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Abstract 

Many epidemiologic studies of the health effects of exposure to ambient air pollution use 

measurements from central-site monitors as their exposure estimate. However, measurements from 

central-site monitors may lack the spatial and temporal resolution required to capture exposure 

variability in a study population, thus resulting in exposure error and biased estimates.  Articles in this 

dedicated issue examine various approaches to predict or assign exposures to ambient pollutants. These 

methods include: combining existing central-site pollution measurements with local- and/or regional-

scale air quality models to create new or “hybrid” models for pollutant exposure estimates, and using 

exposure models to account for factors such as infiltration of pollutants indoors and human activity 

patterns.  Key findings from these articles are summarized to provide lessons learned and 

recommendations for additional research on improving exposure estimation approaches for future 

epidemiological studies.  In summary, when compared to use of central-site monitoring data, the 

enhanced spatial resolution of air quality or exposure models can have an impact on resultant health 

effect estimates, especially for pollutants derived from local sources such as traffic (e.g. EC, CO, and 

NOx). In addition, the optimal exposure estimation approach also depends upon the epidemiological 

study design. We recommend that future research develop pollutant-specific infiltration data (including 

for PM species), and improve existing data on human time-activity patterns, and exposure to local 

source (e.g. traffic), in order to enhance human exposure modeling estimates. We also recommend 

comparing how various approaches to exposure estimation characterize relationships between multiple 

pollutants in time and space, and investigating the impact of improved exposure estimates in chronic 

health studies.  
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Introduction 

 Given the limited spatial coverage of air pollution data, air pollution epidemiologic studies 

largely rely on data from central-site monitors, such as those reported in the United States (U.S.) 

Environmental Protection Agency’s (EPA’s) Air Quality System (AQS), to characterize a population’s 

exposure to ambient air pollutants (e.g. all people living within 10 miles of a monitoring station) (1-3).  

However, measurements from central-site monitors often do not adequately capture the spatial and 

temporal variability of pollutant concentrations, which may result in an underestimation of the 

variability in the study population exposures (4-10).  Similarly, central-site monitors do not account for 

exposures in different microenvironments (e.g. indoors and in-vehicle) where pollutant infiltration (11-

13) and indoor sources (14-16) can substantially impact total exposures. Consequently, there is a 

potential for exposure error and a resulting bias (e.g. underestimation of relative risks) when solely 

depending on ambient monitors to characterize exposure. 

 Exposure error in a study of the health effects of exposure to air pollution typically falls into two 

categories: classical error and Berkson error.  Classical error occurs when the average of many replicate 

measurements of exposure does not equal the true exposure (17), for example, if ambient air pollutant 

measurements taken over a week long period in different seasons are used to represent the annual 

pollution level.  Berkson error occurs when one measure of exposure is used as a proxy for the exposure 

of many subjects (17), for example, using measurements from one central-site monitor to represent the 

exposure of all participants living within 10 km of the monitor. Under the classical error model, the 

health effect estimate is biased with the degree of attenuation increasing as the variance of the 

exposure error increases while Berkson error results in unbiased estimates, but the error increases the 

variance of the coefficients resulting in wider confidence intervals (18).  In reality, exposure estimates in 
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most air pollution epidemiological studies will include elements of both types of error, which can 

complicate the interpretation of results (19, 20). 

 A number of refined exposure assessment approaches have recently been developed and 

applied in the investigation of air pollution health effects.  Many of the articles in this dedicated issue of 

JESEE were presented at a symposium focused on issues of air pollution exposure and health 

(“Estimating Air Pollution Exposures for Health Studies: Comparison and Evaluation of Prediction 

Approaches”), held at the October 2011 International Society of Exposure Science (ISES) annual 

conference in Baltimore, MD.  These alternative exposure assessment approaches included using 

various models to estimate exposure to ambient outdoor pollution with a finer degree of spatial and/or 

temporal resolution, accounting for factors such as outdoor-to-indoor transport (infiltration) and time-

activity patterns, or combining existing models to create new, “hybrid” models for exposure.  Many of 

the studies included a comparison of exposure estimation techniques across multiple pollutants. The 

studies were all conducted with a goal of comparing various approaches for estimating exposure and 

assessing their impact in epidemiology studies. A brief description of these articles is provided in Table 1 

of Özkaynak et al., 2013 (21).  The shared goal for all of these refined approaches is to reduce exposure 

error and its resulting bias, in order to provide more power to detect potential epidemiologic 

associations of interest. 

 While the use of more refined exposure estimates may lead to reductions in some forms of 

exposure error, it is possible that new errors may also be introduced leading to greater uncertainty in 

observed health effect associations (20, 22). Improvements provided by these more refined exposure 

estimation approaches will depend on factors such as the influence of infiltration and human activity 

patterns on the pollutant concentration, the spatial and temporal patterns of the pollutant of interest, 

and the epidemiological study design (i.e., timeseries or cross-sectional designs). This article summarizes 

the key findings from a collection of papers and discusses the lessons learned in using alternative 



5 

exposure estimation approaches for epidemiological studies of the short-term health effects of 

exposure to ambient air pollution.  We then provide suggestions for future work to further refine and 

extend these techniques. 

Key Findings and Lessons Learned 

 A summary of the key findings and conclusions from exposure and epidemiological research 

articles on this topic can be found in Tables 1 and 2. A variety of approaches were used as alternative 

methods for exposure assessment, including the use of improved approaches for predicting residential 

air exchange rates (an important predictor of indoor air concentrations and thus exposure), and the use 

of air quality or exposure modeling to provide spatially and/or temporally refined exposure estimates. 

The approaches attempted to quantify exposure differences in the study population both within an 

urban area and between multiple urban areas. The exposure estimates obtained had varying influences 

on the health effect estimates when used in corresponding health studies.  The health studies employed 

a variety of analysis methods, including case-crossover, case-control, and time-series epidemiologic 

studies, and Bayesian analysis, to examine associations between air pollution and respiratory and/or 

cardiovascular morbidity.  

 

Influence Air Exchange Rates and Human Activity Patterns  

 Individuals spend the majority of their time indoors (23), yet the use of an ambient pollutant 

measurement from an outdoor monitor to approximate exposure is still the most common exposure 

surrogate. Each individual’s exposure is likely to be different based on their time-activity behaviors and 

home characteristics (24). Exposure models can provide insight into the between-individual variability of 

exposure to ambient pollution not captured by the central-site monitor by incorporating demographic 

differences, time-activity patterns, and air exchange rates (AERs) (25-28). As an example, AER is a 

contributor to home-to-home variations in infiltration of outdoor pollution to the indoor environment 
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which can in turn influence the personal exposure to ambient concentration relationships. Higher AERs 

suggest higher exposures to ambient air pollution indoors. Modeled estimates of AER can vary both 

spatially and temporally based on meteorology and housing characteristics (25, 27). Personal activities 

such as commuting can also affect exposures. Ambient concentrations for pollutants such as CO, EC, and 

NOx are higher close to roadways, thus the amount of time spent in traffic can be a major contributor to 

personal exposures for these pollutants.    

 Epidemiological results varied when human exposure models were used to obtain estimates of 

exposure. In Mannshardt et al., 2013 (29), the investigators observed a reduction in the uncertainty 

associated with the health effect estimates when utilizing human exposure models with Hierarchical 

Bayesian methods. Other analyses did not observe a significant difference in health effect estimates 

when utilizing human exposure models compared to air quality models (30) or compared to ambient 

monitoring data (28, 31).  In addition to examining human exposure models which incorporate a variety 

of human exposure factors, the effect of AER alone was analyzed. When used as an effect modifier, AER 

(or the exposure-concentration ratio, another surrogate for infiltration) significantly changed the health 

effect estimates of some pollutants (PM2.5, O3, NOx, and CO). Higher health effect estimates were 

observed for some pollutants when AERs (or the exposure-concentration ratios) were higher (28, 31, 

32). These results suggest that accounting for a single well characterized exposure factor such as AER 

may help to identify exposure variability in a population that is not typically accounted for with current 

exposure estimation techniques, and point to the importance of incorporating exposure factors in 

exposure estimation approaches for air pollution epidemiology.  

 

Spatial and Temporal Variability 

 The various air quality models applied appeared to increase the spatiotemporal variability of 

ambient concentrations of pollutants compared to the use of central-site monitoring data alone, 
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especially for pollutants produced by local sources (i.e., EC, NOx, CO) (26, 27, 29). For example, hybrid 

approaches (i.e. combining different modeling approaches) provided full spatiotemporal coverage of 

study areas as opposed to the limited point locations provided by the ambient monitoring network (27, 

29, 33). The improved spatial resolution of air quality models had noticeable impacts on some 

epidemiologic health effect estimates.   For traffic-related pollutants (e.g. EC, CO, and NOx), S.E. Sarnat 

et al., 2013 (30) showed larger relative risks (RR) and/or narrower confidence intervals (CIs) using 

spatially refined, modeled, ambient concentrations compared to central-site monitoring. However, the 

epidemiological study results for regional pollutants (e.g. PM2.5, O3) were mixed, with some studies 

seeing significant changes in health associations and/or narrower CIs (29, 33)  when using 

spatiotemporally-resolved air quality modeling output (e.g. AMS/EPA Regulatory Model [AERMOD] – an 

atmospheric dispersion modeling system, Community Multiscale Air Quality model [CMAQ] – a regional 

scale multipollutant transport and transformation model, remote sensing) compared to using central-

site monitor measurements, while others did not (28, 30, 31). 

 Improved characterization of spatial variability using air quality models can also help to better 

examine air pollution and socioeconomic status (SES) relationships. Depending on the location of the 

monitors, the exposures of certain sub-populations may not be well represented by the central-site 

monitor, leading to differential exposure error.  S.E. Sarnat et al., 2013 (30) showed significant effect 

modification by socioeconomic status (SES) for CO, NOx, PM2.5, and EC using the more spatially refined 

exposure estimates (e.g. air quality models estimates) but not when using the central-monitoring data.  

Relative risks were higher for the low SES group compared to the high SES group. However, R.R. Jones et 

al., 2013 (28) only observed significant effect modifications with age (for O3) and ethnicity (for PM2.5) 

using the central-site monitoring data and not with the exposure model estimates. 

 Characterization of spatiotemporal variability of ambient pollutant concentrations and related 

exposures may also be improved by utilizing remote sensing (33) and sophisticated air quality modeling 



8 

techniques (i.e CMAQ)(29).  Satellites have daily global coverage and can be used to retrieve estimates 

of air quality at a given location and time in a cost-effective manner. N. Kumar et al., 2013 (33) 

combined satellite data with the in-situ data at central monitoring sites to develop robust estimates of 

daily exposure to PM2.5 at any given location. K.L. Dionisio et al., 2013 (27) found that the temporal 

variability may differ spatially across a metropolitan area when utilizing estimates combining regional 

background and dispersion models.  For example, the temporal pattern of daily elemental carbon (EC) in 

the city center may be highly variable (likely due to traffic patterns), while there may be less temporal 

variability outside of the city center where traffic volume is lower. However, it is important to note that 

in the studies summarized here, the mean temporal variability for most pollutants was adequately 

captured by the ambient monitor (25, 27). 

 

Study Design 

 In studies of the health effects of exposure to ambient air pollution, the type of epidemiologic 

study design has important implications for the study results and their interpretation (28-31). Case-

crossover and time-series studies take advantage of temporal contrasts in exposures. Due to the above 

findings regarding temporal variability, the use of refined exposure estimation approaches may have 

minimal effects when used in case-crossover and time-series studies, especially for regional pollutants 

(e.g. PM2.5) that exhibited greater spatial homogeneity  (28, 30, 31).  It is noteworthy, however, that S.E. 

Sarnat et al., 2013 (30) observed modestly stronger associations with more refined exposure estimates 

for local pollutants in a time-series study, when both the exposure estimates and health outcome data 

were resolved at the ZIP code level in Atlanta. 

 The emphasis of the studies summarized here has been on the short-term health effects of 

exposure to ambient air pollution.  Cohort-based exposure and health studies are driven by both 

temporal and spatial contrasts in exposures.  Improvements in the spatial characterization of exposures 
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may be desirable in these studies as ambient monitors may not adequately capture spatial variability 

(25-27, 33) depending on the pollutant of interest (regional vs. local) and household factors (e.g. AER). In 

addition, personal exposure factors such as time-activity patterns (e.g. commuting) may lead to greater 

exposure error and bias of the health effect estimate obtained, and in some cases may even mask a true 

association.  

 

Recommendations for future work  

 We can draw from this collection of studies a number of lessons helpful in planning future 

research to improve exposure estimates for use in health studies. The epidemiological study designs and 

methodological considerations will determine whether exposure factors (e.g. infiltration and time-

activity patterns) can potentially modify the health effect estimates. A number of the studies in this 

issue found that increases in infiltration, characterized by residential AER (31, 32) or the ambient 

exposure-concentration ratio (28),  were a source of important effect modification in epidemiological 

studies of ambient air pollution health effects. Consequently, improvements in the current prediction 

methods of AER, through evaluation and refinement of existing tools, will be highly valuable. 

Epidemiological study designs and methodological considerations (in particular, case-crossover vs. time 

series for short-term effects studies) can make a difference in our ability to estimate the role of 

infiltration on health effects (28, 30, 31).  Researchers should test alternative model specifications to 

ensure that the statistical methods employed do not diminish their ability to study or estimate the role 

of building infiltration and other inter-subject ambient-exposure related factors (as in the case of case-

crossover studies).  

 In addition to AER, other factors related to both personal exposure and ambient pollution (e.g. 

pollutant-specific residential infiltration rates, and time spent on or near roadways) may also be effect 

modifiers in epidemiological studies of both local and regional pollutants (26, 30, 34-36). As 
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epidemiological studies begin to focus more on PM2.5 components, relevant residential infiltration 

models must be developed to account for component specific penetration efficiencies and decay rates. 

Efforts should also be made to refine current tools and information for modeling exposures to ambient 

pollutant species in key exposure microenvironments (e.g., outdoors near home, commuting 

microenvironments, and non-residential indoor environments). Recently developed light-weight global 

positioning system (GPS) sensors used for continuous time-location data collection can greatly improve 

upon the accuracy and spatiotemporal resolution of existing time activity surveys (e.g., EPA’s 

Consolidated Human Activity Database (CHAD) or the American Time Use Survey (ATUS)), which are 

integral to exposure models. The information from these sensors can be combined with personal 

monitoring data in order to evaluate and/or modify our current exposure models. More attention 

should also be given to examining potential confounding due to correlation between SES related factors 

and predicted or measured AER values (32). 

 Increased spatial variability of ambient pollution exposure estimates was observed using both 

air quality and exposure models, especially for gaseous pollutants and PM species derived from local 

sources. Focusing on improvements in traffic/road proximity factors and local source emissions, which 

differ in time and space, may provide additional information related to exposure variability which is 

typically lost when average or population-level exposures (e.g., county or ZIP code level) are used.  We 

anticipate that current monitoring systems and the aforementioned GPS based sensor technologies 

could provide a range of new information that could help with refining exposure estimates. Further, 

combining existing and new techniques for exposure estimation has shown value. Promising approaches 

include combining CMAQ and AERMOD model results, or incorporating highly resolved satellite data (33) 

using a Hierarchical Bayesian framework to blend ambient concentrations, and housing and exposure-

related information (29). 
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 Available health data typically have their own spatial or temporal limitations (e.g. hospital 

admissions by county vs. ZIP code, or by month vs. day). If exposure estimates can be produced at a fine 

spatiotemporal scale, these will only be useful if health data are also available on the same scale. It is 

necessary to determine the relative importance of spatial vs. temporal resolution in both exposure 

estimates and health data specification, for various types of epidemiological study designs, in order to 

make best use of development efforts for new or highly resolved exposure estimates, as well as for the 

planning of future studies.  In addition, combining exposure modeling and epidemiology with knowledge 

gained from toxicological studies can help our understanding of which pollutant or group of pollutants 

are likely to be linked with health effects. 

 Finally, two topics that were not addressed by the studies published in this issue were 

multipollutant relationships and the differences between acute and chronic studies. As epidemiological 

studies begin to incorporate multiple pollutants into their models it is important to understand the 

relationships between the pollutants.  These between-pollutant relationships may not be accurately 

characterized by the existing central-site monitors. Ambient pollutants can have different 

spatiotemporal patterns due to their sources, chemical/physical properties, and pollutant-specific 

interactions with meteorology, all of which may cause pollutant concentrations to not be correlated 

with each other.  For example, a pollutant such as O3 may be relatively homogeneous within an urban 

area, but the location of roads may greatly affect the spatial pattern of pollutants such as CO or NOx.  

Because of this, the O3-CO or NOx relationships may be different depending on which exposure 

estimation approach (e.g. central-site monitors vs. air quality models) is selected.  Additional work is 

needed to better understand how the choice of exposure estimation approach affects the observed 

relationships between pollutants. Finally, studies examining longer exposure windows (e.g. 10 years or 

more) and related disease processes (e.g. cancer) were not adequately addressed by this collection of 

papers.  Therefore, a systematic evaluation of the value of refined exposure characterization for both 
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acute and chronic exposures, as they apply to related epidemiological studies, is of keen interest for 

advancing the knowledge base on air pollution exposures and associated health effects.  

 

Conflict of Interest: 

The authors declare no conflict of interest. 

Acknowledgments: 

S.D. Beevers: The authors would like to acknowledge the Natural Environment Research Council, 

Medical Research Council, Economic and Social Research Council, Department of Environment, Food and 

Rural Affairs and Department of Health for the funding received for the Traffic Pollution and Health in 

London project (NE/I008039/1), funded through the Environmental Exposures & Health Initiative (EEHI). 

The research was also supported by the National Institute for Health Research (NIHR) Biomedical 

Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.  

 

 N. Hodas. D.Q. Rich, and B.T. Turpin: Related research was funded, in part, by the U.S. Environmental 

Protection Agency (Cooperative Agreement CR-83407201-0), NIEHS-sponsored UMDNJ Center for 

Environmental Exposures and Disease (NIEHS P30ES005022), and the New Jersey Agricultural 

Experiment Station.  Natasha Hodas was supported by a Graduate Assistance in Areas of National Need 

Fellowship and an EPA STAR Fellowship. 

  

S.E. Sarnat and J.A. Sarnat: Related publications were made possible by a cooperative agreement 

between Emory University and the US Environmental Protection Agency (USEPA) (CR-83407301-1) and a 

USEPA Clean Air Research Center grant to Emory University and the Georgia Institute of Technology 

(RD83479901) 

 



13 

N. Kumar: Related research was funded by the NIH (ES014004) and the EPA (R833865). 

 

Disclaimers 

Although this work was reviewed by EPA and approved for publications, it may not necessarily reflect 

official Agency policy. The views expressed are those of the authors (s) and not necessarily those of the 

NHS, the NIHR or the Department of Health. 

 

 

 



14 

 

 

Table 1: Air pollution exposure studies: Summary of key findings and conclusions for air pollution 
exposure studies included in this issue 

Table 2: Air pollution epidemiology studies: Summary of key findings and conclusions for air pollution 
epidemiology studies included in this issue 



15 

 

References 

1. Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in Fine Particulate Air Pollution and 
Mortality: Extended Follow-up of the Harvard Six Cities Study. American Journal of Respiratory and 
Critical Care Medicine. 2006;173:667-72. 
2. Zanobetti A, Schwartz J. The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A 
National Analysis. Environmental Health Perspectives. 2009;117(6):898-903. 
3. Pope CA, Ezzati M, Dockery DW. Fine-Particulate Air Pollution and Life Expectancy in the United 
States. The New England Journal of Medicine. 2009;360(4):376-86. 
4. Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA, et al. Impact of 
exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. 
Environmental Health. 2011;10(61):1-11. 
5. Goldman GT, Mulholland JA, Russell AG, Srivastava A, Strickland MJ, Klein M, et al. Ambient Air 
Pollutant Measurement Error: Characterization and Impacts in a Time-Series Epidemiologic Study in 
Atlanta. Environmental Science & Technology. 2010;44(19):7692-8. 
6. Gryparis A, Paciorek CJ. Measurement error caused by spatial misalignment in environmental 
epidemiology. Biostatistics. 2009;10(2):258-74. 
7. Sarnat SE, Klein M, Sarnat JA, Flanders WD, Waller LA, Mulholland JA, et al. An examination of 
exposure measurement error from air pollutant spatial variability in time-series studies. Journal of 
Exposure Science and Environmental Epidemiology. 2010;20(2):135-46. 
8. Thurston GD, Bekkedal MYV, Roberts EM, Ito K, III CAP, Glenn BS, et al. Use of health 
information in air pollution health research: Past successes and emerging needs. Journal of Exposure 
Science and Environmental Epidemiology. 2009;19(1):45-58. 
9. McKone TE, Ryan PB, Özkaynak H. Exposure information in environmental health research: 
Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants. 
Journal of Exposure Science and Environmental Epidemiology. 2009;19(1):30-44. 
10. Dominici F, Peng RD, Barr CD, Bell ML. Protecting Human Health From Air Pollution: Shifting 
From a Single-pollutant to a Multipollutant Approach. Epidemiology. 2010;21(2):187-94. 
11. Sarnat JA, Koutrakis P, Suh HH. Assessing the Relationship between Personal Particulate and 
Gaseous Exposures of Senior Citizens Living in Baltimore, MD. Journal of the Air & Waste Management 
Association. 2000;50(7):1184-98. 
12. Sarnat SE, Coull BA, Ruiz PA, Koutrakis P, Suh HH. The Influences of Ambient Particle 
Composition and Size on Particle Infiltration in Los Angeles, CA, Residences. Journal of the Air & Waste 
Management Association. 2006;56(2):186-96. 
13. Weisel CP, Zhang J, Turpin BJ, Morandi MT, Colome S, Stock TH, et al. Relationships of Indoor, 
Outdoor, and Personal Air (RIOPA): Part 1, Collection Methods and Descriptive Analyses. Health Effects 
Institute, 2005  Contract No.: 130, Part 1. 
14. Baxter LK, Clougherty JE, laden F, Levy JI. Predictors of concentrations of nitrogen dioxide, fine 
particulate matter, and particle constituents inside of lower socioeconomic status urban homes. Journal 
of Exposure Science and Environmental Epidemiology. 2007;17:433-44. 
15. Meng QY, Spector D, Colome S, Turpin B. Determinants of Indoor and Personal Exposure to 
PM2.5 of Indoor and Outdoor Origin during the RIOPA Study. Atmospheric Environment. 
2009;43(36):5750-8. 
16. Wilson WE, Brauer M. Estimation of ambient and non-ambient components of particulate 
matter exposure from a personal monitoring panel study. Journal of Exposure Science and 
Environmental Epidemiology. 2006;16:264-74. 



16 

17. Armstrong BG. Effect of measurement error on epidemiological studies of environmental and 
occupational exposures. Occupational and Environmental Medicine. 1998;55:651-6. 
18. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, et al. Exposure Measurement 
Error in Time-Series Studies of Air Pollution: Concepts and Consequences. Environmental Health 
Perspectives. 2000;108(5):419-26. 
19. Szpiro AA, Paciorek CJ, Sheppard L. Does More Accurate Exposure Prediction Necessarily 
Improve Health Effect Estimates? Epidemiology. 2011;22(5):680-5. 
20. Sheppard L, Burnett RT, Szpiro AA, Kim S-Y, Jerrett M, III CAP, et al. Confounding and exposure 
measurement error in air pollution epidemiology. Air Quality, Atmosphere, and Health. 2012;5(2):203-
16. 
21. Özkaynak H, Baxter LK, Dionisio KL, Burke J. Air pollution exposure prediction approaches used 
in air pollution epidemiology studies. Journal of Exposure Science and Environmental Epidemiology. 
2013;doi: 10.1038/jes.2013.15(Epub ahead of print). 
22. Özkaynak H, Isakov V, Sarnat S, Sarnat J, Mulholland J. Examination of Different Exposure 
Metrics in an Epidemiological Study. Air and Waste Management Association Magazine for 
Environmental Managers. 2011:22-7. 
23. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human 
Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal 
of Exposure Analysis and Environmental Epidemiology. 2001;11(3):231-52. 
24. Strand M, Hopke PK, Zhao W, Vedal S, Gelfand E, Rabinovitch N. A study of health effect 
estimates using competing methods to model personal exposures to ambient PM2.5. Journal of Exposure 
Science and Environmental Epidemiology. 2007;17(6):549-58. 
25. Baxter LK, Burke J, Lunden M, Turpin BJ, Rich DQ, Thevenet-Morrison K, et al. Influence of 
human activity patterns, particle composition, and residential air exchange rates on modeled 
distributions of PM2.5 exposure compared to central-site monitoring data. Journal of Exposure Science 
and Environmental Epidemiology. 2013;23:241-7. 
26. Beevers SD, Kitwiroon N, Williams ML, Kelly FJ, Anderson HR, Carslaw DC. Air pollution 
dispersion models for human exposure predictions in London. Journal of Exposure Science and 
Environmental Epidemiology. 2013;doi:10.1038/jes.2013.6(Epub ahead of print). 
27. Dionisio KL, Isakov V, Baxter L, Sarnat JA, Sarnat SE, Burke J, et al. Comparison of modeling 
approaches for exposure assessment of multiple air pollutants in Atlanta, Georgia. Journal of Exposure 
Science and Environmental Epidemiology. 2013;Under review. 
28. Jones RR, Özkaynak H, Nayak S, Garcia V, Hwang S-A, Linn S. Associations between summertime 
ambient pollutants and respiratory morbidity in NYC: comparison of ambient concentrations versus 
predicted exposures. Journal of Exposure Science and Environmental Epidemiology. 2013;In press. 
29. Mannshardt E, Sucic K, Fuentes M, Reich B, Frey C, Jiao W. Comparing exposure metrics for the 
effects of speciated particulate matter on population health outcomes. Journal of Exposure Science and 
Environmental Epidemiology. 2013;In press. 
30. Sarnat SE, Sarnat JA, Mulholland J, Isakov V, Özkaynak H, Chang H, et al. Application of 
alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological 
study in Atlanta. Journal of Exposure Science and Environmental Epidemiology. 2013;In press. 
31. Hodas N, Turpin BJ, Lunden MM, Baxter LK, Özkaynak H, Burke J, et al. Refined ambient PM2.5 
exposure surrogates and the risk of myocardial infarction. Journal of Exposure Science and 
Environmental Epidemiology. 2013;doi:10.1038/jes.2013.24(Epub ahead of print). 
32. Sarnat JA, Sarnat SE, Flanders WD, Chang HH, Mulholland J, Baxter L, et al. Spatiotemporally-
resolved air exchange rate as a modifier of acute air pollution related morbidity in Atlanta. Journal of 
Exposure Science and Environmental Epidemiology. 2013;doi:10.1038/jes.2013.32(Epub ahead of print). 



17 

33. Kumar N, Liang D, Abrams T, Comellas A. A hybrid methodology for developing ambient PM2.5 
exposure for epidemiological studies. Journal of Exposure Science and Environmental Epidemiology. 
2013;Under review. 
34. Hodas N, Meng Q, Lunden MM, Rich DQ, Ozkaynak H, Baxter LK, et al. Variability in the fraction 
of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates. 
Journal of Exposure Science and Environmental Epidemiology. 2012;22(5):448-54. 
35. McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, et al. Traffic, susceptibility, and 
childhood asthma. Environmental Health Perspectives. 2006;114(5):766-72. 
36. Hoek G, Brunekreef B, Goldbohm S, Fischer P, Brandt PAvd. Association between mortality and 
indicators of traffic-related air pollution in the Netherlands: a cohort study. The Lancet. 
2002;360(9341):1203-9. 

 

 



Table 1. Air pollution exposure studies: Summary of key findings and conclusions for air pollution exposure studies included in this issue1 
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4 L.
K.

 B
ax

te
r 

et
 a

l.,
 2

01
3 

PM2.5 

New Jersey 

 
7 cities 

 
Within 10 km of 
monitor & 22 ZIP 

codes 

1) Ambient monitoring 
2) SHEDS 
3) 2AER and MB 

outdoor-to-indoor 
transport models 

4) Hybrid of (2) and (3) 

1) Daily correlations between all 
exposure tiers were strong (r>0.94) 

2) Exposure difference between 
monitoring areas appeared to be 
driven by AERs 

3) Seasonal patterns for exposure 
estimates appeared to be due to 
variations in PM composition and 
time activity patterns 

1) High correlations between exposure surrogates 
suggest that the temporal variability in PM2.5 
concentrations were adequately captured by the 
central-site monitor 

2) Geographic heterogeneity in housing stock (AER) 
and demographics (activity patterns) result in 
heterogeneity in ambient PM2.5 exposure both 
within and between cities that is not captured by 
the central-site monitor 

4 K.
L.

 D
io

ni
si

o,
 e

t a
l.,

 2
01

3 

PM2.5 
EC 
SO4 
O3 

NOx 
CO 

Atlanta, Georgia 

 
Atlanta metro 

area 

 
169 ZIP codes 

1) Ambient monitoring 
2) Modeled regional 

background 
(statistical model) 

3) AERMOD modeling 
4) Hybrid of (2) and (3) 
5) 3Exposure modeling 

(APEX or SHEDS) 

1) Hybrid and exposure model 
estimates exhibit high spatial 
variability for CO, NOx, and EC but 
little spatial variability among ZIP 
codes for PM2.5, SO4, and O3 

2) Degree of temporal variability 
represented was similar across 
exposure metrics for all pollutants 
except NOx 

3) Daily correlations between hybrid 
and exposure model estimates were 
strong (r>0.82) for all pollutants 

1) The use of ambient monitoring as an exposure 
surrogate for CO, NOx, and EC ignores spatial 
variability at the ZIP code level 

2) When temporal variability of pollutants is of 
interest, the use of hybrid or exposure model 
estimates may yield similar results 

3) Exposure models affect the magnitude and 
distribution of exposure compared to ambient 
monitoring, especially for local pollutants (CO, 
NOx, EC) 

4 S.
D

. B
ee

ve
rs

 e
t a

l.,
 2

01
3 

PM2.5 
PM10 
NO2 
NOx 

London, UK 

 
City of London 

 
20 m x 20 m grid 

cells 

Hybrid approach 
combining CMAQ-urban 
with the KCLurban 
model 

1) NO2 has large variations within 10’s 
of meters of major roads 

2) NOx can range by factor of 6 
between early morning minimum 
and rush hour maximum 

3) PM2.5 can double close to road 
sources 

4) PM10 from brake wear is 8 times 
greater near major roads than at 
suburban background 

1) Emissons-dispersion models can predict air 
quality spatially, temporally, and by source 
category  

2) Temporal changes in pollutant concentrations 
can be replicated by dispersion models, 
especially in the complex near-road environment 

3) Dispersion model results agree well with 
measurements in London; source apportionment 
results are uncertain 

4) Human travel patterns are highly complex and 
support the need for the development of hybrid 
models and sophisticated human exposure 
models 



1Abbreviations:  
AER: Air Exchange Rate 
AERMOD: AMS/EPA Regulatory Model (atmospheric dispersion modeling system) 
APEX: Air Pollutants Exposure model 
CMAQ: Community Multiscale Air Quality model 
MB: Mass Balance 
SHEDS: Stochastic Human Exposure and Dose Simulation model 

2Lawrence Berkeley National Laboratory (LBNL) Aerosol Penetration and Persistence (APP) and Infiltration Models 
3Both APEX and SHEDS used local, spatially varying air exchange rates as input. SHEDS was used for modeling PM2.5, EC, SO4, and O3; APEX was used for 
modeling NOx and CO. 
4References: 

Baxter LK, Burke J, Lunden M, Turpin BJ, Rich DQ, Thevenet-Morrison K, et al. Influence of human activity patterns, 
particle composition, and residential air exchange rates on modeled distributions of PM2.5 exposure compared with 
central-site monitoring data. Journal of Exposure Science and Environmental Epidemiology. 2013;23:241-7. 
 
Beevers SD, Kitwiroon N, Williams ML, Kelly FJ, Anderson HR, Carslaw DC. Air pollution dispersion models for human 
exposure predictions in London. Journal of Exposure Science and Environmental Epidemiology. 
2013;doi:10.1038/jes.2013.6(Epub ahead of print). 
 
Dionisio KL, Isakov V, Baxter L, Sarnat JA, Sarnat SE, Burke J, et al. Comparison of modeling approaches for 
exposure assessment of multiple air pollutants in Atlanta, Georgia. Journal of Exposure Science and Environmental 
Epidemiology. 2013;Under review. 



Table 2. Air pollution epidemiology studies: Summary of key findings and conclusions for air pollution epidemiology studies included in this issue1 

 

St
ud

y 
de

si
gn

 

Pollutant(s) 
investigated 

 
Health 

outcome(s) 

 
Analysis year(s) 

Study location 

 
Spatial coverage 

 
Spatial resolution 

Exposure estimation 
approach(es) 

2Health effect estimate(s) Effect modification 
by: 

Key conclusions 

14
N

. H
od

as
 e

t a
l.,

 2
01

3 

Ca
se

-c
ro

ss
ov

er
 

PM2.5 

 
Transmural MI 

 
2004-2006 

New Jersey 

 
7 cities 

 
Within 10 km of 
monitor & 89 ZIP 

codes 

1) Ambient monitoring 

 
2) SHEDS 

 
3) 3AER and MB 

outdoor-to-indoor 
transport models 

 
4) Hybrid of (2) and (3) 
 

4OR: 1.10 (1.01, 1.19) 

 
4OR: 1.10 (1.01, 1.20) 

 
4OR: 1.10 (1.01, 1.20) 

 

 
4OR: 1.11 (1.02, 1.20) 

 

residential AER 

1) Little to no difference in OR estimates or CI across exposure 
estimation approaches 

2) Higher OR for homes within the highest tertile of AERs compared 
to homes in the lowest AER tertile 

14
R.

R.
  J

on
es

 e
t a

l.,
 2

01
3 

PM2.5 
O3 

 
Hospital 

admissions for 
respiratory 
morbidity 

 
2001-2005 

New York City 

 
4 county area 

 
2,106 census 

tracts 

1) Ambient monitoring 
 

 
2) SHEDS 
 

5HR: 1.013 (0.999, 1.028) for O3 
6HR: 1.018 (1.002, 1.034) for PM2.5 

 

5HR: 1.013 (0.998, 1.029) for O3 
6HR: 1.018 (1.002, 1.034) for PM2.5 

exposure/ 
concentration ratio 

 
sociodemographic 

characteristics 

1) Little to no difference in HR estimates or CIs using ambient 
monitoring or SHEDS exposure estimates 

2) Some effect modification by socio-demographic characteristics 
with ambient monitoring but not with SHEDS estimates 

3) HR higher in highest exposure/concentration tertile for both PM2.5 
and O3 

14
N

. K
um

ar
 e

t a
l.,

 2
01

3 PM2.5 

 
Hospital 

admissions for 
AECOPD 

 
2007 

Cleveland, Ohio 

 
Cleveland metro 

area 

 
2.5 km x 2.5 km 

grid cells 

Hybrid statistical approach 
combining AOD with 
ambient monitoring 

7RR: 2.3% increased risk of AECOPD with 
unit increase in PM2.5; 54% greater chance 

of AECOPD admission among exposed 
group (PM2.5>15.4 µg/m3) 

-- 

1) More reliable estimates from hybrid approach combining satellite 
based AOD and in-situ measurements compared to ambient 
monitoring data 

2) Local time-space Kriging minimizes prediction error and addresses 
the problems of non-stationary variance across space and time 
 
 
 

14
S.

E.
 S

ar
na

t e
t a

l.,
 2

01
3 

Ti
m

e-
se

rie
s 

PM2.5 
EC 
SO4 
O3 

NOx 
CO 

 
8Emergency 
department 
visits for RD, 

ASW, and CVD 

 
1999-2002 

Atlanta, Georgia 

 
Atlanta metro 

area 

 
169 ZIP codes 

1) Ambient monitoring 
 
 

 
2) Modeled regional 

background 
 

 
3) 9AERMOD modeling 

 

 
4) 9Hybrid of (2) and (3) 
 

 
5) 10Exposure modeling 

(APEX or SHEDS) 

11RR: 1.069 (1.038, 1.100) for O3 
11RR: 1.012 (0.996, 1.029) for PM2.5 

11RR: 1.001 (0.991, 1.010) for NOx 

 
11RR: 1.055 (1.028, 1.083) for O3 

11RR: 1.017 (1.000, 1.034) for PM2.5 
11RR: 0.997 (0.986, 1.009) for NOx 

 
11RR: 1.013 (1.003, 1.023) for PM2.5 

11RR: 1.010 (1.001, 1.018) for NOx 

 
11RR: 1.023 (1.006, 1.039) for PM2.5 

11RR: 1.009 (0.999, 1.019) for NOx 

 
11RR: 1.053 (1.026, 1.081) for O3 

11RR: 1.009 (0.992, 1.026) for PM2.5 

SES  
(for CO, NOx, PM2.5, 

and EC only) 

1) Modestly stronger associations (larger RR and/or narrower CI) 
especially for traffic-related pollutants, using hybrid estimates of 
ambient concentrations compared to ambient monitoring  

2) Associations similar or slightly weaker when using SHEDS exposure 
model outputs compared to hybrid estimates 

3) Associations for ASW with CO and NOx modestly stronger using 
APEX exposure modeling estimates compared to hybrid estimates 

4) Low SES groups had higher RRs than high SES groups when using 
more refined exposure estimates but not using ambient 
monitoring 



 11RR: 1.014 (1.004, 1.024) for NOx 
 

14
J.

A
. S

ar
na

t e
t a

l.,
 2

01
3 

PM2.5 
O3 

NOx 
CO 

 
Emergency 
department 

visits for ASW 

 
1999-2002 

Atlanta, Georgia 

 
Atlanta metro 

area 

 
186 ZIP codes 

Hybrid of modeled  
regional background and  
AERMOD modeling 
 

12RR: 1.018 (1.003, 1.033) for PM2.5 
12RR: 1.050 (1.024, 1.075) for O3 

12RR: 1.010 (1.000, 1.019) for NOx 
12RR: 1.008 (1.000, 1.016) for CO 

residential AER  
(for PM2.5, NOx, and 

CO only) 

1) Larger associations for PM2.5, NOx, and CO in ZIP codes with higher 
AERs compared to lower AERs in stratified models 

2) Interaction term models showed positive, significant or near-
significant effect modification by AER for CO and NOx RRs; 
interaction term for PM2.5 was negative and significant 

14
E.

 M
an

ns
ha

rd
t e

t a
l.,

 2
01

3 
 

Ba
ye

si
an

 

PM2.5 

 
Hospital 

admissions for 
RD and CVD 

 
2002-2006 

New York City 

 
3 county area 

 
county 

1) Ambient monitoring 

 
2) CMAQ 

 
3) SHEDS 
 

13RR: 1.018 (1.0008, 1.033) 

 
13RR: 1.023 (1.010, 1.033) 

 
13RR: 1.023 (1.014, 1.033) 

 

-- 

1) RR estimates using CMAQ or SHEDS are similar in magnitude but 
have smaller credible intervals than those using ambient 
monitoring 

2) Uncertainty is reduced by about half when using CMAQ or SHEDS 
compared to using ambient monitoring 

3) SHEDS exhibits higher power for detecting an increase in RR 
compared to ambient monitoring or CMAQ  

 
 

1Abbreviations: 
 AECOPD: Acute exacerbation of chronic obstructive pulmonary disease 

AER: Air exchange rate 
AERMOD: AMS/EPA Regulatory Model (atmospheric dispersion modeling system) 
AOD: Aerosol optical depth 
APEX: Air Pollutants Exposure model 
ASW: Asthma/wheeze 
CI: Confidence interval 
CMAQ: Community Multiscale Air Quality model 
CVD: Cardiovascular disease 
HR: Hazard ratio 
IQR: Interquartile range 
MB: Mass Balance 

 MI: Myocardial infarction 
 OR: Odds ratio 
 RD: Respiratory disease 
 RR: Relative risk 
 SES: Socioeconomic status 
 SHEDS: Stochastic Human Exposure and Dose Simulation model 
2Numbers in parentheses represent minimum and maximum of 95% CI. 
3Lawrence Berkeley National Laboratory (LBNL) Aerosol Penetration and Persistence (APP) and Infiltration Models 
4Relative odds of a transmural MI with an interquartile range increase in PM2.5 exposure.  
5HR for respiratory hospitalizations per IQR increase in O3 concentration.  
6HR for respiratory hospitalizations per IQR increase in PM2.5 concentration. HR given is for 2 day lag, HRs for lags 0-1 and lags 3-4 were not significant. 



 7RR given as a percent increased risk per unit increase in PM2.5 exposure within 9 days and ~5 km. 
8Results in table are presented for ASW, for selected pollutants. For the full suite of RRs, see S. Sarnat et al., 2013. 
9O3 results are not presented for the AERMOD and Hybrid metrics because O3 was not modeled with AERMOD. 
10Both APEX and SHEDS used local, spatially varying air exchange rates as input. SHEDS was used for modeling PM2.5, EC, SO4, and O3; APEX was used for modeling NOx 
and CO. 
11RR for ASW per IQR increase in pollutant concentration. 
12RR per IQR increase in pollutant concentration, for univariate pollutant models. RRs given are for the overall models, RRs for AER stratified models and AER interaction 
term models can be found in J. Sarnat et al., 2013. 
13RR per one standard deviation increase in PM2.5 concentration. 
14References: 

Hodas N, Turpin BJ, Lunden MM, Baxter LK, Özkaynak H, Burke J, et al. Refined ambient PM2.5 exposure surrogates and the risk of myocardial 
infarction. Journal of Exposure Science and Environmental Epidemiology. 2013;doi:10.1038/jes.2013.24(Epub ahead of print). 
 
Jones R, Özkaynak H, Nayak S, Garcia V, Hwang S-A, Linn S. Associations between summertime ambient pollutants and respiratory morbidity in 
NYC: comparison of ambient concentrations versus predicted exposures. Journal of Exposure Science and Environmental Epidemiology. 2013;In 
press. 
 
Kumar N, Liang D, Abrams T, Comellas A. A hybrid methodology for developing ambient PM2.5 exposure for epidemiological studies. Journal of 
Exposure Science and Environmental Epidemiology. 2013;Under review. 
 
Mannshardt E, Sucic K, Fuentes M, Reich B, Frey C, Jiao W. Comparing exposure metrics for the effects of speciated particulate matter on 
population health outcomes. Journal of Exposure Science and Environmental Epidemiology. 2013;In press. 
 
Sarnat JA, Sarnat SE, Flanders WD, Chang HH, Mulholland J, Baxter L, et al. Spatiotemporally-resolved air exchange rate as a modifier of acute air 
pollution related morbidity in Atlanta. Journal of Exposure Science and Environmental Epidemiology. 2013;doi:10.1038/jes.2013.32(Epub ahead 
of print). 
 
Sarnat SE, Sarnat JA, Mulholland J, Isakov V, Özkaynak H, Chang H, et al. Application of alternative spatiotemporal metrics of ambient air 
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press. 
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