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Abstract:

The Future Midwestern Landscapes (FML) project is part of the U.S. Environmental Protection Agency’s Ecosystem Services
Research Program. The goal of the FML project is to quantify changes in ecosystem services across the Midwestern region as a
result of the growing demand for biofuels. Watershed models are an efficient way to quantify ecosystem services of water quality
and quantity. By calibrating models, we can better capture watershed characteristics before they are applied to make predictions.
The Kaskaskia River watershed in Illinois was selected to investigate the effectiveness of different calibration strategies
(single-site and multi-site calibrations) for streamflow, total suspended sediment (TSS) and total nitrogen (TN) loadings using
the Soil and Water Assessment Tool. Four USGS gauges were evaluated in this study. Single-site calibration was performed
from a downstream site to an upstream site, and multi-site calibration was performed and fine-tuned based on the single-site
calibration results. Generally, simulated streamflow and TSS were not much affected by different calibration strategies.
However, when single-site calibration was performed at the most downstream site, the Nash–Sutcliffe efficiency (NSE) values
for TN ranged between �0.09 and 0.53 at the other sites; and when single-site calibration was performed at the most upstream
site, the NSE values ranged between �8.38 and �0.07 for the other sites. The NSE values for TN were improved to 0.5 – 0.59
for all four sites when multi-site calibration was performed. The results of the multi-site calibration and validation showed an
improvement on model performance on TN and highlighted that multi-site calibrations are needed to assess the hydrological
and water quality processes at various spatial scales. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The benefits that people gain from the natural ecosystems
(termed ecosystem services) include provisioning services,
regulating services, cultural services and supporting
services (MA, 2004). The measurement of ecosystem
services is a new strategic focus for the United States
Environmental Protection Agency’s (EPA) Ecosystem
Services Research Program (ESRP). The ESRP’s Future
Midwestern Landscapes study aims to quantify the current
magnitude of ecosystem services in the Midwestern U.S.
and examine how those services would change over the
next decade given the growing demand for biofuels.
Although an increase in corn production can have a
positive energy benefit for biofuel production, it may also
have many negative impacts on environmental quality such
as increased nutrient and pesticide losses to water bodies.
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In the United States, the increased nitrogen has contributed
to the degradation of the ecosystem, especially the
estuaries (NRC, 2000). The Gulf of Mexico is one of the
examples that increased nutrient fluxes have been linked to
the increased occurrence of seasonal hypoxia in the
northern Gulf of Mexico (CENR, 2000; Alexander et al.,
2008). Moreover, more than 70% of the nitrogen and
phosphorus delivery to the Gulf of Mexico are from
the agricultural lands in the Mississippi River Basin
(Alexander et al., 2008).
Frequently watershed models are used to simulate

responses under various land use/management scenarios
in order to make management recommendations for
improving water quality. For example, the Soil and Water
Assessment Tool (SWAT) has been widely applied to
evaluate alternative land use, best management practices
and other factors on pollutant losses to streams within a
watershed (Vache et al., 2002; Chaplot et al., 2004;
Santhi et al., 2006; Chaubey et al., 2010; Chiang et al.,
2010). Before evaluating alternative scenarios on water-
shed responses, a model is usually calibrated by
comparing the simulated data to available measured data.
The availability and the location of observed data are
some of the factors driving choices about the calibration
and validation strategies in terms of temporal span and
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spatial scales. For watersheds that have only one gauge
available, the calibration and validation results have
typically been applied to an entire watershed and the
spatial variability of parameters cannot be accounted for
across the watershed (Jha et al., 2006; Srivastava et al.,
2006; Stewart et al., 2006; Green and van Griensven,
2008). The gauging station for these types of studies was
located either close to or at the watershed outlet. The
watershed drainage areas range from 0.04 to 447 500 km2.
Although the authors used the coefficient of deter-
mination (R2) and Nash–Sutcliffe efficiency (NSE) to
evaluate model’s performance and concluded that the
model performed satisfactorily (R2 ranged from 0.57 to
0.96 and NSE ranged from 0.54 to 0.94 for monthly
streamflow), the calibration and validation of hydrologic
processes at the watershed outlet do not imply a full
understanding of the complexity of hydrologic patterns
within the watershed. The satisfactory performance of the
model at the watershed outlet may cover up the
overestimations or underestimations at the subwatershed
outlets. It is because the overestimations or under-
estimations can be averaged out at the watershed outlet,
especially for a large watershed with spatially complex
hydrological and water quality processes.
It is found that the calibration results for small-scale

watersheds are generally better than that for large-scale
watersheds. For example, a study performed by Green
and van Griensven (2008) found that R2 values ranged
between 0.87 and 0.96 and NSE values ranged between
0.82 and 0.94 at the monthly time step for six small-
scale watersheds (4 – 8.4 ha) in Texas. Therefore, many
studies have conducted multi-site calibration and
validation for different variables (Qi and Grunwald,
2005; White and Chaubey, 2005; Cao et al., 2006;
Zhang et al., 2008) and further developed their
watershed management plans (Kirsch et al., 2002).
White and Chaubey (2005) performed calibration and
validation at three different sites for streamflow,
sediment, total phosphorus and (NO3-N) plus nitrite-
nitrogen (NO2-N). Qi and Grunwald (2005) conducted a
spatially distributed calibration and validation of
surface, groundwater and total flow concurrently at four
subwatersheds and the watershed outlet. Similarly, Cao
et al. (2006) evaluated the performance of model
calibration and validation on hydrological processes at
six subcatchments and the catchment. Above studies
concluded that multi-site and multi-variable method can
identify the areas where hydrological process needs more
calibration effort, thus improving model performance
compared to single-site calibration.
Many studies have shown that the equifinality of model

parameters where multiple combinations of parameters
may yield the same model outputs is one of the concerns
in hydrological modeling (Beven and Binley, 1992;
Wagener and Kollat, 2007). Therefore, a systematical
assessment of selecting optimal combinations of para-
meters for multiple sites is needed for calibrating a model
which truly represents the diverse characteristics of a
watershed. Moreover, relatively fewer studies have been
Copyright © 2012 John Wiley & Sons, Ltd.
done to evaluate the impact of multi-site calibration and
validation on nutrient loadings (White and Chaubey, 2005;
Santhi et al., 2006). The calibration results for nitrate and
nitrite ranged from 0.01 to 0.84 (R2) and from �2.35 to
0.29 (NSE) (White and Chaubey, 2005), while the
calibration results for mineral N (R2 = 0.64 and 0.72) and
organic N (R2 = 0.61 and 0.60) were similar (Santhi et al.,
2006). For subwatersheds having similar land use
distribution, model performance tends to be similar at
each subwatershed outlet when common calibrated
nutrient-related values are applied. In contrast, various
calibration results at multiple sites indicate the impacts of
complex landscape and in-stream processes on nutrient
loadings at different subwatersheds. The objectives of
this study were to: (1) assess the model performance in
the Kaskaskia River watershed of single-site and multi-
site calibration on streamflow, total suspended sediment
(TSS) and total nitrogen (TN) for different sizes of
subwatersheds; and (2) develop a multi-site calibration
strategy that can truly calibrate the model with a calibrated
parameter set to best capture the hydrological and water
quality processes at various subwatershed outlets.
RESEARCH METHOD AND PROCEDURES

Study site

Our study was conducted in the 14 152 km2 Kaskaskia
River watershed within the Upper Mississippi River
Basin located in southern Illinois (Figure 1). Land covers
in the Kaskaskia River watershed mainly comprise
cropland (approximately 67% of the watershed area),
forest (17.6%), pasture (6.7%) and urban (8.8%). Corn,
soybean and wheat are the three major crops, and corn
and soybean rotation accounts for more than 44% of
the watershed (Table I). The average hillslope of the
watershed is 2% with a maximum slope of 58%. The
predominant soil associations in the watershed include
the Bluford –Ava-Hickory (IL038, 15%), Hosmer-Stoy-
Hickory (IL037, 14%), Cisne-Hoyleton-Darmstadt
(IL006, 13%), Flanagan-Drummer-Catlin (IL010, 13%)
and Cowden-Oconee-Darmstadt (IL005, 13%).
Soil associations IL038, IL037, IL005 and IL006

underlie the southern part of the watershed accounting
for 55% of the watershed. Bluford soils (silt loam) tend to
be anywhere from completely flat to gently sloping and
are frequently poorly drained. Hickory soils (loam) are
moderately steep to very steep and moderately well
drained. The Cisne soil series (silt loam) are poorly
drained with very slow permeability. The Darmstadt
series (silt loam) also consists of poorly drained soils. The
major hydrologic groups in the Darmstadt series are C, D
and C/D, indicating soils having slow infiltration rates
and high runoff potential. The Flanagan soils (silt loam)
dominate the northern part of the watershed where most
croplands are located. This soil series has moderate soil
erodibility ranging from 0.28 to 0.43, indicating moderate
susceptibility to detachment and moderate rate of runoff
(Walker and Pope, 1983; Hamilton, 1993).
Hydrol. Process. (2012)
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Figure 1. Location of point sources, weather stations and USGS gauges for model evaluation in the Kaskaskia River watershed

Table I. Land use distribution at subwatersheds and entire watershed

(% of the subwatershed) sub19 sub30 sub93 sub176 Kaskaskia

Urban 5.61 9.10 7.61 8.24 8.76
Pasture 1.17 2.51 5.06 6.31 6.73
Forest 0.83 1.57 14.25 17.28 17.61
Soybean 0.21 0.24 0.22 0.33 0.32
Corn 6.99 5.93 6.55 5.64 5.20
Corn-Soybean 82.68 74.93 55.55 46.92 44.03
Soybean-Other 2.08 4.83 9.65 13.92 15.95
Corn-Other 0.43 0.90 1.12 1.36 1.36
Water 0.00 0.00 0.00 0.00 0.03
Total area (ha) 26 638 112 949 487 501 1 100 095 1 470 704

EVALUATION OF SINGLE-SITE AND MULTI-SITE SWAT CALIBRATION
Based on the availability and locations of the monitoring
data, we selected four gauges for model calibration and
validation. These four gauges are USGS5591700 at
subwatershed 19 delineated by the SWAT model,
Copyright © 2012 John Wiley & Sons, Ltd.
USGS5581200 at subwatershed 30, USGS5592500 at
subwatershed 93 and USGS5594100 at subwatershed
176 (Figure 1). Subwatershed 19 and subwatershed 30
are stand alone, but they are nested in subwatershed 93
Hydrol. Process. (2012)
DOI: 10.1002/hyp
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and subwatershed 93 is nested in subwatershed 176
(Figure 1). Most of the croplands are located in the
northern part of the watershed. Both subwatershed 19
and 30 have more than 85% of the subwatershed area
occupied by croplands, while subwatershed 93 and 176
have less croplands and more forest lands. The annual
amount of N fertilizer and P fertilizer applied on the corn
lands in the watershed ranged from 67903 to 85 049 t
(metric tons) and from 24 993 to 35 607 t, respectively,
during 1990–2009. The soybean lands in the watershed
received an average annual amount of 1225 t of N fertilizer
and 5171 t of P fertilizer from 1990 to 2009 (ESMIS, 1990).

SWAT model description

The SWAT model can predict long-term impacts of
land use and management on water, sediment and
agricultural chemical yields at various temporal and
spatial scales in a watershed (Arnold et al., 1998). More
than 600 peer-reviewed journal articles have been published
demonstrating the SWAT applications on sensitivity
analyses, model calibration and validation, hydrologic
analyses, pollutant load assessment and evaluation of
conservation practices (Gassman et al., 2007). In this study,
surface runoff was estimated using the SCS curve number
(CN) procedure (SCS, 1972), and potential evapotranspir-
ation was estimated using the Penman–Monteith method
(Monteith, 1965; Allen, 1986; Allen et al., 1989). Erosion
caused by rainfall and runoff is computed with the Modified
Universal Soil Loss Equation (Williams, 1995). Once the
sediment yield is estimated, sediment transport in the
channel network is simulated as a function of two processes,
deposition and degradation (Neitsch et al., 2002).
Nitrogen cycle is a dynamic system that includes

atmosphere, soil and water. SWAT monitors five different
pools of nitrogen in the soil: two pools are inorganic
forms of nitrogen (NH4

+ and NO3
- ), and three pools are

organic forms of nitrogen (active, stable and fresh organicN).
The amount of nitrogen loss from land areas depends on
various factors, such as mineralization, nitrification, denitri-
fication and fixation by legumes. SWAT models the
transport of different forms of nitrogen from land areas into
streams. Nitrate may be moved with surface runoff, lateral
flow or percolation, while organic N attached to soil
particles may be transported by surface runoff. After
nitrogen is transported into main streams, SWAT simulates
in-stream nutrient processes by incorporating the QUAL2E
model (Brown and Barnwell, 1987).
The key GIS input files to SWAT for this study included a

30 m digital elevation model (DEM) downloaded from the
National Elevation Dataset at the resolution of 1 arc-second
from the USGS (weblink: http://ned.usgs.gov), (USGS;
weblink: http://ned.usgs.gov/), an enhanced land cover/land
use based on the 2001 National Land Cover Database
(NLCD) and State Soil Geographic Database (STATS-
GO) from the USDA-NRCS (USDA-NRCS; weblink:
http://soildatamart.nrcs.usda.gov/). Although the Soil
Survey Geographic (SSURGO) database provides higher
spatial resolution soil data, the GIS-enabled SWAT input
Copyright © 2012 John Wiley & Sons, Ltd.
interfaces were developed only for processing the
STATSGO database, and significantly additional effort
is needed to prepare SSURGO database for model use for
such a large watershed (Sheshukov et al., 2011). Using the
DEM and the outlets selected within the watershed, the
watershed was delineated into several subwatersheds.
In this study, the watershed delineation was matched to
the boundaries of the 12-digit National Hydrography
dataset, and additional subwatersheds were delineated at
USGS gauge stations to facilitate comparisons of model
outputs to the measured data. Thereby, a total of 218
subwatersheds were delineated. Subsequently, the sub-
watersheds were partitioned into homogeneous units
(hydrologic response units), which share the same land
use and soil type. In this study, we used 1% threshold for
both land use and soil type. Besides the GIS layers, other
input files, such as weather data, agricultural management
schedule and operations, fertilizer application rates and
point sources, were prepared and further discussed in the
following sections.

Model inputs for the Kaskaskia River Watershed

Landcover dataset. We used the 2001 NLCD as our
base year landcover dataset for the Midwest. However, the
2001 NLCD did not have detailed information on crop
type and rotational practices. In particular, the NLCD does
not differentiate varieties of crops, such as corn, soybeans
and wheat, and has only a single time period rendering
rotational practices. Therefore, for our modeling needs, we
developed an aggregate landcover classification by com-
bining theNLCD2001with theUSDANationalAgriculture
Statistical Survey (NASS) Cropland Data Layer for the
years 2004–2007. Our method expanded the ‘Single
cultivated crops’ land use within the NLCD into 18 classes
of agriculture including monoculture cropping and rota-
tional cropping types (Mehaffey et al. 2011).

Weather data. Weather data (daily precipitation, mini-
mum and maximum temperature) used in this study were
the National Weather Service Cooperative Observer daily
observations from the National Climatic Data Center
(NCDC). A total of 28 weather stations were found within
a radius of 25 miles of the watershed. Daily observations
during the period of 1960 – 2009 were downloaded from
the NCDC website. Missing records of daily observations
at a given station were interpolated using the weather data
from neighborhood weather stations using the method
developed by Di Luzio et al. (2008).

Point source. The SWAT model can read point source
data in various time steps, such as hourly, daily, monthly and
yearly, and also at constant concentrations. The model also
incorporates the point source into the routing process through
the watershed. A total of 265 point sources were observed in
the watershed for flow, ammonia and total suspended solids
during 1998–2007. The point source data were collected
once a month and are available at the EPA’s Envirofacts
Website (http://www.epa.gov/enviro/html/pcs/adhoc.html).
Hydrol. Process. (2012)
DOI: 10.1002/hyp

http://ned.usgs.gov/
http://ned.usgs.gov/
http://soildatamart.nrcs.usda.gov/
http://www.epa.gov/enviro/html/pcs/adhoc.html


EVALUATION OF SINGLE-SITE AND MULTI-SITE SWAT CALIBRATION
Thus, the daily input was used, and the collected point source
data once a month were assumed to be constant for that
month; i.e. the once a month point source data were the daily
input for each day in that month. SWAT subbasins (and/or
streams) where those point sources are located were first
identified, the effluent from point sources along with flow
and pollutants generated from that subbasin were put into
nearly streams during SWAT simulations. In cases where a
point source is located on a stream, the effluent is directly put
into that stream. The water and pollutant loadings from point
sources were relatively small comparing with nonpoint
source loadings in this watershed.

Fertilizer input. Management schedules for the various
crop rotations were obtained from the crop management
template in the Revised Universal Soil Loss Equation 2
developed by the USDA Natural Resource Conservation
Service (NRCS). The crop management templates were
grouped based on the NRCS crop management zones
(CMZ). The CMZ data were further processed using
the Annualized Agricultural Nonpoint Source Pollutant
Loading model Input Editor and then prepared for the
SWAT crop management files. The schedules and detailed
information of operations, such as planting, tillage and
harvesting, were documented in the CMZ templates,
except for the fertilizer application. Fertilizer was assumed
to be applied one day before planting, and fertilizer
application rates for corn, soybean and wheat were
estimated based on data obtained from USDA Economics,
Statistics and Market Information System (ESMIS) and the
Census of Agriculture of USDA NASS (Table II).
Table II. The average values of N and P fertilizer application rates
for corn, soybean and wheat during 1990–2009 in the Kaskaskia

River watershed and Illinois state average in 1990

Fertilizer type
Average rate

(kg/ha)
Illinois state application
rate in 1990 (kg/ha)

Corn N 187.6 183.8
P 78.8 82.6

Soybean N 3.2 4.5
P 13.7 17.5

Wheat N 98.1 94.4
P 66.7 73.7

Table III. List of available periods of measured streamflow, total susp
The entire monitoring period was split i

USGS gauge Subbasin USGS-drainage area (ha)

05591200 30 122 506 Calibration
Validation

05591700 19 29 008 Calibration
Validation

05592500 93 502 457 Calibration
Validation

05594100 176 1 137 781 Calibration
Validation

Copyright © 2012 John Wiley & Sons, Ltd.
Model calibration and performance evaluation

The calibration and validation of the SWAT model
were performed manually for streamflow, TSS and TN at
four selected subwatershed outlets using a monthly time
step. The simulation period was from 1960 to 2009,
where the first 3 years were used as the model warming-
up years. The streamflow had the longest observation
period, which could approximately cover the simulation
period (Table III). There were only two gauges having the
observed TSS concentrations, and USGS5594100 has
the longest period of nitrogen data from 1974 to 1997.
Based on the availability of streamflow and water quality
observations, the calibration and validation were per-
formed from 1962 to 1985 and from 1986 to 2009,
respectively. Since the water quality data were not
collected continuously, a load estimation tool (Runkel
et al., 2004) was used to estimate the constituent loads at
a continuous monthly time step. Estimated water quality
loads for days when measurements were taken were
compared with measured water quality loads and good
relationships between daily estimated and measured were
achieved with relative errors from �6.8% to 28.2% and
R-square values from 0.61 to 0.95 (Table IV). For
monthly load estimation, the lower and upper limit of
load estimation was provided in Table IV. In addition, the
relationships of monthly estimated water quality loads
with measured flow were also provided in Table IV
(R-square values from 0.65 to 0.98).
Single-site calibration was performed first. For single-

site calibration, the model was calibrated from down-
stream to upstream. The purpose of this calibration
strategy was to evaluate how the model performed at
different sites when the constant calibrated values derived
from a single site were applied to the entire watershed.
Thus, the outlet at subwatershed 176, downstream of the
Kaskaskia River was first selected to calibrate the model
and apply the calibrated parameter values to the entire
watershed. In the same way, models were also calibrated
using the observed data from subwatershed 93, 30 and 19,
and calibrated parameters from each calibration were
applied to the entire watershed. Based on the experience
of single-site calibration and how the constant calibrated
parameter values affected the model performance at each
subwatershed outlet, multi-site calibration was performed.
ended sediment (TSS) and total nitrogen (TN) at 4 USGS gauges.
nto calibration and validation periods

Streamflow TSS TN

1970/10 – 1985/12 1979/1 – 1985/12 1980/1 – 1985/12
1986/1 – 2009/12 1986/1 – 1992/12 1986/1 – 1997/12
1980/3 – 1985/12 – 1980/3 – 1985/12
1986/1 – 2009/12 – 1986/1 – 1997/12
1963/1 – 1985/12 – 1977/1 – 1985/12
1986/1 – 2009/12 – 1986/1 – 1997/12
1969/10 – 1985/12 1975/1 – 1985/12 1974/1 – 1985/12
1986/1 – 2009/12 1986/1 – 1992/12 1989/1 – 1997/12

Hydrol. Process. (2012)
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Table IV. Comparison of estimated daily TSS and TN loads with measured daily TSS and TN loads; and estimated monthly TSS and
TN loads and their relationships with measured monthly flow. (Note: number in the parenthesis denotes the total number of measured

daily data points during the entire monitoring period)

Subbasin Period

Daily Monthly LOADEST

USGS
measured (kg)

LOADEST
(kg)

RE
(%) R-square

Mean
Load (t)

95% Confidence Intervals
R-square with
measured flowLower (t) Upper (t)

TSS 30 1979–1992 (218) 508 182.4 651 494.8 28.2 0.61 4277.6 2200.6 7592.6 0.65
176 1975–1992 (213) 2 094 666.8 2 631 793.9 25.6 0.55 50 447.1 28 725.3 82 655.0 0.88

TN 19 1980–1997 (113) 3282.6 3894.6 18.6 0.95 119.2 91.0 153.7 0.98
30 1980–1997 (137) 11 931.7 12 499.8 4.8 0.95 361.8 286.8 450.8 0.94
93 1979–1997 (144) 23 227.6 21 641.3 �6.8 0.72 641.5 478.9 842.7 0.94

176 1974–1997 (196) 23 842.7 25 323.7 6.2 0.85 796.4 619.7 1008.3 0.96
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Four statistical measurements were used to evaluate the
model performance (White and Chaubey, 2005; Engel
et al., 2007; Moriasi et al., 2007). They were the coefficient
of determination (R2), NSE, RMSE-observations stand-
ard deviation ratio (RSR) and percent bias (PBIAS). The
process of calibration was repeated by adjusting the
parameters and computing the R2, NSE, RSR and PBIAS
between observed and predicted data. Model validation
was performed using the optimal calibrated parameters,
and the predicted data were evaluated by calculating the
values of R2, NSE, RSR and PBIAS.

R2 ¼ ∑n
i¼1 Oi � Oavg

� �
Pi � Pavg

� �
∑n

i¼1 Oi � Oavg

� �2∑n
i¼1 Pi � Pavg

� �2h i0:5
2
64

3
75
2

(1)

NSE ¼ 1� ∑n
i¼1 Oi � Pið Þ2

∑n
i¼1 Oi � Oavg

� �2
" #

(2)

RSR ¼ RMSE

STDEVobs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Oi � Pið Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Oi � Oavg

� �2q (3)

PBIAS ¼ ∑n
i¼1 Oi � Pið Þ � 100

∑n
i¼1 Oið Þ (4)

Where Oi is the i
th observation for the constituent being

evaluated; Oavg is the average of observations during the
period of concern; Pi is the ith simulated value for
the constituent being evaluated; Pavg is the average of
simulations during the period of concern.
These four criteria of model performance reflect

different aspect of goodness of fit. The R2 value describes
the variance in measured data explained by the model.
Williams (2003) considered four levels of prediction
accuracy based on the R2 value: (1) a R2 value between
0.5 and 0.65 indicates that more than 50% of the variance
in measured data is explained by the model; (2) a R2

value between 0.66 and 0.81 indicates approximately
quantitative predictions; (3) a R2 value between 0.82 and
Copyright © 2012 John Wiley & Sons, Ltd.
0.9 reveals good predictions; and (4) a calibrated model
having a R2 value greater than 0.91 is considered to be
excellent. In many studies on hydrological modeling, a
model having a R2 value greater than 0.5 (Santhi et al.,
2001; Chung et al., 2002; Van Liew et al., 2003; Green
et al., 2006) or 0.6 (Ramanarayanan et al., 1997) is
considered acceptable. The NSE is a normalized statistic
indicating how well the observed and predicted data fit
the 1:1 line (Nash and Sutcliffe, 1970); NSE values range
between �1 and 1 with 1 being the optimal value.
Moriasi et al. (2007) summarized the evaluation results of
model performance from various studies and suggested
that the NSE value greater than 0.5 indicates a satisfactory
model performance on a monthly time step. Some studies
even suggested a lower NSE value to determine if the
model results were satisfactory. For example, a value of
0.4 (Green et al., 2006; Green and van Griensven, 2008)
or 0.3 (Chung et al., 2002) was suggested to determine if
the model results were satisfactory. The RSR is calculated
as the ratio of root mean square error (RMSE) to standard
deviation (SD) of measured data (Singh et al., 2004). The
lower the RMSE value, the better the model performance
is. Although the RMSE is commonly used as an error
index statistics, it could not be used to compare various
constituents. Therefore, the RSR with a normalization
factor (the SD of measured data) was preferable. The RSR
values range from 0 to a large positive value and a RSR
value less than 0.7 is regarded as a satisfactory model
performance (Moriasi et al., 2007). A similar criterion,
called the ratio of prediction to deviation (RPD), is the
reverse of RSR (Saeys et al., 2005). Saeys et al. (2005)
suggested that the calibration was not usable when a
model had a RPD value below 1.5, which can be
interpreted as that a model having a RSR value greater
than 0.7 is unacceptable. The PBIAS value indicates the
average tendency of the simulated data to be larger or
smaller than the observed data (Gupta et al., 1998). The
positive value indicates model underestimation bias,
while the negative value indicates model overestimation
bias. Moriasi et al. (2007) suggested various ranges of
model satisfactory for streamflow, sediment and nutrients,
which were �15≤ PBIAS≤�25, �30≤ PBIAS≤�55
and �40≤ PBIAS≤�70, respectively. These various
Hydrol. Process. (2012)
DOI: 10.1002/hyp
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ranges were consistent with the conclusions from Harmel
and Smith (2007) that greater uncertainties were found in
nutrient samples due to errors in streamflow measurement
and sample collection, storage and analysis.
RESULTS AND DISCUSSION

Model performance for baseline scenario

Observed data and simulated results (Uncalib) without
calibration at various subwatersheds (sub19, sub30, sub93
and sub176) are summarized in Table V. The model
simulated the streamflow well at subwatersheds 19, 30
and 93 as indicated by acceptable NSE, R2, RSR and
PBIAS values. However, the simulated streamflow at
subwatershed 176 was lower than the measured stream-
flow with the corresponding values of NSE and R2

smaller than 0.5. The simulated TSS losses were lower
than the measured TSS losses at subwatersheds 30 and
176, indicating the model simulated a lower sediment
delivery. Due to the different spatial distribution of soil
and land use in the upper subwatersheds (sub19 and
sub30) and the lower subwatersheds (sub93 and sub176),
Table V. Model performance of uncalibration (Uncalib), single-site
streamflow, total suspended sediment (TSS) and total nitrogen (TN
the measured monthly average, and Sim. Avg. denotes the simulate

are cms for flow and kg

Flow

sub19 sub30 sub93 sub176

Uncalib Mea. Avg. 119.36 413.01 1435.52 3427.85
Sim. Avg. 83.17 367.27 1472.85 3503.15
NSE 0.54 0.70 0.58 0.46
R2 0.65 0.72 0.60 0.49
RSR 0.68 0.55 0.65 0.74
PBIAS 30.32 11.08 �2.60 �2.20

Calib1 Sim. Avg. 83.06 366.39 1455.44 3444.37
NSE 0.54 0.70 0.64 0.56
R2 0.66 0.73 0.64 0.56
RSR 0.68 0.54 0.60 0.66
PBIAS 30.41 11.29 �1.39 �0.48

Calib2 Sim. Avg. 83.18 367.31 1473.06 3503.67
NSE 0.54 0.70 0.58 0.46
R2 0.65 0.72 0.60 0.49
RSR 0.68 0.55 0.65 0.74
PBIAS 30.31 11.07 �2.62 �2.21

Calib3 Sim. Avg. 83.17 367.28 1472.89 3503.30
NSE 0.54 0.70 0.58 0.46
R2 0.65 0.72 0.60 0.49
RSR 0.68 0.55 0.65 0.74
PBIAS 30.32 11.07 �2.60 �2.20

Calib4 Sim. Avg. 83.17 367.25 1472.70 3502.75
NSE 0.54 0.70 0.58 0.46
R2 0.65 0.72 0.60 0.49
RSR 0.68 0.55 0.65 0.74
PBIAS 30.32 11.08 �2.59 �2.19

Calib_MS Sim. Avg. 83.17 367.28 1465.86 3485.57
NSE 0.54 0.70 0.61 0.50
R2 0.65 0.72 0.62 0.51
RSR 0.68 0.55 0.63 0.71
PBIAS 30.32 11.07 �2.11 �1.68

Copyright © 2012 John Wiley & Sons, Ltd.
the average monthly measured TN losses ranged from
3.43 to 5.10 kg/ha at the upper subwatersheds and from
0.78 to 1.30 kg/ha at the lower subwatersheds. We found
that the model underestimated TN losses at the upper
subwatershed (sub19) and overestimated TN losses at the
lower subwatersheds (sub93 and sub176) in terms of
positive and negative number of PBIAS, respectively.
Although the simulated TN losses at subwatershed 19
were lower, the NSE, R2, RSR and PBIAS values
indicated a satisfactory model performance, and no
further calibration was needed for this subwatershed.
The difference in model performance on TN losses at the
subwatershed scale indicated that the model should be
calibrated with variable N-related SWAT parameters in
order to better represent the complex nitrogen processes
in a large watershed.
Single-site calibration

Calibration at subwatershed 176 (Calib1). Before
calibration, the average monthly simulated flow at
subwatershed 176 was slightly overestimated with
unacceptable statistical values (R2 = 0.49 and NSE=0.46),
calibration (Calib1-4) and multi-site calibration (Calib_MS) for
) at subwatershed 19, 30, 93 and 176. (Note: Mea. Avg. denotes
d monthly average for calibration period. Those units of averages
/ha for TSS and TN)

TSS TN

sub30 sub176 sub19 sub30 sub93 sub176

41.98 54.82 5.10 3.43 1.30 0.78
27.67 36.55 3.76 3.75 2.68 2.04
0.44 0.36 0.59 0.41 �2.62 �4.00
0.53 0.46 0.64 0.58 0.55 0.51
0.75 0.80 0.64 0.77 1.90 2.24

34.10 33.33 26.29 �9.26 �106.12 �160.80
30.52 42.00 1.25 1.28 0.99 0.85
0.49 0.30 �0.09 0.10 0.53 0.46
0.53 0.49 0.51 0.52 0.59 0.54
0.71 0.84 1.04 0.95 0.69 0.73

27.29 23.39 75.52 62.88 23.84 �8.32
32.51 51.58 1.50 1.52 1.15 0.94
0.50 0.11 0.02 0.24 0.56 0.39
0.52 0.43 0.57 0.57 0.61 0.56
0.71 0.94 0.99 0.88 0.67 0.78

22.57 5.92 70.68 55.87 11.72 �20.01
32.51 51.57 3.05 3.09 2.30 1.78
0.50 0.11 0.50 0.54 �1.40 �2.63
0.52 0.43 0.64 0.59 0.56 0.52
0.71 0.94 0.71 0.68 1.55 1.90

22.57 5.93 40.13 10.11 �76.75 �128.43
32.50 51.56 4.55 4.56 3.30 2.50
0.50 0.11 0.59 �0.07 �6.14 �8.38
0.52 0.43 0.62 0.56 0.49 0.45
0.71 0.94 0.64 1.03 2.67 3.06

22.58 5.94 10.82 �32.84 �153.63 �220.53
32.51 49.15 3.76 3.09 1.26 0.82
0.50 0.17 0.59 0.54 0.55 0.50
0.52 0.46 0.64 0.59 0.62 0.55
0.71 0.91 0.64 0.68 0.67 0.71

22.57 10.34 26.29 10.11 3.12 �5.14
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and the simulated monthly TSS loss at subwatershed 176
(36.55 kg/ha) was underestimated compared to the
measured one (54.82 kg/ha) as shown in Table V. The
average monthly simulated TN loss at subwatershed 176
was much overestimated (Table V). Thus, we first adjusted
the parameters which were the most sensitive to flow and
TSS losses, and further adjusted sensitive parameters to TN
losses. The CN was reduced by 30% for all land uses to
reduce the simulated flow; and the exponent parameter for
calculating the channel sediment routing (SPEXP) was
increased from 1 (default) to 2 (the maximum value
suggested in the SWAT manual, Neitsch et al., 2002) to
increase the simulated TSS losses. Many studies have found
that themost sensitive parameter to simulated nitrogen (N) is
the organic N enrichment ratio (ERORGN) (Green and van
Griensven, 2008; Jha et al., 2010; Meng et al., 2010).
ERORGN is the concentration of organic N transportedwith
the sediment to the concentration of organic N in the soil
surface layer. The greater the ERORGN value, the more
organic N can be transported with sediment. Thus, to reduce
simulated TN at the subwatershed 176, ERORGN was
reduced to 0.3. When ERORGN was reduced to 0.3, the
simulated TN at subwatershed 176 was reduced and became
closer to the measured TN (Table VI).
As shown in Table VI (Calib1), the simulated

streamflow at all four subwatersheds were acceptable in
terms of all the statistical values after this calibration. The
values of NSE, R2, RSR and PBIAS ranged between 0.54
– 0.7, 0.56 – 0.73, 0.54– 0.68 and �0.48 – 30.41,
respectively. The simulated monthly average TSS losses
at subwatershed 176 increased from 36.55 kg/ha to 42 kg/ha
with improvedR2 and PBIAS values.Meanwhile, themodel
performance of TSS at subwatershed 30 was also improved
with an increased NSE value. The calibrated ERORGN
(0.3) resulted in great improvements in simulated TN losses
at subwatersheds 93 and 176, but degraded much of the
simulated TN losses at subwatersheds 19 and 30. The main
goal for adjusting ERORGN value was to reduce the
overestimated TN at subwatershed 176. As these calibrated
values were applied to the entire watershed, the TN losses at
Table VI. List of default and calibrated values of SWAT p

Output Flow
Parameters CN1

Short Description Initial SCS runo
number

Uncalibration Uncalib range: 30–98
Single-Site Calibration Calib1 �30%

Calib2 Default
Calib3 Default
Calib4 Default

Multi-Site Calibration Calib_MS �30%: subwater
greater than 10 0

Note:
1. CN range: 0.7*default value – 1.3*default value. (Meng et al., 2010)
2. SPEXP range: 1 – 2. (Neitsch et al., 2002)
3. ERORGN range: 0 – 5. (Meng et al., 2010)

Copyright © 2012 John Wiley & Sons, Ltd.
upper subwatersheds (sub19 and sub30) were reduced
which resulted in further underestimation of TN at
subwatershed 19. Applying common calibrated parameter
values on subwatersheds with different characteristics
resulted in variable model performances at subbwatershed
levels. For example, NSE values at subwatersheds 93 and
176 were improved (0.53 and 0.46, respectively) after
calibration, while NSE values at subwatersheds 19 and 30
were degraded (�0.09 and 0.1, respectively). Similarly,
PBIAS values at subwatersheds 93 and 176 were much
improved (from �106.12 to 23.84 and from �160.8 to
�8.32, respectively), while PBIAS values at subwatersheds
19 and 30 were much degraded (from 26.29 to 75.52 and
from �9.26 to 62.88, respectively).

Calibration at subwatershed 93 (Calib2). Before
calibration, the model simulated streamflow well at
subwatershed 93 with NSE and R2 values greater than
0.5. Thus, no further calibration was needed for
streamflow. Although there was no measured TSS data
at subwatershed 93, we applied the calibrated SPEXP
value (=2) as we did to improve the TSS simulation at
subwatershed 176 in Calib1 scenario. It was found that
when ERORGN value was reduced to 0.5 the simulated
average TN became closer to the measured one. Four
model performance indicators for TN simulation were
improved. Especially, the NSE and PBIAS values were
improved from �2.62 to 0.56 and from �106.12 to
11.72, respectively (Table V). Similar as the calibration
1, the calibrated ERORGN (0.5) resulted in great
improvements in simulated TN losses at subwatersheds
93 and 176, but degraded the TN simulations at
subwatersheds 19 and 30 compared to the uncalibrated
scenario (Table V) because of the similar reasons as
discussed above. The TN simulation at subwatershed
176 was still overestimated although the PBIAS value
was improved (from �160.8 to �20.01).

Calibration at subwatershed 30 (Calib3). The simu-
lated flow were acceptable at subwatershed 30 before the
arameters used for single-site and multi-site calibrations

TSS TN
SPEXP2 ERORGN3

ff curve Exponent coefficient
for sediment routing

Organic nitrogen
enrichment ratio

1 2.5–3
2 0.3
2 0.5
2 2
2 4

sheds
00 ha

2 Default: sub19 2:
sub30 0.01: sub93
and 176
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model was calibrated, thus no further adjustment on
streamflow-related parameter was needed. Before model
calibration, both TSS losses at subwatersheds 176 and 30
were underestimated. Therefore, the SPEXP value was
increased to 2 to improve the TSS simulation at
subwatershed 30. For TN simulation, we did not need
to decrease the ERORGN value by much compared to
the one used in the previous single-site calibrations at the
downstream subwatersheds (Calib 1 and Calib 2). The
default ERORGN value used for the first simulation
(Uncalib) was calculated for each storm event, and the
value varies between 2.5 and 3. Since the TN losses were
a little overestimated at subwatershed 30 (Table V), the
ERORGN value was reduced to 2. When the ERORGN
value was reduced to 2, TN simulations at subwatersheds
30, 93 and 176 were improved. However, subwatershed
19 had the NSE value decreased from 0.59 to 0.5
resulting in a greater underestimation in TN losses.

Calibration at subwatershed 19 (Calib4). Similar to the
calibration procedure at subwatershed 30 (Calib3), we
retained the default CN value and increased the SPEXP
value to 2. When we reduced the ERORGN value during
the first three calibrations, we noticed that the TN
simulation at subwatershed 19 became worse in terms
of a lower simulated average. Thus, In order to improve
the TN performance at subwatershed 19, we had to
increase the ERORGN value to 4 (Calib4). In that case
(Calib4), simulated TN at subwatersheds 30, 93 and 176
were more overestimated which further degraded the
model performance at those subwatersheds.

Multi-site calibration and validation

Many studies have indicated that as the size of
watershed increases, there are greater uncertainty in
SWAT simulations (Heathman and Larose, 2007; Thampi
et al., 2010). Therefore, variable values for different
subwatersheds should be applied to capture the varied
characteristics of a large heterogeneous watershed. Based
on the calibration results from single-site calibrations,
multi-site calibration was performed from upstream to
downstream. As shown in Table VI, variable values for
different subwatersheds were applied for selected para-
meters. First, the CN value for all subwatersheds greater
than 10 000 hectare was reduced by 30%. Second, a
Table VII. Multi-site validation for monthly flow (cms), total suspen
Mea. Avg. denotes the measured monthly average, and Sim. Avg

Flow

sub19 sub30 sub93 sub176 s

Mea. Avg. 89.58 366.62 1343.98 2901.18 2
Sim. Avg. 65.45 312.92 1352.09 3073.06 2
NSE 0.64 0.65 0.67 0.64
R2 0.73 0.67 0.68 0.65
RSR 0.60 0.60 0.57 0.60
PBIAS 26.94 14.65 �0.60 �5.93 1

Copyright © 2012 John Wiley & Sons, Ltd.
constant value of SPEXP (2) was applied to the entire
watershed in order to improve TSS simulations at both
upstream and downstream subwatersheds. Third, vari-
able ERORGN values were applied across the water-
shed based on the calibration results of the single-site
calibration. We kept default value of ERORGN at
subwatershed 19 and a value of two was used at
subwatershed 30. After several ERORGN values were
tested at the rest subwatersheds during the calibration
process, the ERORGN value of 0.01 was found to be
the most suitable one to improve TN simulations at
subwatersheds 93 and 176. Because subwatersheds 19
and 30 are nested in subwatershed 93 and subwatershed
93 is nested in subwatershed 176, the ERORGN value
of 0.01 was applied to the area excluding subwater-
sheds 19 and 30. The calibration results show that a
single ERORGN value was not sufficient to represent
the different enrichment ratio of organic nitrogen in a
large watershed.
TN losses at the upstream gauges were greater than

those at the downstream gauges. This may be due to
the relatively greater cropland percentage and greater
soil organic N in the upstream subwatersheds than in
the downstream subwatersheds (Table I). In addition,
in-stream processes may be different at different spatial
scales. Thus, the model may need improvement in the
in-stream processes to better represent large-scale
complex nitrogen processes. Moreover, the percent of
fine particles in sediment increases because the slower
velocity of runoff promotes settlement of the larger
sediment particles. The greater the content of fine
particles in sediment, the more organic nitrogen is
attached and thus the enrichment ratio rises.
The overall model performance was improved after

multi-site calibration as shown in Table V. The multi-site
calibration results (Calib_MS) for streamflow, TSS and
TN are all satisfactory based on the statistical criteria,
except for the TSS simulation at subwatershed 176. The
validation results for streamflow showed the calibrated
model performed well at the four subwatershed outlets
(Table VII). The TSS losses at subwatershed 30 were
slightly underestimated with values of NSE and R2 of
0.28 and 0.32, respectively, while the TSS losses at
subwatershed 176 were overestimated with an R2 value
of 0.61. Overall, the model performed well for TN
ded sediment (TSS, kg/ha) and total nitrogen (TN, kg/ha). (Note:
. denotes the simulated monthly average for validation period)

TSS TN

ub30 sub176 sub19 sub30 sub93 sub176

7.86 27.87 3.63 2.71 1.18 0.62
3.67 32.54 2.93 2.61 1.05 0.70
0.28 �0.18 0.73 0.48 0.60 0.52
0.32 0.61 0.76 0.63 0.63 0.57
0.85 1.09 0.52 0.72 0.64 0.69
5.02 �16.79 19.17 3.90 10.99 �12.85
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simulations for all four subwatershed outlets during the
validation period with NSE, R2, RSR and PBIAS values
falling within acceptable ranges.
It is generally accepted that the calibration of

hydrological models should be treated as a multiple-
criteria objective problem (Gupta et al., 1998). However,
there have been no absolute criteria established for
judging model performance. In most studies, the criteria
may vary depending on the modeling time steps (annual,
monthly or daily). It is suggested that criteria can be
appropriately relaxing and tightening of the standard
value on the monthly time step when the model is
performed on the daily and annual time steps, respectively
(Moriasi et al., 2007). Moreover, many studies on
statistical evaluation of model performance usually
described whether the criteria value is close to the ideal
(minimum or maximum) criteria ranges instead of setting
up a critical value for judging whether the model
performance is good or poor (Beldring, 2002; Vazquez
et al., 2008; White and Chaubey, 2005). In this study, we
did not only evaluate the calibration results using the
criteria suggested by other studies but also evaluated the
improvement that could be achieved with multi-site
calibration comparing with single-site calibration.
To summarize the model’s performance on TN during

calibration, NSE values ranged between �4 and 0.59
before calibration (Uncalib). With single-site calibration,
NSE values ranged between �0.9 and 0.53 after
calibration at subwatershed 176 (Calib1), between 0.02
and 0.56 after calibration at subwatershed 93 (Calib2),
between �2.63 and 0.54 after calibration at subwatershed
30 (Calib3); and between �8.38 and 0.59 after calibration
at subwatershed 19 (Calib4). However, with multi-site
calibration, the model performance was much improved
with NSE values greater than 0.5 for all subwatersheds
(Table V). The R2 values did not vary much before and
after single-site and multi-site calibrations because the R2

value describes the variance in measured data explained
by the model. For the criterion of RSR, RSR values did
not vary much before calibration (0.64 – 2.24) and after
various single-site calibrations (0.64 – 3.60). However,
with multi-site calibration, the model performance was
much improved with RSR values from 0.64 to 0.71. For
the criterion of PBIAS, only when model calibration was
performed at multiple sites the PBIAS values were within
acceptable ranges suggested by Moriasi et al. (2007). The
improvement of multiple criteria values with multi-site
calibration denotes that manual calibration on multiple
sites with various sets of parameters could improve the
model performance at different sizes of subwatersheds.
SUMMARY AND CONCLUSIONS

Hydrologic models are efficient ways to evaluate the
impact of alternative conservation practice scenarios on
water quality. Before using a model, calibration is needed.
By calibrating a model, the characteristics within the
watershed can be better represented and more reliable
Copyright © 2012 John Wiley & Sons, Ltd.
watershed responses can be generated. In this study, we
evaluated model performance using two different cali-
bration strategies: single-site and multi-site calibrations.
Before calibration, the model performed well for
streamflow at three out of the four subwatershed outlets.
The simulated TSS losses at subwatersheds 30 and 176
were underestimated, and thus the SPEXP value was
elevated to increase the sediment delivery. The various
observed TN values at subwatersheds were reflected by
their different soil and land use distribution, and in-stream
nitrogen processes. The downstream subwatersheds
(sub93 and sub176) have lower observed TN losses
comparing with the upstream subwatersheds (sub19 and
sub30) due to the relatively smaller croplands percentage
in the downstream subwatersheds and the scale effect.
Based on the calibration results of the single-site
calibration at the most downstream subwatershed
(sub176) for TN, the model performed poorly at the
most upstream subwatershed (sub19). The results
indicated a variable ERORGN value would improve
SWAT model’s performance. Based on the results from
the single-site calibration, multi-site calibration was
performed. The CN value was reduced by 30% for the
larger subwatersheds (greater than 10 000 ha) in order to
improve the simulated streamflow at subwatershed 176.
A constant SPEXP value of two was applied to the entire
watershed because the uncalibrated model tended to
underestimate TSS losses at both upstream and down-
stream subwatersheds. For TN simulation, different
ERORGN values were used for different subwatersheds
because the uncalibrated model tended to underestimate
TN losses at the upstream watersheds and overestimate
TN losses at the downstream subwatersheds. After multi-
site calibration, all four statistical criteria for TN
simulation indicated a satisfactory model performance.
It indicated that the process of organic N transported by
surface runoff in SWAT would be better understood with
multi-site calibration. However, further evaluation of how
different N species responding to other N-related
parameters is needed to get a full picture of nitrogen
simulation in a large watershed. Compared to the single-
site calibration, multi-site calibration could provide
sounder model performance at different sizes of sub-
watersheds. For future SWAT model development, it is
suggested that model needs improvement to better capture
the complex hydrological and nutrient processes at
different scales.
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