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Abstract

Background

Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as

exposures. We assessed error magnitude by estimating calibration coefficients as the association between

personal PM2.5 exposures from validation studies and typically available surrogate exposures.

Methods

Daily personal and ambient PM2.5 and when available sulfate, measurements were compiled from nine cities,

over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of

ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered.

Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’

homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models.

Results

When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients

equaled 0.31 (95%CI:0.14, 0.47) for nearest monitor and 0.54 (95%CI:0.42, 0.65) for outdoor home predictions.

Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was

significant for nearest monitor PM2.5 for both true exposures, but not after adjusting for city-average motor

vehicle number for total personal PM2.5.

Conclusions

Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor

exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration

coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is

needed to determine how our findings can be incorporated in future health studies.

Keywords

exposure measurement error, fine particles, fine particles of ambient origin, monitoring data, spatio-temporal

models
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Background

Exposure measurement error is a limitation of epidemiologic studies of fine particles (PM2.5) [1–3], which

generally assess exposures using ambient concentrations measured at centrally located monitors. The

impact of error on observed health risks can be substantial, potentially distorting associations and

interactions between covariates and outcomes, reducing the power to detect effects, and leading to invalid

inference [3–5].

In time series studies, use of measurements from ambient monitors, even in absence of any instrumental

error, has been shown to introduce both a Berkson error component, a result of using aggregated instead of

individual exposure data, and a classical error component, a result of the difference between the aggregated

exposure data and the true ambient PM2.5 concentrations [5]. Berkson error would not bias the health

effect estimates, but would lead to an increased variance, while classical error, conversely, can lead to

bias [5, 6]. It has been shown that in presence of multiple monitoring sites in a city, using across-monitor

averages, or population-weighted averages, would lead to less bias in time series studies [6,7]. Furthermore,

less bias is expected when the pollutant of interest is spatially homogeneous, such as PM2.5 [6, 8].

To minimize error, PM2.5 exposures would ideally be measured using personal monitors, with analytical

methods used to apportion these measurements into PM2.5 constituents and sources. Such methods,

however, are both expensive and intrusive and thus not feasible for studies conducted over long time

periods with many subjects. Recently, for application to cohort studies, researchers have used statistical

models to predict exposures outside participant residences [9–14], thus accounting for spatial variation in

ambient concentrations. While an improvement, such models still do not account for all sources of

exposure variability, such as activity patterns, which can lead to biased results [15]. It can be argued,

nevertheless, that such “biases” are the result of different target parameters of interest for the health

effects of ambient concentration vs. personal or ambient source exposure [16].

Further, spatial smoothing models can contribute a Berkson-like error component that results from

smoothing the exposure surface and a classical-like component from variability in estimating model

parameters [17–19]. The classical-like error can induce bias both towards and away from the null [18] with

increased variability [18,20,21]. Even in absence of other error sources, nevertheless, health effects

estimated using outdoor concentrations will be attenuated proportionally to the PM2.5 infiltration factor,

the factor describing how much of the personal PM2.5 was generated outdoors, penetrated the building
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envelope and remained airborne [5]; if the exposure of interest is outdoor pollutant concentration rather

than infiltrated personal exposure, however, it has been argued that this attenuation should not be

regarded as a manifestation of measurement error [19].

Several previous acute effects studies have adjusted for exposure measurement error, showing that use of

surrogate exposures tends to bias the health effect estimates towards the null [22–24]. For long-term PM2.5

effects, a limitation in understanding the impact of measurement error on estimated health risks is the

paucity of long-term personal exposure data [25–28]. We compiled exposure data from nine studies to

estimate calibration coefficients for PM2.5 of ambient origin and total personal PM2.5 for cases when

ambient concentrations or spatial models are used to assess exposures. In light of the complexity of

measurement error in air pollution, the time scale of our validation data, and the uncertainty in our

estimated calibration coefficients, our aim was to estimate and characterize calibration coefficients for

PM2.5 but not to recommend their use to adjust health effect estimates in epidemiology studies directly.

Our group is currently developing statistical methods to account for these limitations.

Methods
Personal Exposure Datasets

We included data from studies of personal PM2.5 exposures based on the following criteria: i) the study

had to be conducted in the United States, ii) during or after 1999, to ensure availability of PM2.5

concentration measurements at a EPA monitor located nearby, and iii) we had to be able to obtain the raw

data, vs. the published summary statistics, from the investigators who originally conducted the study.

Measurements of personal and ambient PM2.5 and, when available, sulfate (SO2−
4 ), were compiled from

nine cities located throughout the United States (Table 1) [29–41]. A brief description of the validation

studies is presented in the Appendix.

In each study, daily personal PM2.5 exposure data were collected following panel study sampling designs.

The number of subjects per study ranged between 15–201, with sampling session durations ranging from 2

to 12 days (median: 7 days). For each subject, we estimated monthly average personal exposures and used

these in our analyses.

All subjects were non-smokers and were monitored in multiple seasons. Study subjects included the elderly,

patients with myocardial infarction, children, and adults. All subjects younger than 18 years were excluded
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from the analysis, since long-term air pollution health studies are often focused on adult mortality.

Surrogate Exposures

For each subject, we calculated two monthly PM2.5 surrogate exposures. First, we determined monthly

ambient PM2.5 concentrations from the nearest US Environmental Protection Agency (EPA) Air Quality

System monitor (nearest monitor), restricting the maximum allowed monitor-residence distance to 30

mi [42]. Monthly concentrations were estimated using all available data within the month, i.e. not only the

days used for the monthly averages of the personal exposures.

Second, we estimated monthly outdoor PM2.5 concentrations outside each subject’s residence, at the

latitude and longitude of each subject’s residence, using a nationwide expansion of a geographic

information system (GIS)-based spatio-temporal model [14,43]. This model predicts monthly PM2.5

concentrations using a generalized additive model that fits monitoring data from governmental and

research networks together with GIS-based covariates, including population density, distance to nearest

roads, elevation, urban land use, PM2.5 point-source emissions and weather variables.

Estimation of Personal Exposures of Ambient Origin

We assume the true exposure metric is personal exposures to PM2.5 of ambient origin, which reflect PM2.5

from sources relevant to epidemiological studies of ambient air pollution [26,44,45]. This quantity cannot

be measured directly.

To estimate personal PM2.5 of ambient origin, we used ambient SO2−
4 measurements, which were available

for four cities (Atlanta, Baltimore, Boston and Steubenville). The majority of SO2−
4 is formed in the

atmosphere through secondary reactions via either gas-phase or gas/particle phase oxidation [46] and is

generally associated with coal combustion and coal-fired power plant emissions [47,48]. Because of

negligible indoor sources and its similar spatial homogeneity as PM2.5, SO2−
4 can serve as a tracer for PM

of ambient origin in locations where SO2−
4 comprises a large part of the PM2.5 mass [49,50], with personal

to ambient SO2−
4 ratio approximating the fraction of ambient PM2.5 that infiltrates indoors and remains

airborne:

PMpers. of ambient origin =
SO2−

4 pers.

SO2−
4 ambient

PMambient

In Seattle, for which personal SO2−
4 data were not available, personal PM2.5 of ambient origin was
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estimated as the weighted average of the indoor PM2.5 of ambient origin (estimated using the

corresponding calculated home infiltration efficiency) and ambient PM2.5, with the proportion of time each

subject spent indoors and outdoors as weights [51].

Since personal exposures to PM2.5 of ambient origin could only be estimated in five cities, we also assessed

error using total personal PM2.5 exposure. For this measure, calibration coefficients will be less accurate,

since total personal PM2.5 exposures also include indoor- and personally-generated PM2.5, which are

independent from ambient PM2.5 [45].

Calibration Coefficients

The calibration coefficients were estimated as the fixed regression coefficients (γ1) from linear mixed effects

models, of monthly averaged “true” on surrogate exposures, accounting for within-city correlated

observations and repeated measures within subject:

Xijk = (γ0 + g1i + g2ij) + (γ1 + g3i)Zijk + γ2Seasonijk + εijk, (1)

where Xijk are the “true” (either personal PM2.5 of ambient origin or total personal PM2.5) and Zijk the

surrogate exposures (either nearest ambient PM2.5 monitor or spatio-temporal model predictions) for

j=1,· · · , Ji subjects within city i=1, · · · , I, and I=5 or 9, with k=1,· · · ,Kij repeated measures,

g1i ∼ N (0, σ2
city), g2ij ∼ N (0, σ2

subject), g3i ∼ N (0, σ2
CF-city) and εijk ∼ N (0, σ2

W ).

We explored the sensitivity of our results to assumptions about the covariance structure for repeated

measures within subjects. Results are reported assuming compound symmetry covariance, with results

similar for autoregressive covariance structure or when allowing heteroscedasticity. We also allowed for

random seasonal effects by city, but our results were materially unchanged (results not shown).

Calibration coefficients equal to 1 suggest no bias, while coefficients <1 suggest an attenuated effect

estimate. The p-values (as p-value1) presented with the estimated calibration coefficients correspond to the

hypothesis that γ1 = 1 and were obtained using
(γ̂1 − 1)2

v̂ar(γ̂1)
∼ χ2

1.

Potential effect modification by season was assessed, as the association between personal exposures and

ambient concentrations differs by season [29,33,37,38]. Stratified calibration coefficients are presented

when the estimated interaction term for season was significant, with October–March as winter and

April–September as summer. Statistical significance was assessed at the 0.05 level.
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Between-City Heterogeneity

To assess potential between-city heterogeneity in the calibration coefficients, we tested the hypothesis H0:

σ2
CF-city=0, comparing Model 1 to Model 2, where Model 2 is the same as Model 1 without the random

slope for cities (g3i):

Xijk = (γ0 + g1i + g2ij) + γ1Zijk + γ2Seasonijk + εijk (2)

We used a likelihood ratio test (LRT) for this comparison, with LRT∼ 50 : 50 mixture of χ2
0 and χ2

1 and

p-value=0.5 if σ̂2
CF-city = 0 and p-value=0.5×(1− χ2

1 × (LRT)) otherwise [52].

We used step-wise selection to identify city-specific variables explaining any observed between-city

heterogeneity in the calibration coefficients. In presence of significant heterogeneity, we added to Model 1

candidate city-specific variables together with interaction terms between the candidate variable and the

surrogate exposure (Model 3). The candidate variables were kept in the model if the interaction term was

significant.

Xijk = (γ0 + g1i + g2ij) + (γ1 + g3i)Zijk + γ2Seasonijk +γγγ3CityVariablesi +γγγ4ZijkCityVariablesi + εijk (3)

Candidate city-specific variables were identified from previous studies showing their importance to the

personal-ambient relationship, including air conditioning use, unemployment, race, public transport [53–55]

and traffic [54] (Table A4). City-specific variables were obtained from the U.S. Census Bureau (Census

2000, http://www.census.gov), the American Housing Survey (http://www.census.gov/housing/ahs), the

National Climatic Data Center (www.ncdc.noaa.gov) and the Bureau of Labor Statistics (www.bls.gov).

Leave-one-out cross-validation techniques were employed to validate the variable selection

process [56, Chapter 7.10]. By omitting one city at a time (−i), we re-fit Model 3, using data from the

remaining I − 1 cities, allowing for a different set of variables to be selected each time. We then predicted

the city-specific calibration coefficient for the omitted city using the estimated model parameters together

with the selected variable(s) of the omitted city, i.e. γ̂1i− = γ̂1(−i) + γ̂γγ4(−i)CityVariablesi. We also

estimated city-specific calibration coefficients (γ̂1i) employing city-specific mixed effects models (Model 4).

Finally, we compared the predicted to the observed city-specific calibration coefficients obtained from the

city-specific models.

Xijk = (γ0i + g2ij) + γ1iZijk + γ2iSeasonijk + εijk (4)

7



We assessed the cross-validated results by the correlation between the predicted (γ̂1i−) and observed (γ̂1i)

calibration factors, the relative bias
γ̂1i− − γ̂1i

γ̂1i
and the absolute bias | γ̂1i− − γ̂1i

γ̂1i
|, both averaged over all

cities.

Sensitivity Analyses

To assess the robustness of our results, we assessed potential effect modification by subpopulation: seniors

(subjects older than 65 years old) and subjects with COPD, myocardial infarction (MI), and coronary

heart disease (CHD).

Sensitivity analyses were also performed to assess the effect of imperfectly matched monthly ambient and

personal exposures. We calculated calibration coefficients for monthly ambient levels estimated using only

those days for which personal exposure measures were available. Since the EPA does not collect data daily

at all locations, we allowed subjects to be matched to the nearest monitor with available data for that day.

This sensitivity analysis could only be performed for the nearest ambient monitor concentrations, as the

outdoor home model predictions were calculated at the monthly level only.

In addition, we calculated calibration coefficients for total personal PM2.5 exposures using the identical

data as used to calculate calibration coefficients for personal PM2.5 of ambient origin.

All statistical analyses were conducted using SAS software (Version 9.3, SAS Institute Inc, Cary, NC).

Results

Summary statistics and ambient-personal correlations are presented in Table 2 and Table A2, respectively.

By-city summary statistics are presented in Table A1, and the relationship between exposure to PM2.5 of

ambient origin and ambient PM2.5 concentrations is presented in Figure A1. On average, total personal

PM2.5 was higher than both concentrations at the nearest ambient monitor and outdoor home predictions.

Concentrations at the ambient monitors were strongly correlated with outdoor home model predictions

(Spearman rs = 0.86). PM2.5 of ambient origin contributed 62%, on average, to the total personal PM2.5.
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Calibration Coefficients

The results from the linear mixed effects model (Model 1) for both personal PM2.5 of ambient origin and

total personal PM2.5 are presented in Table 3.

When the nearest ambient monitor was used as the surrogate exposure, the calibration coefficient for

personal PM2.5 of ambient origin was estimated as 0.31 ((95%CI:0.14, 0.47), p-value1<0.0001), when

adjusted for seasonal effects. We found no significant seasonal effect modification (p-value=0.71). The

season-adjusted calibration coefficient was higher for outdoor home model predictions, as compared to

nearest monitor PM2.5, equaling 0.54 (95%CI:0.42, 0.65, p-value1<0.0001). We found significant effect

modification by season for outdoor home model predictions (p-value=0.006), with season-stratified

calibration coefficients higher during winter (0.60 (95%CI:0.36, 0.64)) than summer (0.50 (95%CI:0.42,

0.78)).

Total personal PM2.5 exposure calibration coefficients were higher than those for personal PM2.5 of

ambient origin (Table 3). For total personal PM2.5 exposures, the season-adjusted calibration coefficient

for the nearest ambient monitor was 0.56 (95%CI:0.24, 0.88, p-value1=0.007). Effect modification by

season was significant (p-value=0.041), with higher season-stratified calibration coefficients during summer

(0.78 (95%CI:0.36, 1.19)) than winter (0.48 (95%CI:0.12, 0.83)). The corresponding calibration coefficient,

using outdoor home model predicted PM2.5 as the surrogate exposure, was higher, 0.81 (0.49, 1.12,

p-value1=0.234). There was no significant seasonal effect modification.

Between-City Heterogeneity

For both personal PM2.5 of ambient origin and total personal PM2.5 calibration coefficients, we found no

statistically significant evidence of heterogeneity across cities for outdoor home model predictions

(p-values=0.11 and 0.17, respectively) and therefore results from Model 2, instead of Model 1, can be used.

For personal PM2.5 of ambient origin and total personal PM2.5, calibration coefficients equaled 0.56 (0.44,

0.68) and 0.79 (0.54, 1.04), respectively. Since no between-city heterogeneity was detected, no further

adjustment to these calibration coefficients was done.

Significant between-city heterogeneity (p-value=0.003) was detected in the calibration coefficients for

personal PM2.5 of ambient origin, when the nearest monitor was used as the surrogate exposure, with

estimated city-specific calibration coefficients ranging between 0.0-0.71 (Figure 1(a)). The observed

between-city heterogeneity was explained by two variables: the city’s average number of residents in a
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housing unit and the city’s 30-year average of annual heating degree days, an indicator of the typical

number of heating days in a year (p-value=0.50 for the test for residual heterogeneity). Cross-validation

showed, however, that these variables were not robust predictors of the between-city variation in the

calibration coefficient (Figure A2).

Significant between-city heterogeneity in the calibration coefficient was also detected for total personal

PM2.5 when the nearest monitor was used as the surrogate measure (p-value=0.008). Using Model 4,

estimated city-specific coefficients ranged between 0.0-1.78 (Figure 1(b)). Step-wise selection found that

some of the observed between-city heterogeneity was explained by the average number of vehicles per

housing unit in each city (p-value=0.221 for the test for residual heterogeneity). The effect of the city

average vehicles per housing unit on the relationship between total personal PM2.5 and nearest ambient

monitor PM2.5 concentrations was -2.53 (SE: 0.82), implying that as the average number of vehicles per

housing unit increases, the calibration coefficient decreases for cities with larger numbers of vehicles per

housing unit. For instance, if the average number of vehicles per housing unit in a city increased by 0.1,

then the calibration coefficient for that city would decrease by 0.25. The selection of this variable was

confirmed in the cross-validation, as it was consistently selected when cities were omitted one by one

(Figure A2). The correlation between the predicted calibration coefficients from each city and the observed

by-city coefficients was 0.62 (p-value=0.05), the mean percent relative bias was estimated -0.76% and the

mean percent absolute bias 149%.

Sensitivity Analyses

Results from our sensitivity analyses are presented in the Appendix. Briefly, we observed no significant

effect modification by subpopulation. We found significant effect modification by age, with subjects

younger than 65 years of age having lower calibration coefficients than their older counterparts (Table A3).

Further, we found that estimated calibration coefficients were similar irrespective of the method used to

calculate monthly ambient concentrations at the nearest monitor. When all days within the month were

used in the calculation, the calibration coefficient for personal PM2.5 of ambient origin was 0.31

(95%CI:0.14, 0.47), vs. 0.35 (95%CI:0.26, 0.43) when monthly ambient concentrations were calculated

using only those days with personal monitoring.

10



Discussion

We estimated calibration coefficients for studies of the association of long-term PM2.5 health effects with

ambient air pollution exposures, considering both estimated personal exposures to PM2.5 of ambient origin

as the exposure metric and personal exposures to total PM2.5 as a second, albeit imperfect, exposure

metric. Our goal was to assess and quantify error resulting from use of surrogate exposures and

characterize the impact of different surrogate exposures on error. As discussed in the introduction,

nevertheless, the estimated error could be from a variety of sources, and it has been argued that not all of

these are properly characterized as measurement error [19].

Using estimated monthly personal PM2.5 of ambient origin from five cities as the true exposure measure, we

estimated a calibration coefficient of 0.54 (95%CI:0.42, 0.65) when outdoor home model predictions were

used as the surrogate exposure, with no city-specific heterogeneity. This calibration coefficient suggests that

when the parameter of interest is the health effect of ambient source pollution, the observed effect could be

half the true estimate when outdoor home model predictions are used as the exposure metric in a linear

health model, in absence of other potential bias sources. The lack of observed between-city variability

likely reflects the use of the spatio-temporal model, which incorporates variables that may explain much of

the between-city variability, such as population density, urban land use and distance to nearest road.

The estimated calibration coefficient for nearest ambient monitor concentrations as the exposure metric

was lower (0.31 (95%CI:0.14, 0.47) compared to 0.54 (95%CI:0.42, 0.65) for outdoor model concentrations),

reflecting the fact that nearest monitor concentrations do not account for as much spatial variability in

ambient concentrations as the outdoor home model predictions. We also detected statistically significant

between-city heterogeneity. Factors explaining between-city variability in the calibration coefficient,

nevertheless, could not be reliably identified. This inability to explain the city-specific heterogeneity likely

reflects the small number of cities included in our analysis.

When total PM2.5 was used as the true exposure measure, calibration coefficients of 0.56 (95%CI:0.24,

0.88) and 0.81 (95%CI:0.49, 1.12) were found for nearest ambient monitor PM2.5 and outdoor home model

predictions, respectively. These results are consistent with those reported in Setton et al. (2011) [15], who

reported an attenuation ranging between 0.70 to 0.84 for scenarios when mobility was not considered and

only PM2.5 predictions at the subjects’ residences were included in the health model. As noted above,

however, these calibration coefficients were calculated using total personal PM2.5, an imperfect measure of
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true exposure to ambient-generated pollutants.

As was the case with personal PM2.5 of ambient origin, we detected significant between-city heterogeneity

in total PM2.5 calibration coefficients only when nearest monitor were used as the surrogate exposure. For

nearest monitor PM2.5, between-city heterogeneity was explained with the city average number of vehicles

per housing unit. Results showed that error increases with vehicles per housing unit. A possible

explanation for this association is provided by the strong negative correlation between the number of

average vehicles per housing unit and population density (r = −0.86) and the strong positive correlation

with the percentage of the detached homes in a study area (r = 0.88) as shown in Figure A3. These

correlations suggest that in less dense cities, residents need to travel longer distances, possibly increasing

the impact of pollutant spatial variability. These results are also in agreement with Setton et al.

(2011) [15], who found increasing bias with increasing distance spent away from home. Selection of number

of vehicles per housing unit to explain between-city heterogeneity could also reflect varying PM2.5

composition, with local sources, such as traffic, likely comprising a larger portion of PM2.5 mass in cities

with more vehicles per housing unit, than regional sources. PM2.5 of local sources is more spatially

heterogeneous and more error is, therefore, expected when it comprises a large fraction of the total ambient

PM2.5. The fact, however, that our estimated city-specific calibration coefficients ranged between 0.0-1.9

complicates our interpretation of the overall estimate of 0.56 (95%CI:0.24, 0.88) and of the observed

association with housing and transportation characteristics, suggesting that one average calibration

coefficient may not adequately describe error from use of ambient monitor measurements across the United

States.

Environmental tobacco smoke (ETS) may also contribute, at least partially, to the observed between-city

heterogeneity. In all studies in our analyses, subjects were selected as non-smokers, living in non-smoking

homes. Although this inclusion criterion would minimize potential exposure to ETS, it is possible that

participants living in cities with more ETS would also have higher personal PM2.5 exposures, thereby

potentially contributing to between-city heterogeneity in the calibration coefficients. We, however, were not

able incorporate ETS exposures in our analysis, as some studies did not report ETS exposure information.

Our findings are consistent with two studies by Avery et al. (2010) [57], who found a median correlation

coefficient of 0.54 between total personal PM2.5 exposures and concentrations at a centrally located

monitor, and strong between-city heterogeneity (p-value<0.0001). Although their reported median
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correlation coefficient between total personal PM2.5 exposures and outdoor home concentrations was

similar, between-city heterogeneity in this association was lower (p-value=0.05). The weaker evidence of

heterogeneity for outdoor home PM2.5 concentrations is consistent with our suggestion that between-city

heterogeneity in calibration coefficients is explained by variables included in outdoor home model

predictions; this is one explanation for why we found heterogeneity only for nearest monitor but not

outdoor home exposures.

Our study is limited by several factors. First, the data available to validate the exposure metrics of interest

were limited to a small number of cities and participants, especially for personal PM2.5 of ambient origin.

Also, only a small number of days in a month were available in some cities to estimate monthly averages.

These small numbers contributed to uncertainty in our data and estimates and potentially prohibited

detection of any potential between-city heterogeneity for outdoor home predictions and the identification of

factors explaining observed between-city heterogeneity in calibration coefficients when the nearest monitor

PM2.5 concentrations were the exposure surrogate. Further, the cities included in our analyses may not be

representative of all US cities, and thus our estimated calibration coefficients might not be generalizable to

other cities. Moreover, the association between personal exposures and ambient concentrations might vary

over years. Since our studies were conducted over a one to two year time span (Table 1), we were not able

to assess the contribution of longer term personal-ambient trends to total error.

Second, personal PM2.5 of ambient origin was estimated rather than measured. As a result, estimated

exposures did not take into account the uncertainty related to their prediction when estimating the

calibration coefficients. Moreover, given data availability, we were not able to estimate the contribution of

instrumental to total error. Both personal and ambient measurements are prone to instrumental error,

presence of which is likely to introduce classical error [5]. In our setting, however, personal exposures are

the outcome variable in the regression and therefore random error in these exposures is not expected to

introduce introduce error in the estimated calibration coefficients. Furthermore, personal exposures are on

average measured with high precision and accuracy [29,30].

To estimate personal PM2.5 of ambient origin we used the SO2−
4 tracer method. In cities where SO2−

4

comprises a large fraction of the total ambient PM2.5 mass, as in the northeastern US [58], the SO2−
4 tracer

method has been shown to perform well [49]. In places, however, where ambient PM2.5 mass is strongly

influenced by local sources, such as traffic, ambient SO2−
4 would not act as good tracer, given that the
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spatial and size distributions of SO2−
4 may differ from those of PM2.5Ṡince PM2.5 from local sources is

more spatially heterogeneous, larger spatial misalignment would be expected in these cities and, hence,

more measurement error. For these cities, we would expect the calibration coefficients for personal PM2.5

of ambient origin, which was estimated using the SO2−
4 ratio, to be overestimated and the error to be

underestimated, a factor likely contributing to the observed between-city heterogeneity. In our study, we

only had SO2−
4 data in four cities, three of which are in the northeastern US (Baltimore, Boston and

Steubenville). The fourth city was Atlanta, which has been shown, on average, to have lower SO2−
4

concentrations [58]. Even there, however, secondary sulfate was found to comprise 38% of the total PM2.5

mass [59] and in our data, the ratio of ambient SO2−
4 over PM2.5 in Atlanta was, on average, similar to the

ratios in the three northeastern cities (Table A1).

In addition, we estimated the outdoor home predictions using a specific spatio-temporal model. This model

has been validated and shown to perform very well [14,43]. We would therefore expect that our findings for

outdoor home predictions could be extended to similarly performing spatio-temporal models and could be

qualitatively used for predicted concentrations obtained from other spatio-temporal models.

Moreover, we were not able to disentangle how specific error types would impact the health effect estimates

obtained using either of the surrogate exposures. We did not assume models addressing specific error

structures and our approach assesses overall error from use of surrogate exposures, combining the multiple

error types that are likely present [5, 18].

Furthermore, our study is not able to determine how much of the estimated calibration coefficient reflects

infiltration of particles from outdoor to indoor environments, as compared to other sources of the difference

between personal exposure and outdoor concentration metrics [5,19]. Infiltration, however, does not appear

to explain all of the observed error found in our analysis, since the average estimated calibration

coefficients for personal PM2.5 of ambient origin were <0.64 (the approximated penetration efficiency using

the SO2−
4 ratio), consistent with additional contributing error sources.

Additionally, personal exposures were measured for each participant for periods less than one month. We

would expect this temporal mismatch to introduce both Berkson, through the errors in the true exposures

that were randomly selected within a month, and classical, through the errors in the temporal

misalignment of the surrogate exposures, error components. Through sensitivity analyses, comparing
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PM2.5 concentrations measured at the nearest monitor using all data within a month with that measured

on days when personal data were also available, we showed the point estimates to be very similar, but the

confidence intervals for the calibration coefficients estimated using the temporally mismatched data were

wider. Since outdoor home model predictions were only available at the monthly level, we were unable to

quantitatively assess the effect of this temporal mismatch on the estimation of the calibration coefficients.

Monthly concentrations at the nearest ambient monitor, however, were very strongly correlated with

outdoor home model predictions (r = 0.86). In any event, randomly temporally mismatched data relating

personal exposures to outdoor home predictions may also lead to increased uncertainty, but likely no bias,

in the calibration coefficients.

Finally, our goal was to assess exposure measurement error in long-term PM2.5 exposures. As described

earlier, personal exposure studies are infeasible for long periods and, given current data availability, we

were only able to conduct our analyses using monthly averages. Many long-term PM2.5 studies use

exposure metrics based on functions of monthly averages (e.g. 12-month moving average [11] or

cumulatively-updated monthly average [60]), and we therefore believe that our findings provide useful

information in the interpretation of chronic health effect estimates.

We compiled data from 9 cities across the United States for our analyses and calculated calibration

coefficients that may be informative for interpreting risk estimates in nationwide studies of long-term

PM2.5 health effects. For instance, differential measurement error could be partially responsible for the

higher effects reported by Puett et al. (2009) [11], who used PM2.5 predictions outside the participant’s

homes, as compared to the effects found by Krewski et al. (2005) [61], who used metropolitan area means

of PM2.5 concentrations at ambient monitors.

To our knowledge, this is the first study to assess error due to two different, widely used, surrogate

exposures, using personal exposure data from multiple US cities. Further, we identified variables explaining

the heterogeneity in the calibration coefficients across cities, with the variances of the reported calibration

coefficients potentially reflecting this heterogeneity.

At this time, we do not recommend using the calibration coefficients reported here to directly adjust health

effect estimates in epidemiology studies. Given the observed between-city heterogeneity the complex,

time-varying nature of the exposures and the lack of information on individual characteristics, which would
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be included as confounders in health models, standard error correction methods such as ordinary regression

calibration could still yield biased estimates [62,63]. Our group is currently developing methods to account

for the above limitations in order to correctly adjust health effect estimates obtained using surrogate

exposures. Furthermore, future research on PM2.5-related measurement error should characterize

measurement error for regional and local PM2.5 by focusing on PM2.5 composition, which changes both

over space and time, suggesting that calibration coefficients will also change over space and time [6, 8, 48].

Conclusions

With our study we were able to assess the ability of two widely used surrogate exposures to reflect personal

exposures: ambient concentrations measured at centrally located monitors, as well as outdoor home

predictions. Our estimated calibration coefficients are consistent with previously reported chronic health

risks using nearest monitor exposures being under-estimated when ambient concentrations were the

exposure of interest. For outdoor home predictions, our results suggest less error.
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Table 2: Basic characteristics of exposure variables
# person-months Mean ± SD

(# subjects) (µg/m3)
All Year
Total Personal PM2.5 919 (490) 24.54 ± 18.97
Personal PM2.5of ambient origin 261 (141) 9.71 ± 4.32
Personal/Ambient SO2−

4 ratioa 241 (131) 0.64 ± 0.25
Model Predicted PM2.5 1029 (502) 15.47 ± 4.77
Monitor PM2.5 1029 (502) 15.86 ± 5.58

Summer
Total Personal PM2.5 429 (312) 23.92 ± 16.92
Personal PM2.5of ambient origin 130 (90) 10.95 ± 4.12
Personal/Ambient SO2−

4 ratioa 125 (86) 0.70 ± 0.23
Model Predicted PM2.5 493 (327) 15.67 ± 4.84
Monitor PM2.5 493 (327) 15.69 ± 4.79

Winter
Total Personal PM2.5 490 (353) 23.94 ± 19.67
Personal PM2.5of ambient origin 131 (97) 8.73 ± 4.27
Personal/Ambient SO2−

4 ratioa 116 (87) 0.59 ± 0.24
Model Predicted PM2.5 536 (367) 15.36 ± 4.71
Monitor PM2.5 536 (367) 16.10 ± 6.21

a Not estimated for Seattle, WA
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Table 3: Season-adjusted calibration factors for personal PM2.5 of ambient origin and total personal PM2.5.
Monitor PM2.5 Model Predicted PM2.5

Personal PM2.5 of ambient origin 5 cities (141 subjects)
Estimate (95% CI)a 0.31 (0.14, 0.47)** 0.54 (0.42, 0.65)**
p-value for between-city heterogeneity 0.0034 0.1114
Rb

I 10.75% 0.96%
Estimate (95% CI)c N/A 0.56 (0.44, 0.68)**

Total Personal PM2.5 9 cities (490 subjects)
Estimate (95% CI)a 0.56 (0.24, 0.88)** 0.81 (0.49, 1.12)
p-value for between-city heterogeneity 0.0084 0.1712
Rb

I 2.54% 1.28%
Estimate (95% CI)c N/A 0.79 (0.54, 1.04)**

* p-value1 <0.05, ** p-value1 <0.01 for significant difference from 1
a Results from Model 1 (including random slopes for cities, g3i)
b RI : the proportion of variance explained by the between-cities heterogeneity
c Results from Model 2, when no significant between-city heterogeneity was detected (without the random slopes for
cities, g3i)

Figures
Figure 1

Forest plots of the by-city calibration coefficients for (a) personal PM2.5 of ambient origin and (b) total

personal PM2.5 and nearest monitor concentrations. The size of the point used for the effect estimate is

proportional to the precision of that calibration coefficient.
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Figure 1: Forest plots of the by-city calibration factors for (a) personal PM2.5 of ambient origin and (b)
total personal PM2.5 and nearest monitor concentrations. The size of the point used for the effect estimate
is proportional to the precision of that calibration factor.
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