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Abstract 
Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, 

with similar interpretations for both under and overestimations. Two examples include the 

normalized mean bias factor and normalized mean absolute error factor. However, the original 

formulations of these metrics are only valid for datasets with positive means. This paper presents 

a methodology to use and interpret the metrics with datasets that have negative means. The 

updated formulations give identical results compared to the original formulations for the case of 

positive means, so researchers are encouraged to use the updated formulations going forward 

without introducing ambiguity. 

1. Introduction 

The use of unbiased symmetric metrics, as outlined in Yu et al. (2006), hereafter 

YU2006, simplifies interpretation of comparisons between two datasets. The interpretation is 

similar for both under and overestimation, in that the modified bias statistic can be viewed in 

terms of a factor over or underestimation of one dataset to another. These metrics also are 

designed to minimize inflation of the results by a limited number of very small valued data 

points when doing the normalization. These features make unbiased symmetric metrics 

powerful and easy to use tools to quickly understand overall difference between two 

datasets. 

In the context presented in YU2006 the metrics are used for air quality parameters, e.g., 

concentrations produced by a model compared to observations. Within this context, the 

formulations developed in YU2006 are fully adequate since concentrations of aerosols and trace 

gases are always positive. However, cases exist where one needs to compare datasets with 

negative mean values, such as top-of-the-atmosphere (TOA) shortwave aerosol radiative forcing. 

In those cases, the formulas presented in YU2006 for the normalized mean bias factor, BNMBF, 

and the normalized mean absolute error factor, ENMAEF, break down. In this paper, we found that 

by taking advantage of the symmetry around zero for positive and negative numbers, one can use 

the absolute values of the dataset means in the original formulas for BNMBF and ENMAEF defined in 

YU2006 for the case in which the means of the two datasets being compared are negative. The 

basic interpretation of the metrics remains identical to the original formulations, making the 

updated version of the metrics, presented here, more robust. Therefore, it is recommended that 

the updated formulations be used going forward. 
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2. Metric formulation and expansion to negative means 

The original formulations for BNMBF and ENMAEF from YU2006 are: 

 BNMBF 

Mi
Oi

1 
M

O
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and 
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where M and O represent the modeled and observed quantities, the i subscript represents a 

particular value at a given point, and the overbar indicates the mean over all points. 

The interpretation of these metrics, as described in YU2006, is straightforward if both M 

and O are positive. This caveat is implicit in the context assumed by YU2006, but is never stated 

explicitly in the paper. Those using the metrics need be aware of this fact or they may 

unwittingly misinterpret their results if they have negative quantities. 

The interpretation of BNMBF is as follows. The sign of BNMBF indicates whether the 

modeled mean under or overestimates the observed mean. And, the magnitude of BNMBF indicates 

the factor of the under or overestimation. Specifically, YU2006 phrase the interpretation as “if 

BNMBF is positive, the model overestimates the observations by a factor of BNMBF +1” and “if 

BNMBF is negative, the model underestimates the observations by a factor of 1 – BNMBF.” A 

simpler way to think of this, so that only one formula need be remembered, is that the magnitude 

of the model mean under or overestimates the magnitude of the observed mean by a factor of 

1+|BNMBF| with the sign of BNMBF indicating an underestimation, if negative, or overestimation, if 

positive. While not necessary for positive means, as presented above, the addition of the 

language for the magnitude of the means foreshadows the use of the revised metric presented 

below. 

The interpretation of ENMAEF given by YU2006 is that the value of ENMAEF represents the 

ratio of the mean absolute gross error and either the mean observation for the case of 
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overestimation or the mean model value for the case of underestimation. The mean absolute 

gross error is defined as  

 EMAGE 
1

N
Mi Oi  (3) 

where N is the number of samples. A simpler way to think of this is that the ENMAEF is the ratio of 

the mean absolute gross error divided by the smaller of the two means. 

The problem with the above interpretations of BNMBF and ENMAEF when M and O are 

negative is demonstrated in Table I. This table shows the simplest case of comparing a single 

pair of model and observation points, i.e., N = 1 so M1  M  and O1  O. Given this assumption, 

one can quickly calculate the metrics in their head for discussion purposes. The table is broken 

into three sections based on the signs of the means. The column “Factor under/over” indicates 

the factor by which the model under or overestimates the observed mean, defined here as M O  

for M  > O  and O M  for M  < O ; note that the values are all 5. So, based on the desired 

behavior of BNMBF the value of |BNMBF| for these scenarios should equal 4 with the sign of BNMBF 

positive for cases with M > O and negative for M < O. This is indeed the case when both 

means are positive but is not when one or both of them are negative. Likewise for ENMAEF, 

negative means yield misleading results. In our examples when the “factors” equal five, if both 

means have the same sign, EMAGE = 4 and the absolute value of the smallest mean is 1, so the 

desired value of ENMAEF is 4 based on taking the ratio of the two. For the two negative means, 

this does not occur. When the signs of the two means differ, EMAGE = 6 in our case, so ENMAEF 

should be 6, but actually is -6. The sign difference could be considered trivial in this simplistic 

case. However, other scenarios, as demonstrated by the last two lines of the table, result in 

misleading conclusions if ENMAEF is considered EMAGE divided by the smaller mean. 

Given the above problems with interpreting BNMBF and ENMAEF for the case of one or more 

negative means, the revised metrics are defined as: 
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and 
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The formulas for the metrics are very similar to the original versions with the exceptions of: 

using the absolute values of the means in all calculations and conditions; and the additional 

conditions on the signs of the means that makes the metrics undefined if the signs of the means 

differ. 

The resulting values from the original versus the revised formulations are identical for the 

case of positive means. So, existing work using the metrics under these circumstances, e.g. 

Zhang et al. (2006) Sartelet et al. (2007), and Bao et al. (2010), will not have issues regarding 

which version of the metrics were used, and no confusion will result from future work using the 

revised formulations.  For clarity, the defining principles for the definitions are repeated from 

YU2006 with this modification. The revised formulations are predicated on the assumption that 

the metrics should follow the rules outlined below, and we indicate the updated versions of the 

metric using primes to differentiate them from the original formulations.  

For B NMBF the updated rules are: 
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1. The sign of B NMBF indicates whether the magnitude of the model mean under or 

overestimates the magnitude of the observed mean, with B NMBF < 0 indicating M  < 

O , and B NMBF > 0 indicating M  > O . 

2. 1 B NMBF  indicates the factor by which the magnitude of the model mean under or 

overestimates the observed mean. 

3. Because of the first two rules, B NMBF is undefined when the signs of M and O differ. 

4. The range of B NMBF is  NMBFB with a value of 0 indicating the best 

agreement. 

Rule 3 deserves further justification. Unfortunately, if B NMBF is to both indicate model 

under or overestimation along with the factor of that difference from the observations, there is no 

logical way both requirements can hold while simultaneously having B NMBF uniquely identify a 

given situation. Referring again to Table I (also see Figure 1), for the scenario of M = 5 and O = 

-1, the factor overestimation of the model is 5/-1 = -5. Depending on what sign one argues 

should be used for the resulting ratio, based on Rule 2, the corresponding value of B NMBF would 

be either -6 if the ratio were allowed to stay negative, or else 4 if the absolute value of the ratio 

were used. Either one of these values would indicate different model behavior if the signs of the 

means matched, i.e., the values of B NMBF would not uniquely indicate one possible situation. This 

issue is graphically shown in Figure 1, where the different combinations of M and O from Table 

I are shown along with lines indicating different ratios for the factor differences. Note that if the 

signs of the means match there are unique, easily identifiable ratios that can be associated with 

each M and O pairing, as shown by the two quadrants containing the ratio lines. However, if the 

signs of M and O do not match there is no unique way to define the ratio without causing 

confusion with the ratio when M and O have matching signs, as indicated by the lack of ratio 

lines in the two quadrants where the signs differ. Therefore, it is more desirable to limit the 

complete robustness of B NMBF by explicitly making it undefined when the signs of the two means 

differ instead of introducing ambiguity. 

For E NMAEF  the updated rules are: 

1. The value of E NMAEF  indicates the ratio of EMAGEto the smallest of the two means. 

2. The range of E NMAEF  is 0  E NMAEF  , with a value of 0 indicating best agreement. 
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Because B NMBF and E NMAEF  form a pair that together characterize the relationship between the 

model and observation values, we choose to make E NMAEF  undefined when B NMBF is undefined. 

While this is not strictly necessary, since the rules defining E NMAEF  hold when the signs of the 

means differ, this will prevent confusion by users of the metrics. 

Table I shows the values for the revised metrics for the given scenarios. The results now 

can be interpreted consistently across a much wider range of conditions. Interpretations of both 

B NMBF and E NMAEF  hold when the signs of both means match. 

One limitation remains for B NMBF and E NMAEF : the inability to use them for cases when 

the modeled and observed means differ in sign. This limitation does not prevent using B NMBF and 

E NMAEF  when individual points within the analysis contain both signs, only when the signs of the 

means differ. So, with judicious use of the metrics, one can use them in most situations.  

It should also be noted that similar issues to those raised here, regarding the applicability 

of the metrics in YU2006 for negative means, exist for other metrics highlighted in that paper 

besides BNMBF and ENMAEF . For example, the normalized mean bias defined as 

 BNMB 
Mi Oi 

Oi


M

O
1 (6) 

has issues with non-uniqueness and interpretation errors when the sign of the means differ since 

the ratio of the means is offset by the value -1. If M = 1 and O = -2 then BNMB = -1.5, whereas 

the situation of M = -1 and O = 2 results in the same BNMB = -1.5. So, if one was presented with 

the statistic BNMB = -1.5, one would not know if the model over or underestimated the 

observations. Restricting the definition of BNMB so that it only applies when the signs of the two 

means match, similar to what has been done for BNMBF , makes this problem explicit, so users are 

aware of it, and would permit using the metric with two negative means. However, BNMB still 

retains the limitation that it is asymmetric regarding the possible values for over and 

underestimations, as discussed in YU2006, and therefore, using B NMBF is often a better choice. 

The normalized mean absolute error, defined as 

 ENMAE 
Mi Oi

Oi


EMAGE

O
 (7) 



Using unbiased symmetric metrics with negative values 8 

also has issues with going negative when O < 0, which is out of the defined range of values for 

it. However, this is easily remedied by redefining it using the same principles used to redefine 

B NMBF and E NMAEF  resulting in 

 E NMAE 
Mi Oi

Oi


EMAGE

O
 (8) 

so that 0  E NMAE   is guaranteed. 

3. Example interpretation and use of updated metrics 

With the above changes to the metric formulations, the normalized mean bias factor and 

normalized mean absolute error factor can be used for a broader range of applications. The 

benefit of these metrics can be seen through their application. YU2006 presents a good example 

showcasing the simplicity of using B NMBF and E NMAEF  versus other metrics, and the reader is 

referred to that paper for a more detailed discussion. Here, two examples are given. The first is a 

simple example highlighting the subtle change to the metric interpretation. The second is a real-

world example using cloud radiative forcing.  

The idealized, simple example uses the values shown in Table I. If a user were presented 

with a B NMBF of -4 for an observed mean of -5, they could quickly determine that the magnitude 

of the model mean underestimates the magnitude of the observed mean because BNMBF  is 

negative. Next, adding 1 to BNMBF  gives a value of 5, so the magnitude of the model mean 

underestimates the magnitude of the observed model mean by a factor of 5. If one desires, this 

can quickly be used to determine the magnitude of the model  mean using 

  15/)5(1/  NMBFBOM . (When B NMBFindicates an overestimation, the ratio of M  

and O  flips, so one would reconstruct M  using  NMBFBOM  1 .)  In a symmetric manner, if 

the observed mean was 5, instead of -5, then a BNMBF  of -4 would indicate that the value of the 

model mean is 1. While this might sound like a long chain to follow when written in full detail, 

in practice it becomes routine and intuitive. The symmetry of the factor for over and 

underestimation, as well as the symmetry about zero, make the metric appealing. 

A real-world situation where the updated metrics prove useful is the comparison of 

shortwave cloud radiative forcing. Figure 2 shows monthly mean TOAglobal shortwave cloud 
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radiative forcing from March 2000 through February 2012 for observations from the Cloud and 

Earth's Radiant Energy System (CERES) satellite observations (Wielicki et al. 1996) versus 

global climate model output for eight models from the World Climate Research Programme 

(WCRP) Coupled Model Intercomparison Project Phase 3 (CMIP3) (Meehl et al. 2007). The data 

are based on the same dataset used in Dessler (2010) where it was used to analyze cloud 

radiative feedbacks on climate. As can be seen on the graph, some models clearly diverge from 

the 1:1 line, and therefore from realistic behavior. The INM-CM3.0 model underestimates the 

magnitude of the forcing versus observations while the UKMO-HadCM3 overestimates it. The 

corresponding metrics using the updated definitions are shown in Table II. Of the models shown, 

these two represent the two extremes with normalized mean bias factors of -0.33 and 0.27, 

respectively, indicating that the INM-CM3.0 model underestimates the CERES observed mean 

by a factor of 1.33 and UKMO-HadCM3 overestimates the same quantity by a factor of 1.27. 

The corresponding normalized mean absolute error factors for the two models are 0.33 and 0.27, 

respectively, indicating that the average difference between the modeled and observed values is 

approximately a factor of 0.3 times the mean. Because the normalized mean bias factor and 

normalized mean absolute error factor are similar in magnitude, this indicates that the models 

consistently either over or underestimate the observations without a combination of 

overestimates compensating underestimates. If underestimates were compensating overestimates, 

it would bring the two means closer together and the normalized mean bias factor would indicate 

a better agreement than the normalized mean absolute error factor. This is one way that using the 

two metrics together leads to greater insight. An example of this compensating effect can be seen 

for the ECHAM/MPI-OM model where the modeled values straddle the 1:1 line resulting in a 

normalized mean bias factor of 0.03 but a slightly larger normalized mean absolute error factor 

of 0.08. 

4. Conclusion 

It has been shown that the original formulations of the unbiased symmetric metrics 

defined in YU2006 break down for the case when the mean of one or more of the datasets being 

compared is negative. This is not an issue for the application described in YU2006 where the 

datasets always have positive values. However, other applications that involve negative values, 

such as TOA aerosol radiative forcing, could benefit by using a revised formulation of the 

metrics presented here. Using these updated formulas, along with subtle yet important 
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clarifications of how to interpret the metrics as defined in the guidelines used to develop the 

formulas, a broader range of applications can benefit from applying these metrics. 

The simpler interpretation of the metrics presented in Section 2, which originally only 

worked when the means of the model and observations are positive, can now additionally be 

applied to cases when both means are negative by using the updated formulations. To reiterate 

the simple way of thinking about these metrics, in the context of the revised formulation, the 

interpretations are as follows. For B NMBF, the magnitude of the model mean under or 

overestimates the magnitude of the observed mean by a factor of 1+| B NMBF| with the sign of 

B NMBF indicating an underestimation, if negative, or overestimation, if positive. For E NMAEF , 

E NMAEF  is the ratio of the mean absolute gross error divided by the smaller of the two means. 

Both B NMBF and E NMAEF  are undefined when the signs of the two means differ. 
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Tables 

 
Table I: Comparison of the original and revised formulations of the normalized mean bias factor 
and normalized mean absolute error factor. To simplify the example, the means consist of only 
one value. If the modeled and observed datasets had multiple points, the bias and error statistics 
would not always have such similar values. 
 

Scenario   M   O

Factor of 
magnitude 
under/over   S   BNMBF    B NMBF    ENMAEF   E NMAEF 

Both means positive 

>0; >  5 1 5 1 4 4 4 4 

>0; <  1 5 5 1 -4 -4 4 4 

Both means negative 

<0; >  -1 -5 5 -1 -0.8 -4 -0.8 4 

<0; <  -5 -1 5 -1 0.8 4 -0.8 4 

Means have mixed signs 

>0 & <0; >  5 -1 5 N/A -6 N/A -6 N/A 

<0 & >0; <  -1 5 5 N/A 6 N/A -6 N/A 

>0 & <0; >  1 -5 5 N/A -1.2 N/A -1.2 N/A 

<0 & >0; <  -5 1 5 N/A 1.2 N/A -1.2 N/A 
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Table II: Comparison of different metrics for monthly mean top-of-atmosphere global 
shortwave cloud radiative forcing from eight global climate models from CMIP3 versus CERES 
as shown in Figure 2. The correlation, mean bias (MB), and mean absolute gross error (MAGE) 
use the metric definitions directly from YU2006. The normalized mean bias (NMB’), normalized 
mean error (NME’), normalized mean bias factor (NMBF’), and normalized mean absolute error 
factor (NMAEF’) use updated metric definitions requiring matching signs for observed and 
modeled means, and the use of the absolute value of the means in the respective formulas. 
 

Model 
NCAR 
PCM1 

IPSL- 
CM4 

INM- 
CM3.0

UKMO- 
HadCM3

ECHAM5/
MPI-OM 

NCAR 
CCSM3 

GFDL- 
CM2.0 

GFDL-
CM2.1

Mean Obs. -22.16 -22.16 -22.16 -22.16 -22.16 -22.16 -22.16 -22.16 
Mean Model -23.97 -19.09 -16.66 -28.17 -22.76 -23.73 -27.40 -26.59 
Number 119 119 119 119 119 119 119 119 
Correlation 0.78 0.96 0.79 0.83 0.76 0.86 0.73 0.82 
 
Metrics Based on Difference 
MB -1.81 3.07 5.50 -6.01 -0.60 -1.57 -5.24 -4.44 
MAGE 2.11 3.08 5.50 6.01 1.85 1.84 5.24 4.44 
 
Metrics Based on Relative Difference 
NMB’ 0.08 -0.14 -0.25 0.27 0.03 0.07 0.24 0.20 
NMAE’ 0.10 0.14 0.25 0.27 0.08 0.08 0.24 0.20 
NMBF’ 0.08 -0.16 -0.33 0.27 0.03 0.07 0.24 0.20 
NMAEF’ 0.10 0.16 0.33 0.27 0.08 0.08 0.24 0.20 
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Figure 1. Comparison of the combinations of M and O shown in Table I. The gray lines show 
where a given pair of M and O would lie on the graph for different factor differences between 
the two values. 
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Figure 2. Comparisons of monthly mean top-of-atmosphere global shortwave cloud radiative 
forcing (CRF) for eight global climate models versus CERES satellite observations during March 
2000 and February 2010. The 1:1, 2:1, and 1:2 lines are shown for reference. 


