+FN)) and false positive fraction (FPF=FP/(TN+FP)) to determine the 277 

sensitivity (TPF, proportion of actual positives correctly classified) and specificity (1-FPF, 278 

proportion of actual negatives correctly classified). The number of FP and specificity provide an 279 

assessment of the model’s overestimation. The number of FN and sensitivity provide an 280 

indication of the model’s underestimation. We also calculated the accuracy 281 

((TP+TN)/(TP+TN+FP+FN)) and positive predictive value (PPV=TP/(TP+FP)) for each ME. 282 

 283 

RESULTS 284 

Summary statistics for each participant are provided for the day type, time spent in each ME, 285 

duration for missing GPS data and reason for missing data (i.e., GPS signal obstruction from 286 

building or time to reacquire satellite signal) in each ME, ME with occurrences of PSQ, and the 287 

eight types of locations (restaurant, store, park, friend’s home, movie theater, doctor’s office, 288 

library, fitness club) where participants spent time in the Other ME (Table 1). For workdays, 289 

there were long periods with missing GPS data at Work-In due to building obstruction of signal, 290 
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and shorter periods of missing GPS data at Work-Out and In-Vehicle due to time for GPS to 291 

reacquire signal after leaving buildings that obstructed the signal. While at Other, missing GPS 292 

data occurred while at restaurants, stores, movie theater, and doctor’s office. While at Home-In 293 

and School-In, there were no missing GPS data, but Home-In had several occurrences of GPS 294 

samples with PSQ. For the GPS data logger, the battery life (without recharging) and memory 295 

capacity were sufficient for each participant’s 24 h sampling period. Also, there were no diary 296 

errors observed when we manually verified the accuracy of the diaries. 297 

 A comparison of the estimated and actual percentages of day in each ME is shown for 298 

each participant (Figure 2). The largest differences between actual and estimated percentage of 299 

day were 3.3% (underestimation) at Home-In and 3.4% (overestimation) at Home-Out for one 300 

participant (Figure 2C). All other differences were less than or equal to 1.0%. The model always 301 

slightly overestimated percentage of day at Work-In, School-In, and Other with median 302 

differences of 0.3%, 0.3%, and 0.4%, respectively, due to the time needed to reacquire GPS 303 

signal (typically 2-4 min) after leaving buildings (e.g., work, stores) that block satellite signals. 304 

The model always slightly underestimated percentage of day In-Vehicle with median difference 305 

of 0.7%, which was due to vehicle traveling below the speed threshold at the start and end of 306 

each trip (e.g., entering and leaving parking lots), and time needed to reacquire GPS signal while 307 

In-Vehicle after leaving buildings with no satellite reception.       308 

A comparison of misclassifications (FN for underestimation and FP for overestimation) 309 

for each ME is shown across all participants (Table 2). Three MEs (Home-In, Work-Out, In-310 

Vehicle) had greater FN than FP (underestimation); the other five MEs had greater FP than FN 311 

(overestimation). There were misclassifications between Home-In and Home-Out, between 312 

Work-In and Work-Out, and between School-In and School-Out. For In-Vehicle, there were FN 313 
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from the other ME, and one FP when Home-Out and School-Out. For Other, there were no FN, 314 

and FP when In-Vehicle.  315 

We also evaluated the model by calculating the sensitivity, specificity, accuracy, and 316 

PPV across all participants for each ME (Table 2). Sensitivities and specificities less than 100% 317 

correspond to overestimation and underestimation of the ME, respectively. The lowest 318 

sensitivities were 60.4% and 73.5% at Work-Out and School-Out, respectively, while the other 319 

sensitivities were greater than 81.0%. The specificities were greater than or equal to 99.0%. The 320 

accuracy across all samples was 99.5%. The lowest accuracy was 98.9% both at Home-In and 321 

Home-Out. The lowest PPV was 63.0% at School-Out, and the highest PPV was 100.0% 322 

In-Vehicle.    323 

We also compared the model performance on workdays and non-workdays. The 324 

sensitivities on workdays and non-workdays were 98.8% and 98.8% at Home-In, 47.1% and 325 

87.8% at Home-Out, 86.8% and 89.3% for In-Vehicle, and 100.0% and 100.0% for Other, 326 

respectively.    327 

 328 

DISCUSSION 329 

Our goal was to develop and evaluate a model to classify GPS samples into eight ME from GPS 330 

data and building boundaries. The daily estimated ME closely correspond to the actual ME with 331 

a mean accuracy of 99.5%. These results demonstrate the capability of using GPS data with 332 

MicroTrac to estimate time spent in various ME, and support the feasibility of integrating 333 

MicroTrac into individual air pollution exposure models (e.g., EMI).6 Since MicroTrac 334 

automates the processing of GPS data for ME classification, it could also provide a method to 335 
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support the potentially large GPS data from widespread sensor networks of citizen scientists, as 336 

recommended by the NRC report on exposure science in the 21st century.19     337 

We can compare the model used to classify GPS samples as indoors and outdoors with 338 

previously reported ones. In Adams et al.,22 using a geocoded building boundary of a home to 339 

classify GPS samples as Home-In did not perform well (64.4% sensitivity). In Elgethun et al.,23 340 

boundaries of homes and each building entered by participants were used to classify as Home-In 341 

and Other-In, respectively. Boundaries of each yard at home were used to classify as Home-Out. 342 

The sensitivities were 84.8% (Home-In), 18.3% (Home-Out) and 45.6% (Other-In).  In Wu et 343 

al.,24 a rule-based classifier identified intervals of GPS samples with speeds less than 3 km/h for 344 

a minimum of 1 min (static clusters). A static cluster was then classified as indoors based on 345 

various criteria (e.g., time includes midnight, duration greater than 2 h, positions within 50 m of 346 

home). The sensitivities were 84.1% (indoors) and 51.7% (outdoors).  347 

Our model has several novel features for classifying GPS samples as indoors and 348 

outdoors. First, MicroTrac uses 5 m spatial buffering of the building boundaries to account for 349 

the spatial inaccuracy of the GPS device. Second, our model uses a 15 s temporal buffer of GPS 350 

position and PSQ data to account for multipath conditions that occurs near structures that reflect 351 

GPS signals (tall buildings, dense clusters of trees). Third, for positions within 1 km of home and 352 

speeds less than 18 km/h, the astronomical dusk-to-dawn period is used to account for possible 353 

positional drift errors of GPS that can occur when the GPS is stationary for several hours (e.g., 354 

sleeping). Using these unique features, the sensitivities of MicroTrac for indoor ME were 98.8% 355 

(Home-In), 99.9% (Work-In), 93.1% (School-In); and for outdoor ME were 81.4% (Home-Out), 356 

60.4% (Work-Out), and 73.5% (School-Out).  357 
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In Adams et al.,22 an alternative method classified GPS and personal temperature samples 358 

as Home-In and School-In for GPS positions within 30 m of the building centroid and for 359 

temperatures above 15.55 °C (60 °F). The sensitivities for indoor ME were 99.9% (Home-In), 360 

99.8% (School-In); and for outdoor ME were 65.4% (Home-Out), and 84.6% (School-Out) 361 

during the winter in Colorado.  Indoor/outdoor classification based on a simple temperature 362 

threshold is limited to days with substantial indoor-outdoor temperature differences,22 and can 363 

have limited temporal resolution due to the thermal response time of the monitor following a 364 

temperature change. In Kim et al.,25 NSAT was used for indoor/outdoor classification, and 365 

classified samples as Home-In when NSAT was less than 9 and positions were within 40 m of 366 

home. The sensitivities were 89.3% for Home-In and 86.4% for Other-In. In Tandon et al.,26 the 367 

signal to noise ratio (SNR) was used for indoor/outdoor classification, and GPS samples were 368 

classified as outdoors when the total SNR of all satellites in view exceeded 250. The sensitivity 369 

was 82% for children outdoors at child care centers. For indoor/outdoor classification, we tried 370 

various thresholds based on indoor-outdoor temperature, NSAT, total SNR of satellites, but none 371 

were reliable. In Tandon et al.,26 personal light samples were used for indoor/outdoor 372 

classification, and classified as outdoors for light intensities above 110 lux. The sensitivity was 373 

74% for children outdoors at child care centers. We decided not to use a light sensor since 374 

wearing the device outside of clothing and uncovered for extended periods of time to avoid 375 

obstructing the light can be problematic, as described in Tandon et al.26    376 

We can compare our method used to classify GPS samples as transit (i.e., when not at 377 

home, work, or school) with previously reported ones. In Adams et al.,22 GPS samples were 378 

simply classified as transit when not classified at home or school with a sensitivity of 95.3%. In 379 

Elgethun et al.,23 GPS samples were classified as transit when GPS speeds exceeded 18 km/h 380 
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with a sensitivity of 29.6%. In Wu et al.,24 GPS samples were classified into two types of transit 381 

ME (In-Vehicle, Out-Walking) based on GPS speed and geocoded roadway data. Moving 382 

periods were identified based on various criteria that include individual speeds above 15 km/h, 383 

consecutive samples with speeds above 2.5 km/h, and positions within 10 m of a roadway. 384 

Moving periods were then classified as In-Vehicle when second highest speed exceeded 10 km/h 385 

and median speed exceeded 5 km/h with a sensitivity of 72.1%; otherwise, Out-Walking with a 386 

sensitivity of 68.4%. In Kim et al.,25 GPS samples classified as outdoors (based on NSAT 387 

threshold) were further classified as transit when GPS speeds exceed 9 km/h with a sensitivity of 388 

45.3%. In our model, MicroTrac classified GPS samples as In-Vehicle when filtered speeds 389 

exceed 18 km/h, and obtained a sensitivity (87.6%) higher than previously reported ones.   390 

Unlike previous reports, our model compares speeds to a threshold only after evaluating 391 

positions with a spatial buffer (GPS position is within 1km of a building) and a temporal buffer 392 

(within 15 s), which helps reduce misclassifications due to any large speed errors from multipath 393 

interference that can occur soon before entering a large concrete/steel building. In addition, the 394 

temporal filtering of the GPS speed samples can reduce misclassifications while In-Vehicle by 395 

accounting for the reduced speed or stopping of the vehicle due to various conditions (e.g., traffic 396 

congestion, traffic signals, stop signs, intersections of roads with high traffic volume). The 397 

conservatively implemented temporal filter can effectively eliminate negative transient speed 398 

spikes, while leaving positive transient speed spikes and the overall speeds across time relatively 399 

unaffected. The enhanced filtered speed time course allows for reduced number of 400 

misclassifications since the removal of negative speed spikes can reduce the number of false 401 

negatives while In-Vehicle. 402 
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We can also compare our model used to classify intervals with missing GPS data with 403 

previously reported ones. In Adams et al.,22 intervals with missing GPS data were classified as 404 

Home-In or School-In for sampling times during pre-defined home and school periods, 405 

respectively. Otherwise, the intervals with missing GPS data were classified as the same ME as 406 

the previously classified GPS sample immediately before satellite reception was lost. In Elgethun 407 

et al.,23 intervals with missing GPS data were classified as Home-In. Our model uses a 15 s 408 

temporal buffer for the previously classified GPS samples before satellite reception was lost. The 409 

temporal buffer is a key feature of our model since misclassifications can occur soon before 410 

satellite reception is lost due to multipath errors at the entrance of large buildings. A temporal 411 

buffer can help account for these multipath errors and reduce the misclassifications of intervals 412 

with missing GPS data.  413 

 Our model can be practically implemented for various applications. First, MicroTrac can 414 

be integrated within exposure models (e.g., EMI) to estimate exposure metrics for epidemiologic 415 

analyses and risk assessments.6 Second, using MicroTrac with personal GPS devices, movement 416 

sensors (e.g., accelerometers), air pollutant monitors, and health monitors in exposure and health 417 

effect studies will allow scientists to link the location and activity of study participants with air 418 

pollution concentrations and health effects. Using smartphones with these data collection 419 

capabilities will facilitate and expand the use of MicroTrac in these studies, and will support 420 

community applications of MicroTrac such as alerting susceptible populations (e.g., asthmatics) 421 

to behavior or activities that may compromise their health.  Since the manual segmentation of the 422 

building boundaries does not require any specialized training and the Google Earth software is 423 

free and publicly available, MicroTrac could be used by both researchers and citizen scientists. 424 
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Finally, MicroTrac’s ability to classify time spent inside vehicles can be used to correct physical 425 

activity information from accelerometers when inside moving vehicles. 426 

MicroTrac could also be applied to improve the time-activity pattern data used for 427 

population-level exposure assessments. With a high percentage of the US population using GPS-428 

enabled smartphones, large sets of GPS data collected with low participant burden could be 429 

classified in various ME by MicroTrac to increase the sample size and update the older diary 430 

data in the time-activity databases (e.g., Consolidated Human Activity Database),11 which are 431 

used for population-level exposure assessments. These updates are needed for regions with 432 

substantial time-activity pattern changes due to various factors such as large economic, 433 

demographic, or population changes. Also, the high accuracy of MicroTrac can help improve the 434 

accuracy of the time-activity databases that have been developed from diaries with possible 435 

recall and reporting errors. 436 

Our model evaluation was based on the time-location of adult participants on workdays 437 

and non-workdays, which live in single family homes and a low-rise apartment building, and 438 

work in a multi-story office building that are all located in suburban areas. We expect similar 439 

results in homes, schools, and workplaces with similar building characteristics and located in 440 

suburban or rural areas. The ability of MicroTrac to predict the time-location of individuals in 441 

urban areas with high-density high-rise buildings, and individuals with more dynamic location 442 

patterns than working adults (e.g., children) needs to be investigated. To address these 443 

limitations, we plan to perform additional model evaluation using other panel studies, such as the 444 

Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) in Detroit, Michigan 445 

with 139 school-age children with asthma.4 In our study, we evaluated the model with data in 446 
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central North Carolina since we plan to apply MicroTrac for cohort health studies with adult 447 

participants living and working in the same suburban areas.     448 

   There are some limitations to our model. First, the model cannot account for time spent 449 

outdoors within 1 km radius of home between astronomical dusk and dawn due to the 450 

DARKNESS condition (e.g., walking in neighborhood during the night). However, the model 451 

does account for time spent inside vehicles within 1 km radius of home between dusk and dawn. 452 

Second, outdoor home locations less than 5 m from edge of rooftop (e.g., decks, patios) are 453 

included within the 5 m buffer of the segmented building boundary and cannot be distinguished 454 

from the indoor living space of the home. Third, attached structures with a roof (e.g., attached 455 

garages, porches) often cannot be distinguished in aerial images from the indoor living space of a 456 

home, and are included within the segmented building boundary. Fourth, we were unable to 457 

classify GPS samples as Other-In and Other-Out, but combined these two ME into one (Other). 458 

In addition, the model does not use geocoded roadway data to determine time spent on specific 459 

roads (e.g., interstate highways). MicroTrac could be modified to incorporate this additional 460 

information. However, this would substantially increase the model’s complexity, limit the use of 461 

the model to those with specialized expertise and software (e.g., geographic information 462 

systems), and is beyond the scope of this study. Finally, the manual segmentation of boundaries 463 

for the buildings of interests (e.g., home, work, and school) may not be feasible for large cohort 464 

studies (e.g., 100,000 children in the National Childrens’ Study).27 In these cases, it is possible 465 

that automated image segmentation algorithms could be implemented.28 Even with these 466 

limitations, MicroTrac is an improvement from previously reported methods, and its few input 467 

requirements can facilitate its use for various applications. 468 
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The pilot study used to evaluate MicroTrac has some limitations. The panel study of nine 469 

participants is not large, and all participants were working adults that lived in central North 470 

Carolina. We plan to further evaluate MicroTrac with larger cohort studies, which include: 471 

children with asthma that are living in Detroit,4 Michigan, and older adults with cardiovascular 472 

disease that are living in North Carolina. 473 

There are some key strengths of the pilot study. The GPS data are from a prospective 474 

panel study using real-world activity patterns, instead of scripted activities. Also, the participant 475 

diaries used to evaluate MicroTrac are high quality since the participants understood the study 476 

goals, followed a strict protocol, and used the clock on the GPS device to record electronically 477 

the time when transitioning to a different ME. In addition, the accuracy of the diaries was 478 

verified manually. Obtaining high quality diaries can be a substantial challenge for large cohort 479 

studies.    480 

 We conclude that our study demonstrates the feasibility of using MicroTrac to estimate 481 

time of day and duration spent in eight ME from GPS data and building boundaries. Results 482 

show that for seven workdays and two non-workdays, the estimated and actual time spent in the 483 

ME closely corresponds. This capability could help reduce the time-location uncertainty in air 484 

pollution exposure models used to predict exposure metrics for individuals in health studies and 485 

for citizen scientists. MicroTrac could also help improve the time-activity databases used for 486 

population-level exposure assessments.        487 
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FIGURE LEGENDS 611 

Figure 1. Decision tree of classification model for GPS samples and building boundaries (A), 612 

and for time intervals with missing GPS samples (B). For classification of GPS samples (A), 613 

decisions for home ME (Home-In, Home-Out) include: any GPS position within 15 s inside 1 km 614 

radius from centroid of home (POShome_1km,15s), any GPS position within 15 s inside home 615 

building boundary with 5 m buffer (POShome_blg,15s), time interval between astronomical dusk and 616 

dawn (DARKNESS), any sample within 15 s with poor signal quality (PSQ15s), current position 617 

inside 1 km radius of home (POShome_1km), and current filtered speed (FSPD) < 18 km/h. For 618 

work ME (Work-In, Work-Out),  decisions include: any position within 15 s inside 1 km radius 619 

from centroid of work (POSwork_1km,15s), any position within 15 s inside work building 620 

boundary with 5 m buffer (POSwork_blg,15s), any sample within 15 s with poor signal quality 621 

(PSQ15s) when number of used satellites ≤ 4 or position dilution of precision > 4, current position 622 

inside 1 km radius from centroid of work (POSwork_1km), and current filtered speed (FSPD) < 18 623 

km/h. For school ME (School-In, School-Out), decisions include: any position within 15 s inside 624 

1 km radius from centroid of school (POSschool_1km,15s), any position within 15 s inside school 625 

building boundary with 5 m buffer (POSschool_blg,15s), any sample within 15 s with poor signal 626 
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quality (PSQ15s), current position inside 1 km radius from centroid of school (POSschool_1km), and 627 

current filtered speed (FSPD) < 18 kph. For Other and In-Vehicle ME, decisions include: any 628 

sample within 15 s with poor signal quality (PSQ15s), and current filtered speed (FSPD) < 18 629 

kph. For classification of time intervals with missing GPS samples (B), decisions include: any 630 

ME within 60s before missing time interval that is classified as Home-In or Home-Out (MEHome-631 

In-Out,60s), Work-In or Work-Out (MEWork-In-Out,60s), School-In or School-Out (MESchool-In-Out,60s). 632 

 633 

Figure 2. Estimated and actual percentage of day in the eight ME for each participant (A-I). The 634 

nine participants (A-I) correspond to participants 1-9 shown in Table 1, respectively. Percentage 635 

values are shown for each bar for quantitative comparison between estimated and actual 636 

differences.  637 

 638 

 639 
 640 
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Home-In  Home-Out      Work-In          Work-Out      School-In  School-Out     In-Vehicle           Other                     TotalmParticipant

Table 1. Microenvironment characteristics by participant and duration of missing GPS data 

1

2

Day 
type

Workday 

Workday

Time spent in microenvironment (duration of missing GPS data)a (h)

13.18b 0.08         9.51b (9.46)c 0.06 (0.04)d 0.26        0.06            0.86 (0.03)d 0.00                          24.01 (9.53)  

12.31b 0.15         7.73b (7.71)c 0.30 (0.05)d 0.00        0.00            1.18                 2.35b,e,f 24.01 (7.76)

3

4

5

6

7

8

Workday

Workday

Workday

Workday

Workday

Non-Workday

12.93b 0.24         9.53b (9.36)c 0.08 (0.03)d 0.00         0.00            0.90                 0.37b,f,g (0.05)c,d 24.05 (9.44)

15.41        0.00         5.34b (5.20)c 0.25 (0.06)d 0.00        0.00            0.99 (0.04)d 2.03e,f (0.24)c 24.02 (5.54)   

14.65        0.02         7.56b (7.40)c 0.12 (0.03)d 0.20         0.12           1.34 (0.04)d 0.00                         24.01 (7.47)

14.07b 0.07         8.88b (8.85)c 0.43 (0.20)d 0.00         0.00            0.65 (0.02)d 0.00                         24.10 (9.07)

11.47b 0.08         7.72b (7.69)c 0.16 (0.05)d 0.00         0.00            2.06 (0.04)d 2.43f,h,i (1.60)c,d 23.91 (9.39)

16.55b 3.46         0.00                   0.00                   0.00        0.00            1.77                 2.24f,j (0.76)c,d 24.02 (0.76)

9 Non-Workday

aNo parentheses indicates no missing GPS data, bOccurrence of GPS samples with poor signal quality (number of satellites used ≤ 4 or 
position dilution of precision > 3.0), cMissing GPS data due to entering building that obstructed satellite signal, dMissing GPS data due to time 
for GPS to reacquire satellite signal after leaving building that obstructed signal, eTime spent at restaurant, fTime spent at store, 
gTime spent at park, hTime spent at friend’s house, iTime spent at movie theater, jTime spent at doctor’s office, kTime spent at library, lTime
spent at fitness club , mIndividual microenvironment times may not sum to total due to rounding

16.07        0.00         0.00                   0.00                   0.00         0.00           1.87                  6.10e,h,,k,l (0.13)c 24.04 (0.13)

Table 1
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Home-In  Home-Out  Work-In  Work-Out  School-In  School-Out  In-Vehicle  Other             Actual ME

Table 2. Statistics for model evaluation across all participants

Home-In

Home-Out

Estimated ME (number of samples)

90057 1110             0              0               0                 0                 0           0        91167        90732         1110        675         98.8        99.0     98.9     99.3   

548        2402             0              0              0                  0                1            0         2951    3580           549       1178         81.4       99.2     98.9     67.1

Actual 
duration 
(number 

of 
samples)

Estimated     
duration 
(number 

of 
samples) 

FPb

(number 
of 

samples)

FNa

(number 
of 

samples) 
Acce

(%)
PPVf

(%)
Sensc

(%) 
Specd

(%) 

Work-In

Work-Out

School-In

School-Out

In-Vehicle

Other

aFalse negatives indicate underestimation, bFalse positives indicate overestimation, cSensitivity indicates underestimation, dSpecificity indicates overestimation, 
eAccuracy fPositive predictive value

0              0           40478         34              0                  0                 0           0        40512    41027           34         549          99.9       99.5     99.6     98.7

0              0             395         603              0                  0                0            0           998  747          395         144          60.4       99.9     99.7     80.7

0              0                0              0            308              23                0            0           331 414            23         106          93.1       99.9     99.9     74.4

0              0               0              0              34               97                1            0           132 154            35           57           73.5     100.0     99.9     63.0

127          68            154          110            72               34             7332        471       8368          7334         1036          2            87.6     100.0     99.3   100.0

0              0               0               0              0                 0                 0        11179    11179   11650            0          471         100.0       99.7    99.7     96.0

eAccuracy, fPositive predictive value

Table 2
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Supplementary Information 

 
 

Classification of GPS Samples and Building Boundaries  
 

The details of the classification model are shown in the decision tree (Figure 1A). There are three 

paths to classify a GPS sample as Home-In. For the first path, we determine whether the GPS 

position is within the home building boundary. To account for the spatial inaccuracy of the GPS 

position (2.5 m root mean square; Qstarz International, Taipei, Taiwan) and since people tend to 

spend more time indoors than outdoors, we include a 5 m spatial buffer for the home building 

boundary. In addition, transient GPS positional errors larger than 5 m can occur, which can 

displace actual home-indoor GPS receiver locations beyond the 5 m buffer of the home building 

boundary. To account for these transient spatial inaccuracies in the GPS positions, we include a 

+/- 15 s temporal buffer (+/- 3 GPS samples), and determine whether any of the seven GPS 

positions (3 previous, 1 current, and 3 subsequent GPS samples) are within the home building 

boundary or within 5 m of the boundary (POShome_bld,15s). If condition POShome_bld,15s is true, the 

GPS sample is classified as Home-In.  

For the second path, a GPS sample is classified as Home-In when the GPS position is 

near the home and the GPS sample has poor signal quality, which can occur while indoors. To 

examine this condition, we determine whether the GPS position is within 1 km of the centroid of 

the home building boundary. To account for large transient spatial errors in the GPS position 

from multipath errors that can occur soon before entering a steel/concrete building (which is then 

often followed by complete loss of GPS signal), we include a +/- 15 s temporal buffer (+/- 3 GPS 

samples), and determine whether any of the seven GPS positions (3 previous, 1 current, and 3 

subsequent GPS samples) are within 1 km of the home radius (POShome_1km,15s). Next, we 
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determine whether the GPS sample has poor signal quality. To account for GPS signal 

attenuation that can occur briefly before complete loss of GPS signal when entering a 

steel/concrete building, we include a +/- 15 s temporal buffer (+/- 3 GPS samples), and 

determine whether any of the seven GPS samples (3 previous, 1 current, and 3 subsequent GPS 

samples) have poor signal quality (PSQ15s). If conditions POShome_1km,15s and PSQ15s are true, the 

GPS sample is classified as Home-In.   

For the third path, a GPS sample is classified as Home-In when the PSQ15s is not true, 

current GPS position is within 1 km of the home but not within the home building boundary 

(POShome_1km), filtered GPS speed (FSPD) is below 18 km/h, and GPS sampling time is when 

there is no natural light outdoors (DARKNESS; period between astronomical dusk and dawn). 

The DARKNESS condition accounts for any GPS spatial  errors that may occur when the GPS 

receiver is not moving for extended periods of time (e.g., sleeping). The FSPD condition 

accounts for time spent In-Vehicle while near the home (within 1 km). To account for multipath 

errors that can produce both large transient spatial errors and large positive speed spikes, the 

FSPD condition is examined after the temporal-buffered GPS position and PSQ conditions. 

When the DARKNESS condition is not true in the third path, a GPS sample is classified as 

Home-Out. 

 

Temporal Filtering of GPS Speed Samples 

The GPS speed is filtered across the entire time-course of GPS samples with a temporal 

morphological filter. The morphological filter consists of a circular structuring element with a 

temporal radius of 1 min. The structuring element was used to perform a morphological closing 
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operation to remove negative transient speed spikes. This filter design allowed for the removal of 

negative speed spikes with a duration of approximately 2 min or less. 

 


