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New and emerging environmental contaminants are chemicals that have not been previously 
detected or that are being detected at levels significantly different than expected in both 
biological and ecological arenas (i.e., human, wildlife and environment). Many chemicals can 
originate from a variety of sources including consumer, agriculture, and industry as well as 
natural and/or anthropogenic disaster scenarios. For example, endocrine disrupting chemicals 
(EDCs), pharmaceuticals and personal care products (e.g., therapeutic, non-therapeutic and 
veterinary drugs, as well as cosmetics and fragrances) are known to be present in many of the 
world’s water bodies and thought to originate from a variety of sources including improper 
disposal into municipal sewage, agribusiness and veterinary practices. The detection and 
quantification of these chemicals from a toxicology and exposure perspective is paramount to 
understanding their effects on both ecosystem and human health. EDCs act on the endocrine 
system and are known to alter sexual development and fertility in many vertebrate species. It is 
suspected that they may play a role in species population decline as well as public health 
issues. 
 
Discriminating between potential contaminants and noncontaminants (e.g., EDCs vs. non-
EDCs) can be an exhaustive and costly endeavor. In some cases, these methods rely on a 
specialized detection apparatus, discrete samples and complicated sampling techniques as well 
as bioethical issues in testing methods that may require the sacrifice of animals. Current high 
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throughput screening (HTS) efforts (i.e., toxicity in vitro assays) are helping to reduce some of 
the challenges and hurdles to testing these chemicals. However, the analysis and interpretation 
of results requires powerful data analytics to summarize and “make sense” of the data due to 
the voluminous amount generated. Informatic-based approaches like cheminformatics hold the 
best possibility of deciphering the barrage of data within a statistical and chemical context. 
 
Data mining and Informatics 
Informatics is a broad field of study encompassing computer science and information 
technology - from the retrieval and storage of data to the mining of patterns that exist within the 
stored data streams. Data mining itself is one step along a process commonly known as data or 
knowledge discovery (KD). Data curation and storage are critical steps in this process, but 
analysis and interpretation help researchers to elucidate and summarize patterns and 
relationships within the data itself through sophisticated algorithmic and visualization-type 
techniques. Some examples of these data mining techniques include the location of 
predetermined groups (e.g., decision tree and random forest classifiers), organization of data 
due to logical relationships (e.g., hierarchical, k-means and k-nearest neighbor clustering), 
identification of associations/dependencies (e.g., associative rule mining), and prediction of 
patterns based on historical data (e.g., predictive analytics). Many of these techniques are 
routinely applied in the retail, finance and marketing sectors (e.g., predicting consumer buying 
habits and trends in the market). Informatic-based approaches in the life sciences are largely 
dominated by chem- and bioinformatics which also employ the same techniques to understand 
the relationships -  associations and patterns - related to chemical structure/properties and 
biological function, respectively. Historically, this has been done with an eye towards towards 
discovery of new chemicals. This discovery aspect has apparent implications in both 
pharmaceutical and material sciences, but the same tools and techniques are beginning to be 
utilized in a variety of research areas (e.g., GIS, environment- and genome-wide association 
studies). A visual representation using IBM’s Many Eyes service (http://www-958.ibm.com) 
using 374 abstracts found in PubMed with the search query {"data mining"[All Fields] AND 
"chemical*"[All Fields] AND hasabstract[text]} highlights the relationships of concepts found in 
the current literature (Figure 1). 
 
Chemical space and cheminformatics 
Application of data mining techniques in the arena of knowledge discovery for new and 
emerging chemicals encompasses a wide variety of chemicals from exposure biomarkers and 
pesticides to drugs and EDCs. Since “chemical space” is defined by the set of all energetically 
stable stoichiometric combinations of atoms, nuclei and electrons, it is not difficult to imagine 
that the possible combinations are astronomical - easily surpassing the current list of emerging 
contaminants. The number of small organic chemicals alone have been estimated to be on the 
order of 1060. To sample and characterize this space, it would require multiple lifetimes at the 
current level of technology. Optimistically, this would be on the order of 1052 years assuming 
most HTS efforts can process ~100,000 chemicals/day! A far more efficient approach would be 
to apply cheminformatic-based data mining techniques to the subset of already known 
chemicals and arrive at a qualitative and potentially quantitative predictive framework (i.e., 
through clustering, classification, association and predictive analytics). This approach would 
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provide context for characterizing existing chemicals as well as new and emerging chemicals 
through a combination of molecular descriptor generation, molecular fingerprinting and 
predictive analytics.  
 
The description of chemical space is largely dictated by structure-based information. For 
example, one could define chemical space in terms of the subset of chemical properties (i.e., 
molecular descriptors) that might be of interest to a particular biological activity or outcome. 
Molecular descriptors have a long history within cheminformatics and can be categorized as 
either mathematical constructs or empirical based measurements that allow one to 
enumerate/quantify information about a chemical - spanning the range from simple 
quantification of a chemical’s relative partition into oil and water (log Po/w) to more complex 
quantum mechanical-based descriptors that rely on the electron density of a molecule.  
 
Molecular fingerprints, much like their name implies, are encoded structure-based information 
(e.g., molecular descriptors, fragments) that are ideally unique to a particular chemical. As 
variable or fixed-sized representations, they can encode structural keys related to both 2D and 
3D molecular information. The power of molecular fingerprints is that they can be rapidly 
evaluated, and compared to existing fingerprints in a database thereby making 
similarity/dissimilarity searches trivial via standard similarity measures (i.e., Tanimoto Index). 
Chemical similarity is largely based on the principle that similar compounds have similar 
properties and hence by association chemicals can be grouped on the basis of some derived 
similarity in their selected molecular fingerprints (i.e., P-glycoprotein inhibitors vs. non-
inhibitors). Calculated distance matrices among a database of chemicals can also aid in 
identifying observed structure in the data (i.e., clustering of like properties and/or biological 
activity). 
 
One of the classic predictive analytic methods of cheminformatics is quantitative structure-
activity relationship which seeks to find statistical correlations between a finite set of structure-
based features (i.e., molecular descriptors) and their observed outcome (i.e., molecular and/or 
biological activity). Due to the feature selection problem (i.e., which descriptors to choose in the 
model) a variety of algorithms have evolved to utilize data mining techniques such as neural 
networks, support vector machines, and ensemble average and kernel based methods. 
Applicability domain issues (i.e., the relevancy and applicability of a predictive model to a wide 
range of chemicals) are always prevalent in such models, as they rely heavily on the available 
data to “train” their predictive associations. In such cases, local models that are defined by their 
nearest neighbors association may provide more predictive power than global models by 
interpolating within the data rather than extrapolating outside the data. However, these models 
may suffer from sparse data and/or small training sets making it difficult to accurately quantify 
the applicability domain. 
 
Visualization of multiple molecules of interest within a set of prescribed descriptor dimensions 
can convey rapid information on chemical similarity/dissimilarity as well as general clustering of 
chemicals. Reduced dimensionality visualization approaches, such as three-dimensional 
principal component analysis (3D-PCA) plots, can provide rapid visual insights. In this case, the 
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similarity/dissimilarity of chemicals is based on the relative mapped positions of one molecular 
entity’s structure-based properties with relation to another “neighboring” entity in a reduced 
euclidean space composed of multiple molecular descriptors. We highlight a chemographic 
representation based on CHEMGPS-NP (http://chemgps.bmc.uu.se) of several open-access 
chemical databases that illustrate the representation of multidimensional data in identifying 
overlaps in datasets based on similar principal components (Figure 2). 
 
Exposure science and pharmacokinetics 
Detection of a chemical can be suggestive to its presence in the environment. However, a 
chemical’s presence alone does not dictate the effect on ecosystem and human health due to 
many determining factors. Analogously, exposure to a chemical does not necessarily mean that 
an untoward effect (i.e., toxicity, disease) will arise since a complex and complicated 
relationship exists between many determining factors including the physico-chemical properties, 
the concentration in the environment, the subsequent fate and transport within both biology and 
the environment, and the discrete exposure related behaviours (i.e., time-activity patterns) of the 
biological receptor (e.g., non-target wildlife species, susceptible individuals/populations). 
Understanding these factors is a primary concern of exposure science which seeks to 
understand the continuum of processes from a chemical source to a tissue dose within an 
organism. The range of predicted physico-chemical properties for new and emerging 
contaminants, however, may influence these key factors thus making efforts at determining 
chemical similarity and their associated properties with predictive analytics a critical step in 
characterizing these chemicals. 
 
Environmental fate and transport as well as its biological analogue, 
pharmacokinetics/pharmacodynamics, is described by the chemical’s interaction within the 
system. In the pharmaceutical sciences, simple pharmacokinetic-based ADME (Absorption-
Distribution-Metabolism-Elimination) “rule of thumbs” are commonly used as a selective criteria 
in screening for drug candidates quickly and efficiently. The most famous of these is Lipinski’s 
“Rule of Five” (RO5) and subsequent variations which seek to identify “druglikeness” in 
candidate compounds (i.e., orally active drugs for humans) based on its permeability/absorption 
into the body. Like many generalizations, it is far from perfect with many limitations due to its 
inability to cover all of drug space (i.e., domain of applicability issues based on four simple 
molecular descriptors). But as a screening tool, it was transformative in the science, 
successfully showing that drug permeability could be screened based on simple molecular 
descriptors thus narrowing down the pool of candidate drugs cheaply and efficiently. 
 
From a human exposure perspective, ADME concepts can be used to characterize exposure 
potentials of chemicals based on a rate-limiting step assumption of how chemicals enter/exit the 
body. If we assume that ADME, a step along the source-to-outcome continuum, describes the 
biological process whereby a chemical trespasses the body’s barrier (absorption), is 
metabolized, distributed and exits the body (elimination), then a simplified binary (fast/slow) 
diagram can illustrate the effect on exposure-dose relationships to categorize 16 unique 
scenarios - 24 possible combinations - or dose categorizations (Figure 3). In these scenarios, 
two dominant exposure-dose themes are observed: 1) absorption limited (AL) via slow 
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absorption and 2) elimination limited (EL) via fast absorption into the body. In this thought 
experiment, one could flag potential chemicals of concern based on their ability to enter quickly 
and exit slowly. For example, dose categories 13, 14, 15 and 16 would have the highest 
concerns given that elimination is slow and absorption is fast. Conversely, dose categories 1, 2, 
3 and 4 would have the lowest concerns based on slow absorption and fast elimination. 
Assuming simple metabolic clearance (i.e., no metabolic activation of toxicity pathways), 
inclusion of metabolism would delineate each category further by a faster/slower metabolism 
which would result in quicker/slower clearance of a chemical thus reducing/increasing its dose 
at a target tissue. Since all steps in the ADME process can be influenced by its physico-
chemical properties, generic pharmacokinetic modeling should be used when possible to give 
context to the relative mappings of potential ADME behaviours alongside their predicted 
molecular descriptors. 
 
Conclusions 
Cheminformatics techniques are typically much less intensive to apply, but provide key insights 
into the nature of chemicals - especially in the context of knowledge discovery. For many 
contaminants, there is a paucity of data availability to parameterize models and perform the 
necessary risk assessment studies. Data mining and informatics-based approaches allow us to 
induce predictive models as well as intuit potential chemical similarities/dissimilarities of new 
and emerging contaminants to the environment and to public health. However, care should also 
be taken when considering the exposure-dose relationships, especially with respect to 
pharmacokinetic-based ADME concepts. As more information via HTS studies becomes 
available, the associative power of these predictive models should become richer and more 
detailed improving upon the current state of the science. Ultimately, the ability to rapidly 
characterize the presence of new and emerging chemicals as well as their effects on 
individuals, populations, and ecosystems will have beneficial implications for both exposure risk 
assessment and risk mitigation. 
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Figure Captions: 
 
Figure 1. IBM Many Eyes Phrase Net visualization of 374 abstracts queried from PubMed with 
{"data mining"[All Fields] AND "chemical*"[All Fields] AND hasabstract[text]} illustrating the 
relationship of key concepts within data mining.  
 
Figure 2.   CHEMGPS-NP representation showing the overlap of chemicals within 3 publicly 
available databases and literature PBPK chemical-specific PBPK models through 2010. PBPK 
model chemicals queried from literature up to 2010; NHANES IV 
(http://www.cdc.gov/nchs/nhanes.htm) chemicals; USDA-PDP 
(http://www.ams.usda.gov/AMSv1.0/pdp) chemicals; ToxCastTM 
(http://www.epa.gov/ncct/toxcast/) Phase 1 chemicals. The first 4 dimensions of the principal 
component analysis are plotted. 
 
Figure 3. Sixteen dose categories based on a hypothetical binary (fast/slow) stepwise 
pharmacokinetic scenario considering ADME only along the source-to-outcome continuum. 
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