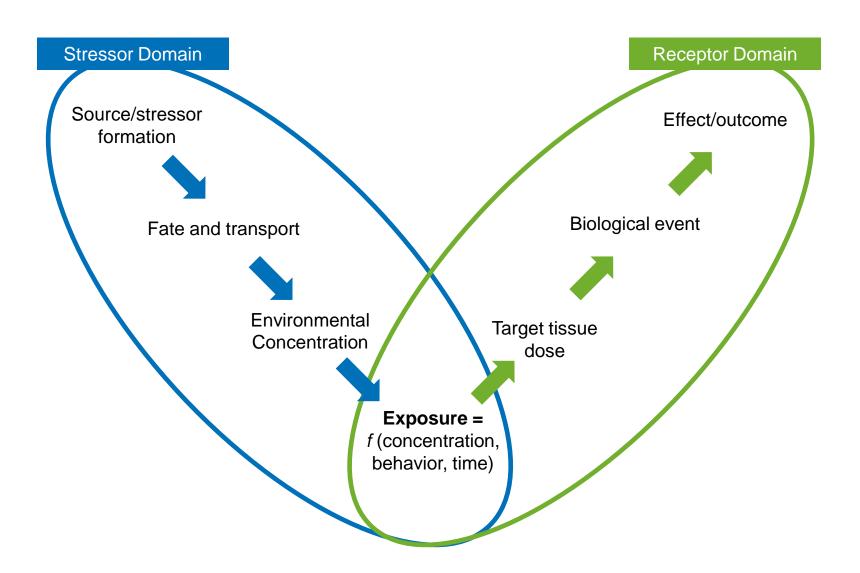


Interpreting Biomonitoring Data and Using Pharmacokinetic Modeling in Exposure Assessment

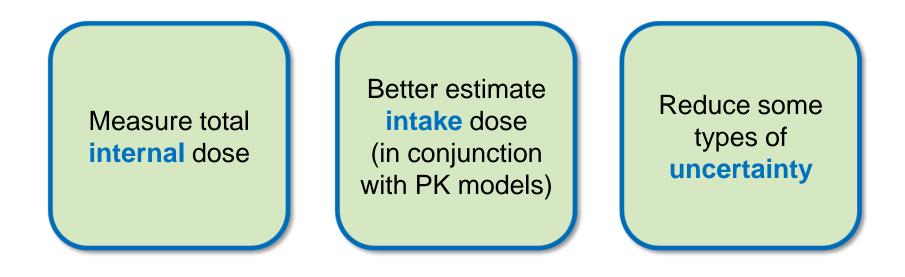
RISK ASSESSMENT TRAINING AND EXPERIENCE Exposure Assessment Course Series – EXA 408

Office of Research and Development National Center for Environmental Assessment



What You Can Expect to Learn from this Course

- Elements of biomonitoring
 - Body burdens and biomarkers
 - National Health and Nutrition Examination Survey (NHANES)
- How pharmacokinetic (PK) models are used in exposure assessment
 - Forward (predictive) analysis
 - Backward (reconstructive) analysis
 - Biomonitoring equivalents (BEs)


Source-to-Effect Continuum

Exposure Assessment Using Biomonitoring

• Biomonitoring data can be used to:

• NHANES includes large dataset of biomonitoring data

BIOMONITORING, BIOMARKERS, AND BODY BURDENS

Biomonitoring, Biomarkers, and Body Burdens

Biomarker:

Biologic indicator of exposure; used to measure chemical, metabolites, or product of interaction between chemical and target molecule or cell

Body burden:

Total **amount** of a **contaminant** in the body; a type of biomarker

Biomonitoring:

Method for assessing human exposure to chemicals, their metabolites, or their byproducts; the act of collecting biomarker and body burden data

Biomonitoring Advantages and Limitations

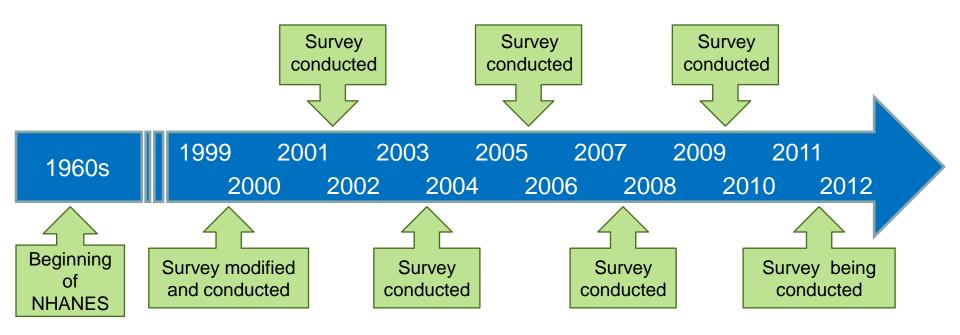
Advantages	Limitations
Measures all aggregate exposure (all sources, all routes)	Not source- or pathway-specific
Reflects uptake and accumulation	Requires permissions for collection of human specimens
May be able to correlate internal dose with effects	Can be costly
	Difficult to interpret potential health risks

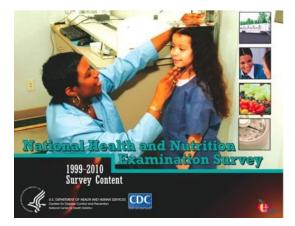
How Biomonitoring Measures Exposure

Biomarkers

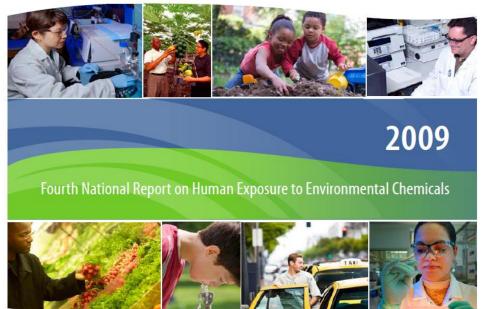
- Used to measure:
 - Direct amount of a compound (i.e., body burden)
 - Biological interaction of the compound with the body
 - Physiological changes in an organism as a result of interaction with the compound

- Collected using biomonitoring methods
- Can be used to reconstruct past exposures
- Reflect internal dose but may not indicate risk


What is NHANES?


- National Health and Nutrition Examination Survey
- Conducted by the Centers for Disease Control (CDC)
- Assesses the health and nutrition of adults and children in the United States
- Dataset consists of:
 - Physical examinations
 - Blood and urine samples
 - Health status information
 - Dietary information
 - Behavioral information
 - Demographic data

History of NHANES



CDC Growth Charts

NHANES Biomonitoring Data

- Largest existing biomarker database
- Nationally representative
 - Sample weights individually assigned
- Blood, serum, and urine samples analyzed for concentrations of various compounds
 - Certain tests are only performed for certain age groups
- Survey population ranges from ages 1 to 60+
- Wide range (>200) of environmental chemicals and stressors measured
- Data publicly available and continually updated

Uses of NHANES Biomonitoring Data

- Characterize body burdens
- Determine populations with increased body burdens
- Identify exposure levels in populations of concern
- Establish reference or background values and identify unusually high exposures
- Assess efforts to reduce exposure and trends over time
- Direct research priorities
- Connect exposure to body burden

Other Sources of Biomonitoring Data

NHATS	National Human Adipose Tissue Survey	U.S. EPA	1970–1989
GerES	German Environmental Survey	Robert Koch Institute	1985–2006
TEAM	Total Exposure Assessment Methodology	U.S. EPA	1980s
NHEXAS	National Human Exposure Assessment Survey	U.S. EPA	1990s
NCS	The National Children's Study	NIH, NIEHS, CDC, U.S. EPA, and others	2000–ongoing
CHMS	Canadian Health Measures Survey	Statistics Canada, Health Canada, PHAC, and others	2007–ongoing

Using NHANES Data: Phthalates in Women

CHEMICAL CLASSES MEASURED IN BIOLOGICAL TISSUE OF PREGNANT WOMEN, NHANES 2003–2004

No. of metabolites measured

Blood	Serum	Urine	Total
	1		1
		4	4
4			4
	13		13
		6	6
		1	1
		13	13
	11		11
	55		55
		10	10
	12		12
33			33
	4	1 4 13 11 55 12	1 4 4 13 6 1 13 6 1 1 3 11 13 55 10 10 12

Source: Woodruff et al., 2011

Using NHANES Data: Phthalates in Women

Parent Compound	Metabolite	n	Reproductive Status	LOD	Percent >LOD	GM (GSE)	50th Percentile	95th Percentile
, , , , , , , , , , , , , , , , , , ,	Monobenzyl phthalate	91	Pregnant	0.1	100	15.12 (3.79)	17.8	86.8
phthalate (BzBP)	(MBzP)	497	Nonpregnant		100	14.77 (0.79)	15.5	99.9
	Monoisobutyl	91	Pregnant	0.3	99	3.47 (0.84)	4.4	19.5
Dibutyl	phthalate (MiBP)	497	Nonpregnant		98	4.21 (0.27)	4.5	21.1
phthalate (DBP)	Mono- <i>n</i> -butyl	91	Pregnant	0.4	99	18.83 (4.11)	17.1	143.8
phthalate (MnBP)		497	Nonpregnant		99	24.64 (1.16)	25.7	132.2
Diethyl	Monoethyl	91	Pregnant	0.4	100	226.53 (79.03)	265.7	2263.0
phthalate (DEP)	phthalate (MEP)	497	Nonpregnant		100	246.06 (29.56)	234.5	2992.6

Source: Woodruff et al., 2011

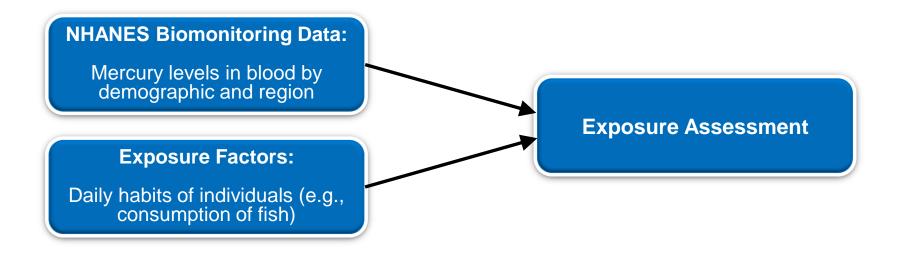
Using NHANES Data: Dioxin Exposure

	Background daily exposure dose estimate	Body burden estimate
2003	EPA's 2003 "Reassessment" used mid-1990s measurements from air, soil, water, and food ingestion	Based on six blood surveys of 316 individuals
2009	2009 update based on measurements from food ingestion surveys from 2000 to 2004	Based on NHANES blood concentration recorded in 2000/2001

Using NHANES Data: Dioxin Exposure

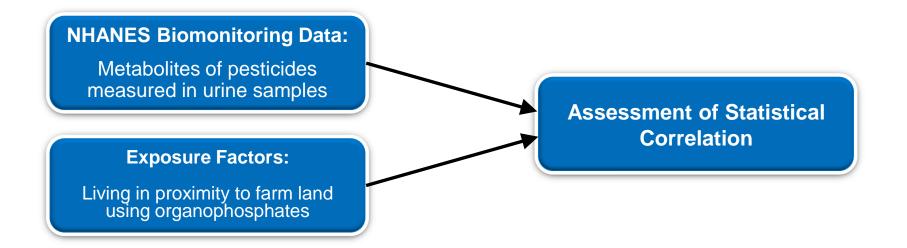
AVERAGE CONCENTRATIONS (PG/G LIPID) OF INDIVIDUAL CONGENERS AND TEQS IN HUMAN BLOOD FROM THE DIOXIN REASSESSMENT (MID-1990S DATA) COMPARED TO NHANES 2001/2002 DATA

	Mid-1990s,	NHANES 20	01/2002	
	Mean concentrations	Mean concer	ntrations	Percent
Congener	$ND = \frac{1}{2} LOD$	ND = LOD/√(2)	ND = 0	detected
2378-TCDD	2.1	2.5	0.7	13
12378-PCDD	5.2	4.6	3.7	35
123479-HxCDD	6.2	5.1	2.9	34
123678-HxCDD	73.1	47.1	46.9	93
123789-HxCDD	7.1	6.0	4.0	42
1234678-HpCDD	79.2	53.8	53.7	99
OCDD	664.0	452.1	419.2	82
1234789-HpCDF	1.2	2.4	ND	0
OCDF	2.1	7.4	ND	0
Total TEQ (PCDD/PCDF/cop PCB)	22.9	21.7	17.2	


ND = non-detect

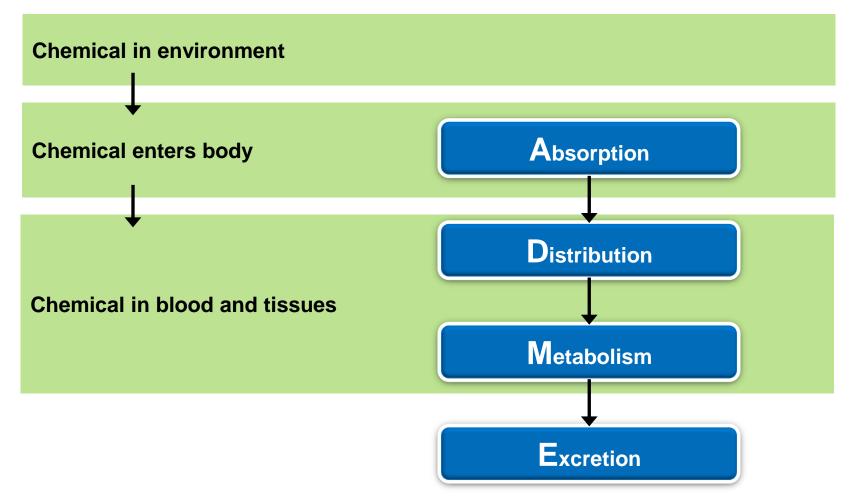
Source: Lorber et al., 2009

Using NHANES Data: Methylmercury and Fish Consumption


- NHANES data can be used to show association between measured exposure and exposure factors.
 - Example: association between blood mercury levels and fish consumption exposure factors

Using NHANES Data: Pesticides and ADHD

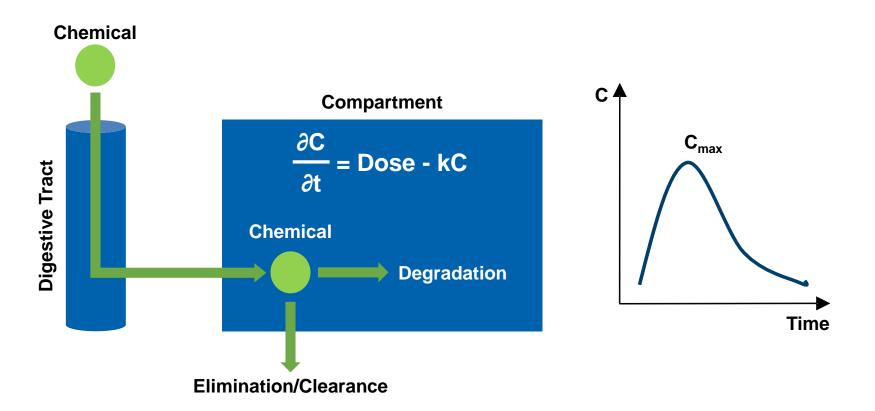
- Pesticide exposure and attention-deficit hyperactivity disorder (ADHD)
 - Association between levels of pesticides in urine samples and diagnosis of ADHD



PHARMACOKINETIC MODELS

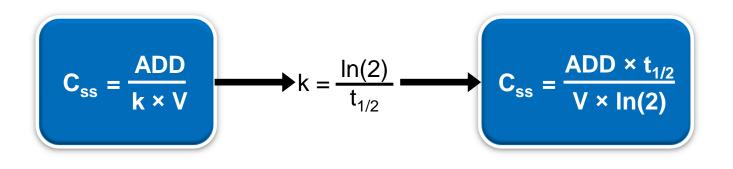
Pharmacokinetics

The study of the time course of ADME of a substance in an organism's body



Pharmacokinetic Models

- Pharmacokinetic (PK) models evaluate the internal dose of a compound
 - Simple one-compartment, first-order
 - First-order: Rate of elimination of chemical is dependent on the amount of chemical present
 - Steady state: Assuming no net change in amount of chemical
 - Complex multi-compartment, physiologically-based pharmacokinetic
- How can PK models be used in exposure assessment?
 - Characterize internal dose
 - Route-to-route extrapolation of the internal dose
 - Exposure reconstruction from epidemiological studies


One-Compartment, First-Order PK Models

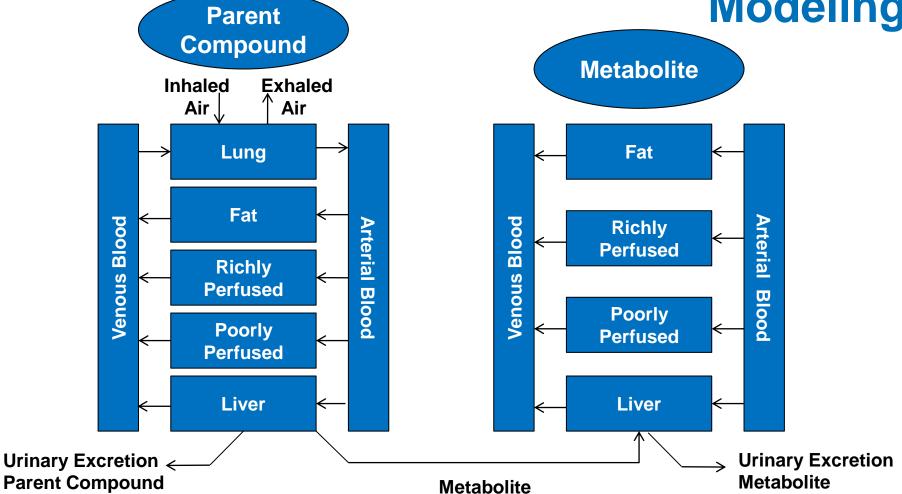
- C is the pollutant concentration (mass/volume)
- k is the first-order elimination rate constant (time⁻¹)

Steady-State One-Compartment, First-Order PK Model

Where:

- C_{ss} is the steady-state pollutant concentration (mg/L, ng/g-lipid weight)
- ADD is the average daily dose (mg/day, ng/day)
- k is the first-order elimination constant (day⁻¹, sec⁻¹)
- V is the volume of distribution (L)
- t_{1/2} is the half life for elimination (day, sec)

Non-Steady-State PK Model


$$C(t) = C(0)e^{-kt} + \begin{bmatrix} ADD_t \\ V_t \end{bmatrix} \times \begin{bmatrix} 1 - e^{-kt} \\ k \end{bmatrix}$$

Where:

- C(t) is the pollutant concentration at time, t (mg/L, ng/g-lipid weight)
- C(0) is the initial pollutant concentration at time, 0 (mg/L, ng/g-lipid weight)
- ADD is the average daily dose (mg/day, ng/day)
- k is the first-order elimination constant
- V is the volume of distribution (L)

Multi-Compartment Physiologically-Based PK Modeling

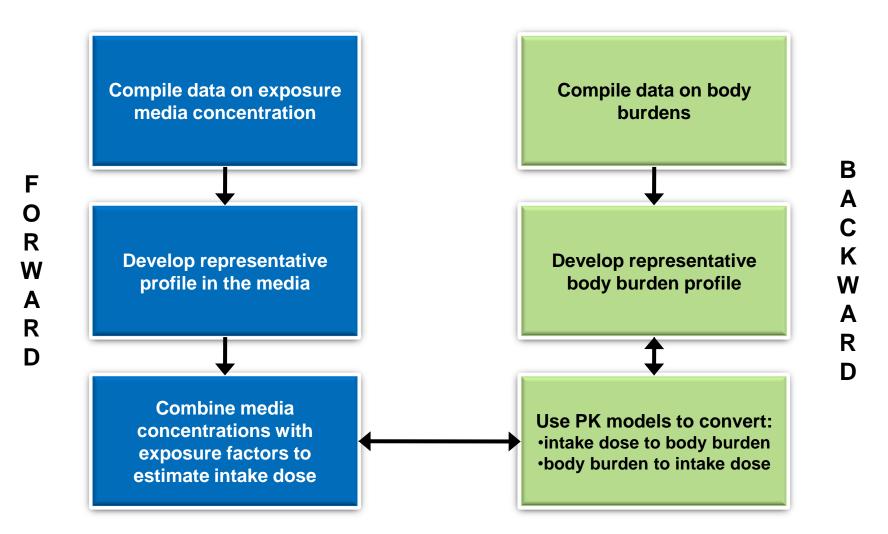
Source: Hays 2007, Figure 6, p 9

PK Advantages & Limitations

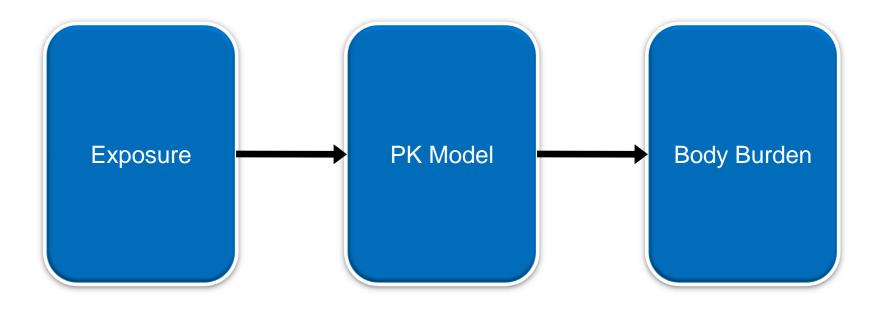
Advantages

Limitations

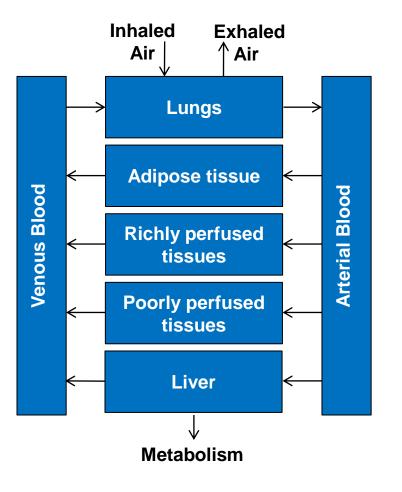
Provides insight into the body burdens that result from specific exposures (forward-based) or to specific exposure patterns that cause a body burden (backward-based) Requires specific knowledge of model parameters


Must understand relationship between exposure and internal dose

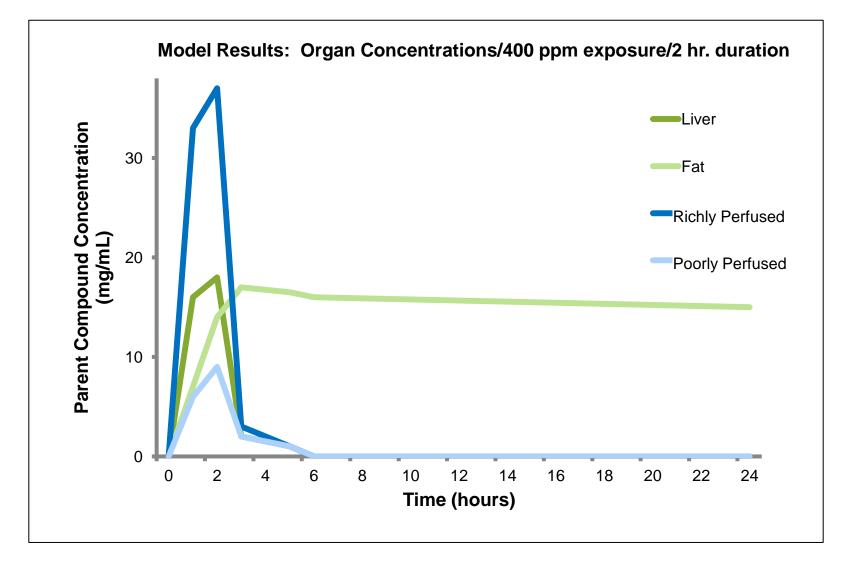
USING PHARMACOKINETIC MODELS



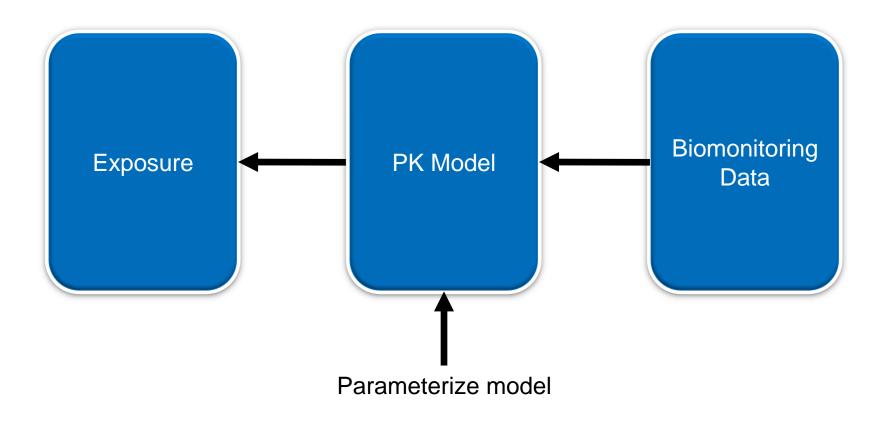
Forward & Backward Analysis



Forward Analysis

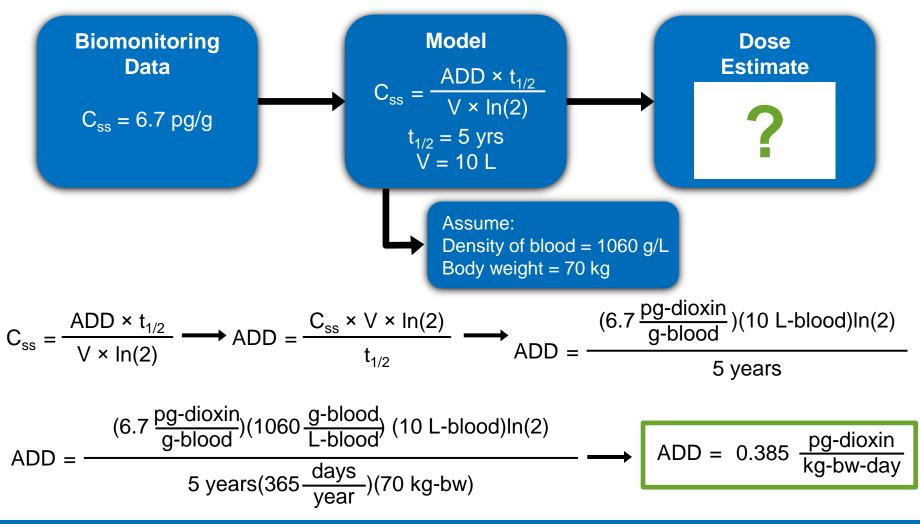

Forward Analysis Example: Inhalation of VOCs

- Scenario: Inhalation exposure to a lipophilic volatile compound
- Concentration and duration of exposure: 400 ppm for 2 hours
- Simulations based on human physiological parameters



Forward Analysis Example: VOC Modeling Results

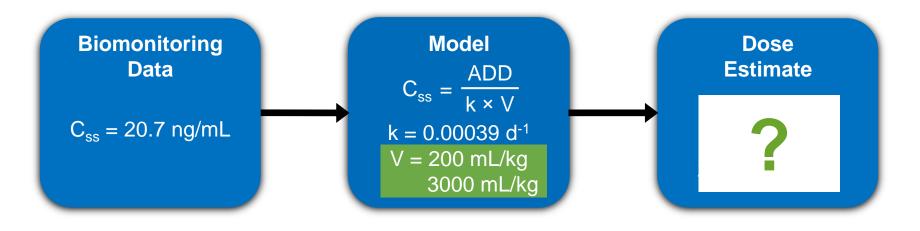
Backward Analysis


Steps for Conducting Backward Analysis

Step 1:	Use biomonitoring data to establish contaminant level in body
Step 2:	Construct a PK model or select an existing one
Step 3:	Assign values to model parameters (e.g., kinetic constants, blood flows)
Step 4:	Run model to obtain exposure estimates

Backward Analysis Example: Reconstruction of Dioxin Dose

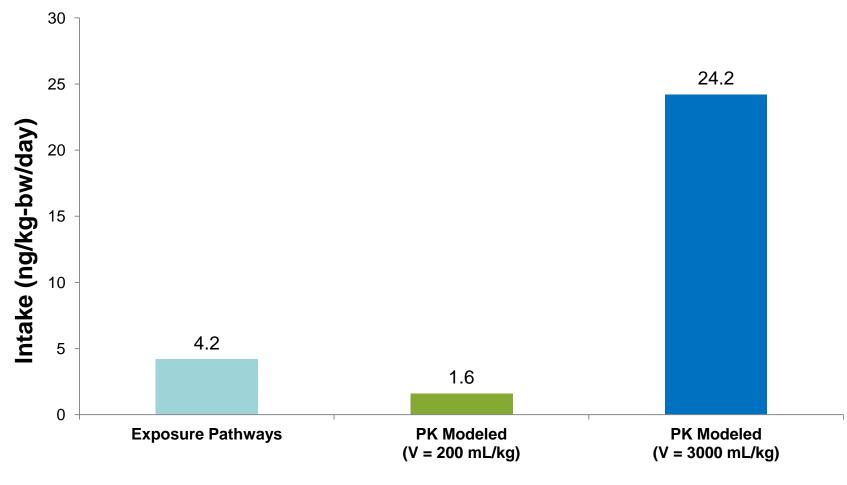
One compartment, first-order, steady state model:



Backward Analysis Example: PFOS

- Perfluorooctanoic sulfonate (PFOS)
- Type of perfluorinated compound (PFC)
- Extremely stable, hydrophobic, lipophobic
- Found in stain-resistant and non-stick products
- Persistent and bioaccumulative
- Dietary ingestion and ingestion of house dust believed to be primary exposure pathways

Backward Analysis Example: Reconstruction of PFOS Dose



$$C_{ss} = \frac{ADD}{k \times V} \longrightarrow ADD = C_{ss} \times k \times V \longrightarrow ADD = (20.7 \frac{ng}{mL})(0.00039 \frac{1}{day})(200 \frac{mL}{kg})$$

$$C_{ss} = \frac{ADD}{k \times V} \longrightarrow ADD = C_{ss} \times k \times V \longrightarrow ADD = (20.7 \frac{ng}{mL})(0.00039 \frac{1}{day})(3000 \frac{mL}{kg})$$

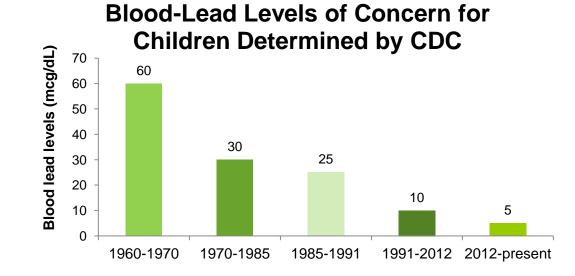
PFOS PK Model Results

Source: Egeghy and Lorber, 2011

BIOMONITORING EQUIVALENTS

What are Biomonitoring Equivalents?

 The levels of specific chemicals in blood, urine, or other human biological media or tissues, gathered using biomonitoring methods, that are consistent with existing exposure guidance values


Use of Biomonitoring Equivalents

- Possible to link biomonitoring data and health effects using BEs and epidemiological studies, but there are limitations
- USA:
 - Does not currently use BEs for regulatory requirements
 - Some support for using BEs because they are more easily understood by general public
- Abroad:
 - HealthCanada and some European nations have begun using BEs

BE Use Example: Lead

- Effects from lead exposure are varied and numerous
- Children more vulnerable and sensitive to lead exposure
- CDC adopted a Level of Concern for children of 10 μg/dL. In 2012, this level was dropped to 5 μg/dL
- Biological Exposure Index (BEI) for adults = 30 µg/dL
 - Relates to occupational exposure

CONCLUSION

Conclusion

- Biomonitoring measures the actual levels of chemicals in the body.
- NHANES is an important source of biomonitoring data.
- Body burden and other biomarker data, gathered through biomonitoring, can strengthen exposure assessment.
- Pharmacokinetic modeling can be used to relate exposure to dose using reconstructive or predictive methods.