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ABSTRACT: The aim of this work is to develop group-contribution” (GC") method

(combined group-contribution (GC) method and atom connectivity index (CI) method) based
property models to provide reliable estimations of environment-related properties of organic
chemicals together with uncertainties of estimated property values. For this purpose, a
systematic methodology for property modeling and uncertainty analysis is used. The
methodology includes a parameter estimation step to determine parameters of property
models and an uncertainty analysis step to establish statistical information about the quality
of parameter estimation, such as the parameter covariance, the standard errors in predicted
properties, and the confidence intervals. For parameter estimation, large data-sets of
experimentally measured property values of wide range of chemicals (hydrocarbons,
oxygenated chemicals, nitrogenated chemicals, poly-functional chemicals, etc.) taken from
the database of US Environmental Protection Agency (EPA) and from the database of
USEtox ™ is used. For property modeling and uncertainty analysis, the Marrero and Gani GC
method and atom connectivity index method have been considered. In total 22 environment-
related properties, which include the fathead minnow 96-hr LCsy, daphnia magna 48-hr LCso,
oral rat LDs, aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-
TWA), photochemical oxidation potential, global warming potential, ozone depletion
potential, acidification potential, emission to urban air (carcinogenic and non-carcinogenic),
emission to continental rural air (carcinogenic and non-carcinogenic), emission to continental fresh
water (carcinogenic and non-carcinogenic), emission to continental sea water (carcinogenic and non-
carcinogenic), emission to continental natural soil (carcinogenic and non-carcinogenic), emission to
continental agricultural soil (carcinogenic and non-carcinogenic) have been modeled and analysed.
The application of the developed property models for the estimation of environment-related
properties and uncertainties of the estimated property values is highlighted through an

illustrative example. The developed property models provide reliable estimates of
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environment-related properties needed to perform process synthesis, design, and analysis of
sustainable chemical processes and allow one to evaluate the effect of uncertainties of
estimated property values on the calculated performance of processes giving useful insights

into quality and reliability of the design of sustainable processes.

KEYWORDS: group-contribution® (GC*) method, uncertainty analysis, potential

environmental impact, life cycle impact assessment, sustainable process design.
INTRODUCTION

Currently, there is a great deal of interest in the development of computer aided methods and
tools for the process synthesis, design, and analysis of sustainable processes. The design of
sustainable processes require the satisfying of various conditions (or constraints) such as,
increased productivity, minimum energy consumption, reduction in raw materials, recovery
of products, and minimum generation of pollution.1 This task can be effectively accomplished
by using a chemical process simulator (to perform mass and energy balances for the

3 to obtain a

concerned process) together with the waste reduction (WAR) algorithm2'
quantitative measure of the potential environmental impact (PEI) which, as part of the life
cycle assessment (LCA) of process synthesis and design, contributes to identifying
sustainable processing paths and design alternatives. The PEI is a relative measure of the
potential for a chemical to have an adverse effect on human health and the environment.
Several studies in literature™® have reported the application of the WAR algorithm for
generating sustainable process design alternatives and deciding on sustainable process
designs that are environmentally friendly and economically attractive. In the WAR
algorithm, the total PEI of a process is evaluated based on the following eight categories of

potential impacts: (i) human toxicity potential by ingestion, calculated using oral rat LDsg; (ii)

human toxicity potential by exposure both dermal and inhalation, calculated using
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permissible exposure limit (OSHA-TWA); (iii) terrestrial toxicity potential, calculated using
oral rat LDs; (iv) aquatic toxicity potential, calculated using fathead minnow 96-hr LCsg; (v)
global warming potential; (vi) ozone depletion potential; (vii) photochemical oxidation
potential; and (viii) acidification potential. Therefore, the basis for the quantification of PEI is
a set of environment-related properties (such as fathead minnow 96-hr LCs, oral rat LDs,
global warming potential etc.) of chemical substances involved in the process. The USEtox™
model is an environment model for characterisation of human and ecotoxicological impacts
in life cycle impact assessment (LCIA) and Comparative Risk Assessment (CRA) and is
designed to describe the fate, exposure and effects of chemicals.”® The USEtox™ model
calculates characterisation factors for carcinogenic impacts, non-carcinogenic impacts, and
total impacts (carcinogenic + non-carcinogenic) based on the chemical emissions to urban air,
rural air, freshwater, sea water, agricultural soil and/or natural soil. For many chemicals of
interest the experimental data of environment-related properties is not available since the
measurement of these properties are extremely time consuming and expensive. Also,
processes that deal with the synthesis of new chemicals require a suitable property prediction
method in order to obtain reliable estimates of environment-related properties of new
chemicals. A review article by Boethling et al.” discusses available experimental data sources
and various estimation methods including group-contribution (GC) methods, methods based
on quantitative structure-property relationships (QSPR), and correlation equations, to name a

few for obtaining values of environment-related properties of chemicals.

For the estimation of properties of organic chemicals, GC methods such as those reported by
Joback and Reidlo, Lydersen“, Constantinou and Ganilz, and Marrero and GaniB, have been
widely employed to obtain the needed property values since these methods provide the
advantage of quick estimates without requiring substantial computational work. In GC

methods, the property of a chemical is a function of structurally dependent parameters, which

4

ACS Paragon Plus Environment

Page 4 of 54



Page 5 of 54

©CoO~NOUTA,WNPE

Journal of Chemical Information and Modeling

are determined as a function of the frequency of the groups representing the chemical and
their contributions. Among GC methods for estimation of properties of chemicals, the
Marrero and Gani (MG) method"® is well-known. The MG method allows estimation of
properties based exclusively on the molecular structure of the chemical and exhibits a good
accuracy and a wide range of applicability covering chemical, biochemical, and environment-
related chemicals. Note, that for reliable estimation of properties of chemicals using a GC
method, the user needs: (i) a property model; (ii) group definitions (model parameters of the
selected property model) and their contributions; and (iii) a tool to quantify uncertainties
(prediction errors) of estimated property values in order to check the quality (reliability) of
estimation. In many cases, however, the selected property model may not have all the needed
model parameters (that is, groups describing the molecular structure of a given chemical)
and/or their contributions. In such cases where the molecular structure of a given chemical is
not completely described by any of the available groups, the atom connectivity index (CI)
method has been employed together with MG method to create the missing groups and to
predict their contributions."* This combined approach has led to the development of group
contribution” (GC") method of a wider application range than before since the missing groups
and their contributions can now be easily predicted through the regressed contributions of
connectivity indices."*

There are numerous LCA software tools available (for example, SimaPro, GaBi etc.) for
quantification of potential impact that the processes would have on the environment on
average. Most of these tools have built-in databases containing properties of chemicals
needed for the environmental-impact analysis. However, for chemicals that are not included
in the database, a suitable property prediction method is necessary to obtain the needed
environment-related property values which will allow one to perform synthesis, design, and

analysis of sustainable chemical processes. For the estimation of fathead minnow 96-hr LCs
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and aqueous solubility, various GC-methods have been developed. Martin and Young15
developed a GC method to correlate the acute toxicity (96-hr LCsp) to the fathead minnow
using 397 organic chemicals based on the multi-linear regression and computational neural

1."° used a diatomic fragment

networks approach for the parameter estimation. Casalegno et a
approach based GC method to correlate the acute toxicity (96-hr LCsp) of 607 organic
chemicals. For the estimation of aqueous solubility, Marrero and Gani'’ developed a GC
method using a three-level parameter estimation approach (with a dataset of 2087 organic
chemicals used for the regression purpose) and this method requires only molecular structural
information for the estimation of aqueous solubility. There are several other GC methods
available for estimation of aqueous solubility (Klopman and Zhu'®; Kiihne et al.'). For the
estimation of oral rat L.LDsy and bio-concentration factor (BCF), the more common approach
has been to employ correlation equations (for example, bio-concentration factor for a
chemical is estimated using known value of its octanol/water partition coefficient).
Moreover, Martin et al.*’ have developed a hierarchical clustering technique to predict a
variety of endpoints, including oral rat LDsy, BCF, aqueous solubility, fathead minnow LCs
that combines group contributions with descriptors from graph theory. Software platforms
have been developed both in the U.S. (US EPA 2012*'*%) and in Europe (Isitutio Mario Negri
2012%) to predict these same endpoints. The application range and capability of these
estimation equations is limited by the availability of the required property values. To the best
of our knowledge, there are no GC methods reported in the literature for the estimation of
following environment-related properties: permissible exposure limit (OSHA-TWA), global
warming potential, photochemical oxidation potential, ozone depletion potential, acidification
potential, emission to urban air (carcinogenic and non-carcinogenic), emission to continental
rural air (carcinogenic and non-carcinogenic), emission to continental fresh water

(carcinogenic and non-carcinogenic), emission to continental sea water (carcinogenic and
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non-carcinogenic), emission to continental natural soil (carcinogenic and non-carcinogenic),
and emission to continental agricultural soil (carcinogenic and non-carcinogenic). In addition
to the accurate estimation of environment-related properties, it is also important to know the
uncertainties (for example, prediction error in terms of 95% confidence interval) of the
estimated property values that arise due to uncertainties of the regressed parameters of the
selected property model. With this information, it is possible to evaluate the effect of these
uncertainties on the calculated potential impact that the processes would have on the
environment and to verify the quality and reliability of the design of sustainable processes.

Motivated by the preceding literature review and by the need of reliable estimation of
environment-related properties in synthesis, design, and analysis of sustainable processes,
this work aims to develop property prediction models based on the GC™ approach (combined
GC method and CI method) to provide reliable estimates of environment-related properties
together with uncertainties of the estimated property values. For this purpose, a systematic
methodology for property modeling and uncertainty analysis developed by Hukkerikar

et al*

is used. The methodology includes a parameter estimation step to determine
parameters (group/atom contributions, adjustable parameters, and a universal parameter) of
property models and an uncertainty analysis step to establish statistical information about the
quality of parameter estimation, such as the parameter covariance, the standard errors in
predicted properties, and the confidence intervals. For property modeling with a GC method,
the MG method'” has been considered. For property modeling with a CI method, the models
proposed by Gani et al."* have been considered. For parameter estimation, large data-sets of
experimentally measured property values of wide range of chemicals taken from the database
of US Environmental Protection Agency (EPA) and from the database of USEtox™ is used.

In total 22 environment-related properties, which include the fathead minnow 96-hr LCs

(LC50(FM)), daphnia magna 48-hr LC50 (LCso(DM)), oral rat LLDsy, aqueous solubility
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(LogWjy), bioconcentration factor (BCF), permissible exposure limit (PEL(OSHA-TWA)),
photochemical oxidation potential (PCO), global warming potential (GWP), ozone depletion
potential (ODP), and acidification potential (AP), emission to urban air (carcinogenic (EUA()
and non-carcinogenic (EUAy(c)), emission to continental rural air (carcinogenic (ERA() and
non-carcinogenic (ERAnc)), emission to continental fresh water (carcinogenic (EFW¢) and
non-carcinogenic (EFWyc)), emission to continental sea water (carcinogenic (ESW¢) and
non-carcinogenic (ESWyc)), emission to continental natural soil (carcinogenic (ENS¢) and
non-carcinogenic (ENSnc)), emission to continental agricultural soil (carcinogenic (EASc)
and non-carcinogenic (EASnc)) have been modeled and analysed.

The paper first gives a brief overview of the methodology for property modeling and
uncertainty analysis; followed by model performance statistics; and finally, application of the
developed property models for estimation of environment-related properties. Tables
containing list of property model parameters together with parameter values, due to their

large size, are provided as supporting information.

8

ACS Paragon Plus Environment

Page 8 of 54



Page 9 of 54

©CoO~NOUTA,WNPE

Journal of Chemical Information and Modeling

METHODS AND TOOLS FOR PROPERTY MODELING AND

UNCERTAINTY ANALYSIS

MG Group-Contribution Method. In the MG method"” the property estimation is
performed at three levels. The first level has a large set of simple groups that allow for the
representation of a wide variety of organic chemicals. However, these groups only partially
capture the proximity effects and are unable to distinguish among isomers. The second level
of estimation involves groups that provide better description of proximity effects and can
differentiate among isomers. Hence, second level of estimation is intended to deal with
polyfunctional, polar or non-polar, and cyclic chemicals. The third level estimation includes
groups that provide more structural information about molecular fragments of chemicals
whose description is insufficient through the first- and second-order groups; hence, this level
allows estimation of complex heterocyclic and polyfunctional acyclic chemicals. The MG
method includes 220 first-order groups, 130 second-order groups, and 74 third-order groups
to represent the molecular structure of the organic chemicals. The property prediction model

to estimate the properties of organic chemicals employing MG method has the form'?,

f(x):ZNic,. +w;Mij +sz:EkOk 1)
The function f{X) is a function of property X and it may contain additional adjustable model
parameters (universal constants) depending on the property involved. In eq. (1), C; is the
contribution of the first-order group of type-i that occurs N; times. D;is the contribution of the
second-order group of type-j that occurs M; times. Ej is the contribution of the third-order
group of type-k that has Oy occurrences in a component. Eq. (1) is a general model for all the
properties and the definition of f{X) is specific for each property X (see Table- 2 for definition
of f{X) for models of environment-related properties). For determination of the contributions,

Ci, Dj, and E}, Marrero and Gani" suggested a three-step regression procedure.
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e Step I: In this step, the constants w and z are assigned zero values because only
contributions of the first-order groups are estimated, that is, the first-order groups, C;

and the additional adjustable parameters of the model.

f(X)=2NG, 2)

e Step 2: In this step, the constants w and z are assigned unity and zero values,
respectively, because only first and second-order groups are considered. The
regression is performed (by keeping fixed the C; and the adjustable parameters

obtained from step 1) to determine the contributions of the second-order groups, D;.

f(X)=3NC,+wS M,D, 3)
i J

e Step 3: In this step, both w and z are set to unity and regression is performed (by
keeping fixed the obtained C;, D;, and the adjustable parameters obtained from steps 1

and 2) to determine the contributions of the third-order groups, Ej (see eq. 1).

In this way, the contributions of higher levels act as corrections to the approximations of the

lower levels. Hukkerikar et al.**

discussed a new approach for estimating the contributions,
Ci, D;, and E; based on the simultaneous regression method in which regression is performed

by considering all the terms of the eq. (1) to obtain contributions of first-, second-, and third-

order groups in a single regression step.

Atom Connectivity Index (CI) Method. This method employs the following model for the

estimation of properties of organic chemicals':
f(X)zZi:a,.Ai+b(”;(°)+20(”;(1)+d )

Where a; is the contribution of the atom of type-i that occurs A; times in the molecular

structure, V)(O is the zeroth-order (atom) valence connectivity index, V)(l is the first-order
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(bond) valence connectivity index, b and c are adjustable parameters, and d is a universal
parameter. Please note that f{X) of models in the MG method"® and in the CI method'?, (i.c.
left hand side of eq. (1) and eq. (4)) has the same functional form for a particular pure
component property X and the values of universal constants for the CI models are the same as
those for the GC models.

Database. For the estimation of property model parameters, large experimental data-sets of
organic chemicals of various classes (hydrocarbons, oxygenated components, nitrogenated
components, poly-functional components, etc.) from the database of US Environmental
Protection Agency (EPA) and from the database of USEtox™™ is used. The details of data-set
of each property in terms of number of organic chemicals belonging to various classes are
given in Table 1(a) (data-sets from US Environmental Protection Agency (EPA)) and in
Table 1(b) (data-sets from USEtox'™).

Table 1(a). Description of the US EPA Data-sets Used for the Regression Purpose

class of chemicals LCso LCso LDs LogW; BCF PCO PEL GWP ODP AP
EM)  (DM)
hydrocarbons 32 19 69 236 79 337 98 0 0 0
oxygenated 238 54 1382 1110 76 244 127 1 0 0
nitogenated 80 24 397 244 57 8 45 0 0 0
chlorinated 48 37 111 274 71 23 41 5 3 5
fluorinated 1 0 3 21 1 5 4 23 0 0
brominated 10 4 14 47 15 5 7 2 1 0
iodinated 1 0 5 17 0 0 1 0 0 0
phosphorous containing 0 0 5 0 0 0 0 0 0 0
sulfonated 9 8 24 19 5 0 15 0 0 0
silicon containing 0 0 1 2 0 0 0 0 0 0
multifunctional 390 174 3984 2711 352 17 87 20 24 5
total number of chemicals 809 320 5995 4681 662 639 425 51 28 10
11
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Table 1(b). Description of the USEtox™™ Data-sets Used for the Regression Purpose

class of chemicals EUAc EUAxe ERA¢ ERAxe EFWc EFWne  ESWc ESWne  ENSc ENSxc EASc EASxc
hydrocarbons 25 14 18 16 19 14 19 16 18 16 20 16
oxygenated 107 56 96 60 98 57 101 60 96 58 97 58
nitogenated 29 14 27 14 27 13 26 15 27 15 27 14
chlorinated 46 23 43 26 44 27 45 32 45 30 43 28
fluorinated 4 1 4 1 4 1 4 1 4 1 4 1
brominated 6 2 5 2 4 2 5 2 5 3 5 3
iodinated 0 0 0 0 0 0 0 0 0 0 0 0
phosphorous 0 0 0 0 0 0 0 0 0 0 0 0
containing

sulfonated 3 1 3 1 3 1 3 1 3 1 3 1
silicon containing 0 0 0 0 0 0 0 0 0 0 0 0
multifunctional 236 230 274 229 273 230 274 233 262 238 271 231

total number of

L 456 341 470 349 472 345 477 360 460 362 470 352
chemicals

Parameter Estimation and Uncertainty Analysis (Maximum-Likelihood Estimation).
The following discussion on parameter estimation and uncertainty analysis is based on the

methodology discussed by Hukkerikar et al.®

Let the property prediction model be
represented by f and the model parameters (group/atom contributions, adjustable parameters,
and universal parameter) by P. The minimization of a cost function, S(P), defined as the sum
of the squares of the difference between the experimental value, X“?, and evaluated property

value, X", provides the values of unknown parameters P". This implies that P is a set of

model parameter values obtained at the minimum value of the cost function value.

. N 2
S(P):mm ;(XjXP—X}’“’dJ )

The subscript j indicates the chemical evaluated and N is the total number of chemicals
included in the evaluation. After the estimation of the model parameters, uncertainty analysis

is performed to quantify the model prediction errors. In this work, since the proposed models
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for environment-related properties are linear in nature, the following discussion is intended to
provide information on linear least squares theory. For linear least squares, the covariance
matrix of the estimated model parameters, COV(P"), is given by (Seber and Wild®),

cov(p")= 2% (aTa)" ©

Where, SSE is the sum of squared errors obtained from the least-squares parameter estimation
method, v is the degrees of freedom (that is, the total number of measurements, n minus the
number of unknown parameters, m). For the GC model with linear form of f{iX), A is the
matrix containing frequencies (or occurrences) of groups used to represent the chemicals in
the data-set used for the regression. For the CI model with linear form of f{(X), A is the matrix
containing frequencies of atoms and zeroth-order and first-order connectivity index for each
chemical included in the data-set. The covariance matrix computed using eq. (6) is used for
assessing the quality of the parameter estimation. The diagonal elements of this matrix are the
variances of the errors of the parameter estimates and the off-diagonal elements are the

covariances between the parameter estimation errors.

The confidence interval of the parameters, P*, at o, significance level is given as (Seber and

Wild® ; Sin et al.26),

P’ :P*i\/diag[COV(P*)) (v, a,/2) (7

1-¢,

In eq. (7), t(v, o, /2) is the t-distribution value corresponding to the a/2 percentile (o, is
usually a value of 0.05) and diag(COV(P*)) represents the diagonal elements of COV(P*).
The t-distribution value is obtained from the probability distribution function of Students t-

distribution, (Abramowitz and Stegun27), P,(t, v), and is given as,

13
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1
—1¢ ’E(VH)

OZ\/;B(%,%J [(1ex?/v) " ax = B(v) @®)

-t

Where x= and B (1/2, v/2) is the beta function. For 95% confidence interval

v+t
calculation, the value of P,(¢, v) is 0.95. The t-distribution value can also be obtained using

the “tinv” function available in MatLab.

The confidence interval of the predicted property value, X*", at a, significance level is given

as,

X et = X et J_r\/diag[J(P*)COV(P*)J(P*)T] (v, /2) 9

Where, the Jacobian matrix J(P") calculated using ofloP* represents the local sensitivity of

the property model f to variations in the estimated parameter values P’. The X< calculated

from eq. (9) can be used to assess the reliability of the prediction (when experimental data is
available for the property). If the experimental value of the property is within the calculated
confidence interval, then the property prediction method is verified as reliable. When
experimental data is unavailable, the calculated confidence interval provides a measure of the
likely prediction error (uncertainty) of the predicted property value. This information can be
used in the design and analysis of sustainable processes to take into account the effect of
uncertainties of predicted property values on the calculated impact that the processes would
have on the environment (and hence on the decision of selection of sustainable process

design).
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Statistical Performance Indicators. The statistical significance of the developed
correlations in this work is based on the following performance indicators (Hukkerikar et
a1.24).

e Standard deviation (SD): This parameter measures the spread of the data about its

mean value p and is given by,

J J

2
SD - \/z(x‘?xl’—x?r edj /N (10)
j

o Average absolute error (AAE): This is the measure of deviation of predicted property

values from the experimentally measured property values and is given by,

exp _ ypred
X7 -X;

1
AE=LY (an

J
o Average relative error (ARE): This provides an average of relative error calculated

with respect to the experimentally measured property values and is given by,

(x57 = x7) / x5

ARE:lZ %100 (12)
N Jj

e Coefficient of determination (R*): This parameter provides information about the
goodness of model fit. An R? close to 1.0 indicates that the experimental data used in

the regression have been fitted to a good accuracy. It is calculated using,

2 2
w1 (x-x) /¥ -) 03
j J
The indicators SD, AAE, ARE, and R’ provide measures of quality (reliability) of property
prediction models on a global basis. However, it is important that the information of

uncertainties of estimated values also be made available to the user in order to provide

confidence in the estimated property values and hence in the design of sustainable processes.
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RESULTS

In this section, the selection of suitable property models for modeling environment-related
properties and the performance statistics for the developed property models are discussed.
The results are presented for the following models:

e MG method based property models analyzed using step-wise regression method

e MG method based property models analyzed using simultaneous regression method

e CI method based property models

Selection of Suitable Property Models for Environment-related Properties. In this work,
the basis for selecting an appropriate property model for the environment-related property has
been the study of behaviour of that property of certain class of chemicals with increasing
carbon number. This is illustrated for the case of LCso(FM). Figure 1 shows a plot of primary
alcohols with increasing carbon number (propyl alcohol, butyl alcohol, and so on) versus
their experimental values of —Log LCso(FM). It can be seen that this plot is almost a straight

line (with R? value of 0.99) suggesting that the property LCsy (FM) can be modelled using a

linear model of the form —LogLCSO(FM)+Constant:zNiCi+WZM ij+ZZEkOk . Similar
i I k

analysis have been performed (not shown in this paper) to obtain a suitable form of the
property model for other environment-related properties with the objective of providing an

accurate and reliable property estimation of environment-related properties.
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Figure 1. Plot of primary alcohols versus their experimental values of —LogLCso(FM)

Model Performance. The model performance statistics for property models analysed using
the step-wise regression method are provided in Table 2. The model performance statistics
for properties analysed using the simultaneous regression method are given in Table S1 in the
supporting information which can be downloaded from the following link:

http://www.capec.kt.dtu.dk/documents/environment related properties/supporting informati

on.pdf. In Table 2, N is the number of experimental data-points considered in the regression
and v is the degrees of freedom and is obtained by subtracting number of estimated model
parameters from N. P.(i 1), Pw(s s%), and P(s 10%) represents the percentage of the
experimental data-points (N) found within + 1%, £ 5%, and + 10% relative error range
respectively. For property models analysed using step-wise regression method, the results for
Rz, SD, AAE and ARE have been obtained after third-level estimation; hence, they represent
the global results of the three sequential approximations. The residuals (X“”-X"") for data-
points considered in the regression are plotted in the form of residual distribution plots and
are included in Table 2 and Table S1 (note that Table S1 is included as supporting

information). For most of the property models (except for ozone depletion potential and
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acidification potential) the residuals followed a normal distribution curve suggesting that the
assumption of normal distribution of random errors is valid behind the followed approach.
The model performance statistics for property models analysed using the CI method are
provided in Table 3. These CI models have been employed together with the GC method for
creating the missing groups and predicting their contributions through the regressed
contributions of connectivity indices as suggested by Gani et al.'"* This feature makes it
possible to predict environment-related properties of organic chemicals for which neither
experimental data nor the GC-property model parameters are available. The property models
developed based on the CI method (see Table 3) have reasonable model performance
statistics. High accuracy in the prediction of environment-related properties cannot be
expected from this model since, only a few parameters are involved to represent large data-
set of chemicals. Greater accuracy can be obtained by adding higher-order connectivity
indices. However, the main objective of analyzing CI models in this work is to obtain the
missing group contributions, for which only the first two connectivity indices should be
sufficient.'* Hukkerikar et al.** discussed the effect of quantity of experimental data on the
quality of parameter estimation and illustrated that by including all of the available
experimental data of the property in the regression it is possible to improve the predictive
capability and application range of the property model. Therefore, in this work we have
considered all of the available experimental data of properties of chemicals for modeling
environment-related properties. To illustrate this point, we have considered here an analysis
of property model for oral rat LDsg, fathead minnow 96-hr LCsj, and emission to continental
rural air (carcinogenic (ERAc¢) and non-carcinogenic (ERAnc)). The whole experimental
data-sets of these properties (5995 data-points for oral rat LDsy, 809 data-points for fathead
minnow 96-hr LCsy, 456 data-points for emission to continental rural air (carcinogenic

(ERA(), and 341 data-points for emission to continental rural air (non-carcinogenic
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(ERAN())) is divided randomly in 5 subsets (A, B, C, D, and E) of equal size. The property
model is trained on 4 subsets (using simultaneous regression method) and 1 subset is used for
testing purpose. This procedure is repeated 5 times so that all subsets are used for testing
purpose. The results in terms of SD, AAE, and ARE for training sets and for test sets is
presented in Table 4(a) for oral rat LDsy, Table 4(b) for fathead minnow 96-hr LCsy, Table
4(c) for emission to continental rural air (carcinogenic (ERAc) and in Table 4(d) for emission
to continental rural air (non-carcinogenic (ERAnc)). The MSECV, which is mean squared
error of cross-validation (Mevik and Cederkvist*®) calculated using eq. (14) is also given in
Tables 4(a)-4(d).

MSEcvzii 3 (Xj.XP — xpred )2 (14)

L k=1 jeL,
Where, N, is the number of data-points in the training set, K = number of subsets (5 in this

analysis), and Ly is the number of data-points in the subsets.

From Table 4(a), comparison of the model performance for training sets and test sets show
that the predictive capability of the model for oral rat LDsy is fairly good. This is mainly due
to the large amount of available experimental data of oral rat LDs for the training purpose.
For test sets, if we compare the SD, AAE, and ARE values calculated using the parameters
obtained by regressing training set with those that are calculated using the parameters
obtained by regression of the whole data-set, we find that better model performance statistics
(lower SD, lower AAE, and lower ARE) is obtained when we use model parameters that are

estimated using all of the experimental data-points in the regression.

For fathead minnow 96-hr LCs, emission to continental rural air (carcinogenic (ERA()), and
emission to continental rural air (non-carcinogenic (ERAnc)) it can be seen from Tables
4(b)-4(d) that the model performance for test sets is poor as compared to those of training sets
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and this is due to the small amount of available experimental data of these properties for the
training purpose. For these properties, it can be observed that the SD, AAE, and ARE values
for test sets calculated using the model parameters as obtained by regression of the whole
data-set are much better than those that are calculated using the parameters estimated using
the training set indicating the importance of considering all of the available experimental
data-points for the regression purpose. To sum up, this analysis shows both the robustness of
the approach and the predictive capability of the developed models for estimating

environmental related properties.
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Table 2. Performance of MG Method Based Property Models Analysed Using Step-wise Regression Method

sl. property L.H.S. of
no. MG method based MG group-contribution model
property prediction
model f(X):ZNiCi+ZMij+ZEkOk
i j k
S N v R? residual P,. P,. P,. SD AAE ARE ®
distribution plot —(,15)  (se)  Gaow)
1 fathead —LogLCgy(FM) 809 541 0.78 Y 8.53 31.52 5402 0.69 0.48 21.56
minnow 96- .
hr LC50 +FM0
(LCso (FM)) )
in mol/lit 1 ’
2 daphnia -LogLC:,(DM) 320 124 0.82 16.25 39.06 62.50 0.74 0.49 16.16
50 b
magna 48-hr N
LCs +DM, g
(LCso (DM))
in mol/lit
1 rat Y 0.43 0.35 16.40
3 Oﬁ?)ra -LogLDSO- 5995 5617 073 | 1.52 6.92 13.61
50 .
(LDsp) in ALDSO - BLDSOMW N
mol/kg :
0.99 0.73 -—--
4 aqueous LogW. - N 3.12 14.36 28.63
solubility 8Ws 4681 4311 0.78 N
(LogWs)in  Aw, “Bw MW
gm/lit ]
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bioconcentra LogBCF 662 423 0.78 “ 8.91 19.49 30.82 0.63 0.47 -
-tion factor ]
(BCF)

permissible -LogPEL 425 239 0.74 16.71 39.53 60.24 0.78 0.44 12.61
exposure
limit
(OSHA-
TWA) in
mol/lit

photqchgnﬁc -LogPCO 639 488 083 6.42 16.9 26.30
al oxidation ]
potential
(PCO)

0.22 0.13 8.37

0.41 0.29 11.57
global. LogGWP 51 31 087 15.69 3725  56.86
warming

potential

(GWP)

ozone 0.30 0.16 -
depletion LogODP 28 12 0.89
potential

(ODP)

17.86 21.4 28.5

34E-04 2.1E-4
acidification =~ LogAP 10 1 1.0 - 100.0 - -

potential
(ODP)
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11

12

13

14

emission to urban
air (EUA()

in cases/kg emitted
(carcinogenic)

emission to urban
air (EUANC)

in cases/kg emitted
(non-carcinogenic)

emission to
continental rural air

(ERAC()
in cases/kg emitted
(carcinogenic)

emission to
continental rural air

(ERANC)
in cases/kg emitted
(non-carcinogenic)

-Log(EUA() +Agua,

-Log(EUA N )+A BUAL

-Log(ERA( )+AERAC

“Log (ERANC ) +A g, e
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456

341

470

349

214

128

229

134

0.70

0.79

0.75

0.80

o011

16.23

12.90

15.74

13.18
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40.13 63.60
47.80 76.50

39.15 64.89
46.13 75.07

0.70

0.49

0.67

0.55

0.50

0.37

0.51

0.42

10.61

6.80

8.88

7.25
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15

16

17

18

emission to
continental fresh

water (EFW(¢)

in cases/kg emitted
(carcinogenic)

emission to
continental fresh

water (EFWnNc)

in cases/kg emitted
(non-carcinogenic)

emission to
continental sea

water (ESW¢)
in cases/kg emitted
(carcinogenic)

emission to
continental sea

water (ESWnNc)

in cases/kg emitted
(non-carcinogenic)

emission to
continental natural
soil (ENSc)

in cases/kg emitted
(carcinogenic)

-Log (BFW ) +A gy,

-Log (EFWy) +Agpw_

-Log (ESW( ) +A

We

-Log (ESWyc ) +A gy,

-Log(ENS(.) +Apxs,

NC
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472

345

477

360

472

230

131

235

146

231

0.75

0.83

0.81

0.85

0.76

13.77

13.33

15.30

14.16

13.98
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31.77

44.63

37.94

46.38

39.61

60.16

67.82

67.71

72.22

63.55

0.67

0.52

0.79

0.69

0.72

0.52

0.40

0.61

0.51

0.55
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20

21

22

emission to
continental natural
soil (ENSNc)

in cases/kg emitted
(non-carcinogenic)

emission to
continental agri-
cultural soil
(EAS()

in cases/kg emitted
(carcinogenic)

emission to
continental agri-
cultural soil

(EASNC)
in cases/kg emitted
(non-carcinogenic)

Journal of Chemical Information and Modeling

Log(ENSye)+An, 362 148 079 1491 4806  71.27

NC

Log(EASC)+A,,, 470 228 075 13.61 4106 6574

Log(EASNC)+AL, 352 138 080 1619 4829 7471

NC

0.61

0.67

0.54

0.46

0.51

0.41

127

9.36

6.92

* ARE is not defined for LogWs, BCF, ODP and AP since these properties have both positive and negative values.
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Table 3. Performance of CI Method Based Property Models

Page 26 of 54

sl. property L.H.S. of
no. CI method based atom connectivity index (CI) model
property prediction
model f(X):Zal.A,.+b(V;(°)+2c(V;(1)+d
i
SX N v R? residual P, P, P, SD AAE ARE®
distribution plot (15, )  (se)  (ea0w)
1 fathead ~LogLC.,(FM) 809 796 0.56 3.96 16.70 34.20 0.98 0.75 40.47
minnow 96- 50 .
hr LCso +FM, i
(LCso (FM)) n:
in mol/lit N /RN
2 daphnia -LogLCsy(DM) 320 307 0.58 by 5.0 2281  40.94 1.14 0.85 35.21
magna 48-hr 0 2
LCs +DM,
(LCso (DM)) o
in mol/lit L
0.48 0.40 18.49
1 rat o
3 oiell)ra -LogLDSO— 5662 5647 0.60 " 1.02 5.35 11.48
50
(LDsp) in Appso ~BrpsoMW B
mol/kg .
: 1.29 0.98 -
Y iy o8 (Ws)- 4681 4676 062 . 222 998 1980
(LogWs)in  Aw, "By MW ;
gm/lit

ACS Paragon Plus Environment



Page 27 of 54

©CoO~NOUTA,WNPE
(9]

35 10

bioconcentra
-tion factor
(BCF)

permissible
exposure
limit

(PEL) in
mol/lit

photochemic
al oxidation
potential
(PCO)

global
warming
potential
(GWP)

ozone
depletion
potential
(ODP)

acidification
potential
(ODP)

LogBCF

-LogPEL

-LogPCO

LogGWP

LogODP

LogAP

662

411

621

51

28

Journal of Chemical Information and Modeling

648

397

607

37

14

0.53

0.64

0.51

0.83

0.83

1.00

g

27

1.66

4.87

1.61

9.80

7.14

70.0
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6.19 12.54 0.92
16.79 33.09 0.78
4.83 8.05 033
31.37  50.98 048

10.71 14.30 037
100.0 -
0.0014

0.74

0.61

0.27

0.36

0.25

802E-04

20.10

16.65

15.52
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11

12

13

14

emission to urban
air (EUA()

in cases/kg emitted
(carcinogenic)

-Log(EUA() +Agua,

emission to urban
air (EUANC)

in cases/kg emitted
(non-carcinogenic)

emission to
continental rural air

(ERAC()
in cases/kg emitted
(carcinogenic)

-Log(ERA( )+AERAC

emission to
continental rural air

(ERANC)
in cases/kg emitted
(non-carcinogenic)

-Log(EUA N )+A BUA

“Log (ERANC ) +A g e
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232

259

226

257

220

247

214

245

0.66

0.66

0.79

0.74

RANEEE BENA)

0

RN N

PN A A

0 05 1 1S

28

5.17 40.08 83.18

7.72 40.92 69.11

11.94 49.55 88.05

7.78 39.69 68.48
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0.40

0.49

0.39

0.53

0.34

0.41

0.32

0.44

6.36

7.50

5.43

7.57

Page 28 of 54



Page 29 of 54

©CoO~NOUTA,WNPE

15

16

17

18

emission to
continental fresh

water (EFW(¢)

in cases/kg emitted
(carcinogenic)

emission to
continental fresh

water (EFWnNc)

in cases/kg emitted
(non-carcinogenic)

emission to
continental sea

water (ESW¢)
in cases/kg emitted
(carcinogenic)

emission to
continental sea

water (ESWnNc)

in cases/kg emitted
(non-carcinogenic)

emission to
continental natural
soil (ENSc)

in cases/kg emitted
(carcinogenic)

-Log (EFW( ) +A gy,

-Log (EFWy) +Agpwy_

-Log (ESW( ) +A

We

-Log (ESWyc ) +A gy,

-Log(ENS(.) +Apxs,

NC
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286

259

286

291

285

274

247

274

279

273

0.65

0.70

0.78

0.77

0.61

7.34

9.26

4.89

5.84

6.66
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36.36

33.59

35.31

32.30

38.59

61.53

60.61

75.17

65.63

74.38

0.52

0.54

0.62

0.72

0.52

0.44

0.44

0.54

0.60

0.4

8.51

9.02

720

8.76

6.89
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20

21

22

emission to
continental natural
soil (ENSNc)

in cases/kg emitted
(non-carcinogenic)

emission to
continental agri-
cultural soil
(EAS()

in cases/kg emitted
(carcinogenic)

emission to
continental agri-
cultural soil

(EASNC)
in cases/kg emitted
(non-carcinogenic)

Log (ENSye ) +A prg

NC

-Log(EAS ) +A, as,

Log(EASNc ) +Apag

NC

Journal of Chemical Information and Modeling

247

240

247

235 0.70 9.31 39.67 72.06
228 0.68 8.33 42.50 88.33
235 0.70 1y 8.50 40.89 74.08

0.53

0.42

0.49

0.45

0.36

0.42

7.08

5.76

6.94
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* ARE is not defined for LogWs, BCF, ODP and AP since these properties have both positive and negative values.
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Table 4(a). Performance of Model for Oral Rat LDsy Based on Different Combinations of Training Sets and Test Sets

datasets used for

model performance statistics for training set

model performance statistics for test set using
the parameters estimated from regression of
the training set

model performance statistics for test set using
the parameters estimated from regression of
the whole data-set (containing 5995 data-

points)

training testing MSECV SD AAE ARE SD AAE ARE SD AAE ARE
purpose purpose Log(mol/kg) Log(mol/kg) % Log(mol/kg) Log(mol/kg) % Log(mol/kg) Log(mol/kg) %o

A,B,C,D E 0.1812 0.4257 0.3479 1597 0.4628 0.3732 17.32 0.4220 0.3424 1591
A,B,C,E D 0.1796 0.4238 0.3456 15.90 0.4755 0.3839 17.72 0.4287 0.3506 16.21
A,B,D,E C 0.1805 0.4248 0.3462 1597 0.4754 0.3823 17.23 0.4251 0.3500 15.90
A,C,D,E B 0.1788 0.4229 0.3449 15.89 0.4677 0.3813 17.20 0.4338 0.3536 16.00
B,C,D,E A 0.1794 0.4236 0.3455 15.86 0.4694 0.3848 17.93 0.4302 0.3532 16.46
average performance 0.1799 0.4241 0.3460 1591 0.4701 0.3811 17.48 0.4279 0.3499 16.09

Table 4(b). Performance of Model for Fathead Minnow 96-hr LCs, Based on Different Combinations of Training Sets and Test Sets

datasets used for

model performance statistics for training set

model performance statistics for test set using
the parameters estimated from regression of
the training set

model performance statistics for test set using
the parameters estimated from regression of
the whole data-set (containing 809 data-

points)

training testing MSECV SD AAE ARE SD AAE ARE SD AAE ARE
purpose purpose Log(mol/kg) Log(mol/kg) % Log(mol/kg) Log(mol/kg) % Log(mol/kg) Log(mol/kg) %o

A,B,C,D E 0.3400 0.5831 0.4015 19.68 1.3753 0.8615 27.04 0.6732 0.4786 15.68
A,B,C E D 0.3339 0.5778 0.3991 19.10 1.3944 0.9325 2891 0.6854 0.4778 17.65
A,B,D,E C 0.3624 0.6020 0.4237 14.99 1.3517 0.9127 47.19 0.6581 0.4802 33.19
A,C,D,E B 0.3645 0.6037 0.4201 20.39 1.4857 0.9072 28.26 0.6399 0.4654 14.62
B,C,D,E A 0.3453 0.5876 0.4142 17.62 1.5178 0.9710 35.12 0.6722 0.4831 21.19
average performance 0.3492 0.5908 04117 18.35 1.4249 0.9169 33.30 0.6657 0.4770 20.47
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Table 4(c). Performance of Model for Emission to Urban Air (Carcinogenic) Based on Different Combinations of Training Sets and Test

Sets

datasets used for

model performance statistics for training set

model performance statistics for test set using
the parameters estimated from regression of

the training set

model performance statistics for test set using
parameters estimated from regression of the

whole data-set (containing 456 data-points)

training testing MSECV SD AAE ARE SD AAE ARE SD AAE ARE
purpose purpose Cases/kg Cases/kg % Cases/kg Cases/kg % Cases/kg Cases/kg %o
emitted emitted emitted emitted emitted emitted

A,B,C,D E 0.2050 0.4528 0.3024 5.86 1.8293 1.1974 27.82 0.5386 0.4135 9.16
A,B,C,E D 0.2206 0.4697 0.3252 6.55 1.4664 0.9823 17.63 0.4766 0.3534 6.60
A,B,D,E C 0.1675 0.4093 0.2871 5.52 1.6849 1.2268 25.79 0.6160 0.4165 9.52
A,C,D,E B 0.2111 0.4595 0.3052 6.42 2.0921 1.3187 24.12 0.4854 0.3480 6.33
B,C,D,E A 0.2182 0.4671 0.3267 6.63 1.3597 1.0115 19.55 0.4572 0.3478 6.55
average performance 0.2045 0.4517 0.3093 6.19 1.6865 1.1473 2298 0.4713 0.3479 6.44

Table 4(d). Performance of Model for Emission to Urban Air (Non-Carcinogenic) Based on Different Combinations of Training Sets and

Test Sets

datasets used for

model performance statistics for training set

the training set

model performance statistics for test set using
the parameters estimated from regression of

model performance statistics for test set using
parameters estimated from regression of the

whole data-set (containing 341 data-points)

training testing MSECV SD AAE ARE SD AAE ARE SD AAE ARE
purpose purpose Cases/kg Cases/kg % Cases/kg Cases/kg % Cases/kg Cases/kg %o
emitted emitted emitted emitted emitted emitted

A,B,C,D E 0.0655 0.2560 0.1716 3.14 2.3797 1.4854 26.38 0.3872 0.2801 5.03
A,B,C,E D 0.0997 0.3157 0.2217 4.12 1.7248 1.0980 19.22 0.3693 0.2708 4.89
A,B,D,E C 0.0831 0.2882 0.1894 3.50 2.4662 1.5963 30.72 0.3684 0.2615 5.01
A,C,D,E B 0.0846 0.2909 0.1936 3.51 3.0908 1.6401 29.28 0.3980 0.3007 5.62
B,C,D,E A 0.1097 0.3313 0.2289 4.23 8.7061 3.9458 80.85 0.3096 0.2166 3.80
average performance 0.0885 0.2964 0.2010 3.69 3.6735 1.9531 37.28 0.3665 0.2659 4.87
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Marrero and Gani' reported SD, AAE, and R’ values for the GC model for LogW; as 0.55,
0.46 and 0.93 respectively. In their analysis, the number of estimated model parameters
(groups) are 155 first order groups, 99 second order groups, and 48 third-order groups (that
is, total 302 groups estimated out of 424 groups). Referring to the Table 2, it can be seen that
the property model for LogW, has SD, AAE, and R® values of 0.99, 0.73, and 0.78
respectively. In this work, the number of estimated groups are 197 first order groups, 124
second order groups, and 57 third-order groups (total 378 groups estimated out of 424
groups). It is to be noted that in the present work, a much larger data-set (4681 data-points as
compared to 2087 data-points used by Marrero and Gani'®) of LogW, comprising complex
and polyfunctional environment-related chemicals is used in the regression, which makes it
possible to estimate larger number of model parameters thereby contributing to improved
application range of the property model for LogWs. A similar note can be made for the case
of property model for LCso(FM). The developed property model for LCso(FM) has SD, AAE,
and R? values of 0.69, 0.48, and 0.78 respectively. Martin and Young15 reported SD and R’
values for their GC model for LCso(FM) as 0.37 and 0.91 respectively. The use of the large
data-set for LCsy (FM) allows estimation of a large number of model parameters which in
turn allows one to estimate LCsyp (FM) for a wide range of organic chemicals. For the
property LCso(DM), the model performance statistics are similar to that of LCso(FM) model.
The developed property model for LDs (using a data-set of 5995 chemicals) has reasonably
good performance statistics with SD, AAE, and R? values as 0.43, 0.35 and 0.73 respectively.
Several estimation methods based on the QSAR approach have been reported in the literature
that uses other properties such as LCso(DM) as an input to their estimation method to
estimate L.Dsj. Also, these methods have been developed based on relatively smaller data-sets
(with few hundreds of chemicals in the data-set) of chemicals. The application of such

methods is restricted by the availability of the experimental data of the needed input
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properties for their estimation. A similar issue is associated with the estimation methods for
BCEF requiring additional inputs such as the octanol/water partition coefficient. In this work,
the developed property model for BCF has SD, AAE, and R? values of 0.63, 0.47, and 0.78
respectively. Note, that the developed property models for LDsyand for BCF only require the
molecular structure of the chemical for the property estimation. For properties GWP, ODP,
and AP the number of experimental data points used in the regression are smaller as
compared to other properties analysed in this work. However, it can be noted that these
properties belong to a particular class of chemicals (for example, global warming potential
and ozone depletion potential properties involve halogenated chemicals, acidification
potential property involves nitrogenated chemicals); hence, even though the experimental
data-sets are smaller, the models for these properties are able to provide estimation of these
properties with good accuracy. The model performance statistics for the remaining properties
namely, EUA¢, EUANc, ERAc, ERANe, EFWe, EFWne, ESWe ESWne, ENS¢, ENSne,
EASc, and EASNnc show that the experimental data have been fitted to a good degree of
accuracy. The estimation of these properties is based exclusively on the molecular structure
of the chemical and allows the user to calculate Human Toxicity Potential (HTP) 8 (which is
needed to perform life cycle impact assessment of the product) thus increasing the application

range of the USEtox " model to a wide range of chemicals.
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The variables FMy, DMy, Aroews, Brogws ALpso, BLpso, Apuac, Aruane; AErRAc; AERANe; AEFWe,
Agrwxes Aeswe, Arswne ABNsc, AENsnes ABasc, Apasnc as defined in the functional forms, f(X)
given in Tables 2-3 are additional adjustable parameters of property prediction models. The
values of these parameters are listed in Table 5. The total list of groups and their
contributions C;, Dj, and E; for the 22 environment-related properties analysed in this work
are given in the supporting information (see Tables S2-S4 for MG method based models
analysed using step-wise regression method, and Tables S5-S7 for MG method based models
analysed using simultaneous regression method). The list of atoms, their contributions a;,
adjustable model parameters (b and c), and the universal parameter d for CI method based
property prediction models are given in the supporting information (see Table S8). The
covariance matrix computed using eq. (6) for each property prediction model analyzed using
the MG method (for models with step-wise regression method and simultaneous regression
method) and using the CI method is available upon request from the authors. The developed
models for environment-related properties (for LCso(FM), LCs0(DM), LDsy, LogW,, BCF,
PEL(OSHA-TWA), PCO, GWP, ODP, and AP) have been implemented in ProPred, a
property estimation toolbox of ICAS ® (Integrated Computer Aided Systeng) software

developed by CAPEC, DTU.
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Table 5. Values of Universal Constants (Additional Adjustable Parameters)

universal constants value (step-wise method) value (simultanous method)
FM, 2.1949 2.1841
DM, 2.9717 3.5907
Apogws 4.5484 4.3098
B Logws 0.3411 0.3404
Arpso 1.9372 1.9372
B Lpso 0.0016 0.0016
AEuac 5.2801 5.22536
AEUANc 6.8181 7.06605
AgRrac 6.5561 6.68611
AERANC 7.5541 9.53269
AErwc 5.6726 5.0706
AErFwne 6.4429 7.33378
Agswc 8.3962 9.33319
AEswne 8.6360 10.0724
AEgNsc 6.4837 5.93334
AENSsne 7.0265 6.4159
AEasc 6.2913 5.48504
AEAsnc 6.9723 6.06003

* values of universal constants for the CI models are the same as those based on the step-wise method.

Application of the Developed Property Models for the Estimation of Environment-
Related Properties. The application of the developed property models to estimate properties
of environment-related properties and to quantify the uncertainties of the estimated property
values is illustrated by considering predictions of LogWj (using model parameters obtained
from simultaneous regression method) for the chemical, Benzo[a]pyrene, (CAS No. 50-32-8)
which is a polycyclic aromatic hydrocarbon and is highly carcinogenic. The experimentally
measured value of LogW, (mg/L) for Benzo[a]pyrene is -2.79. Table 6 provides information
of first-order, second-order, and third-order groups used to represent Benzo[a]pyrene, their
frequency (that is, occurrences in the structure) and the contributions for each group
(LogWys, LogWyy;, and LogW,3) taken from Tables S5-S7 given in the supporting
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information. Using this information and the universal constants of the property model for

LogW;,, the value of LogW; for Benzo[a]pyrene was estimated as -2.64 (with absolute error =

-2.79 — (-2.64)l = 0.15).

Table 6. Estimation of LogW; of Benzo[a]pyrene

molecular structure

Benzo[a]pyrene

CAS No. 50-32-8

molecular formula: C,yH,

first-order groups occurrences contribution
aCH 12 -4.5565
aC fused with aromatic ring 8 -4.7557
second-order groups occurrences contribution
No second-order groups are involved
third-order groups occurrences contribution
AROM.FUSED|[2] 1 -0.0759
AROM.FUSED[3] 1 -0.1255
AROM.FUSED[4p] 2 0.0500

LogW, = ALOgWS +(B

LogWs

MW)+ D NG+ MD;+2) E,0, =-2.64
i J k

note: estimated value of LogW; using Marrero and Gani (2002) method = -2.20
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As a next step, the uncertainty of the estimated LogW; is quantified. For this purpose,
information of covariance C OV(P*) of the involved groups and the universal constants Apogws
and B 1oews and also the local sensitivity J(P") of the LogW, model is needed. The covariance
of the involved groups (as listed in Table 7) and universal constants Ajoews and Bpogws was
noted from the overall covariance matrix for all the groups of the LogW, model analysed
using simultaneous regression method. In Table 7, only lower triangular elements are shown
since the upper triangular matrix elements are identical to the lower ones. Table 8 lists the
local sensitivity of the LogW model with respect to the model parameters (for contributions

listed in Table 6 and universal constants Ap,ews and Byogws).

Table 7. Covariance Matrix COV(P*) with Dimensions (7x7)

ALogWs BLqus aCH aC AROM.FUSED|2] AROM.FUSED|3] AROM.FUSED[4p]
Alogws 0.0154

Bpogws -1.28E-07 4.97E-07

aCH -0.0025 8.1E-06  6.71E-04

aC -0.002 -47E-06  -3.7E-04  0.0048

AROM.FUSED[2]  77E.05 -43E-06 -59E-04  -0.0047  0.0113

AROM.FUSED[3]  _0.0013 2.4E-06 -89E-06 -0.0084  0.0111 0.0375

AROM.FUSED[4p]  _4.5E-04 1.6E-06  825E-06 -0.0092  0.009 0.0136 0.0283

Table 8. Local Sensitivity J(P") with Dimensions (1x7) of LogW; Model with Respect to

the Model Parameters

dLogWsl dLogWs / dLogWs / dLogWs / dLogWs / dLogWs / dLogWs /
5ALogWs 5BLogWs /8aCH /8aC 3 AROM.FUSED|2] 8 AROM.FUSED[3] 3 AROM.FUSED[4p]
1.0 252.31 12 8 1 1 2

To calculate the confidence intervals of estimated property values, say the 95% confidence

intervals of the estimated LogW; value, the covariance matrix COV(P*) given in Table 7 and
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the local sensitivity J(P given in Table 8 are substituted in eq. (9). For 95% confidence
interval calculation, the t-distribution value corresponding to 0.05 /2 percentile (i.e. o, /2
percentile) and with 4311 degrees of freedom (taken from Table 2) is obtained by solving eq.
8 for ¢ and this value is 1.9604. The predicted value of the LogWj is -2.64 (see Table 6). The

calculated 95% confidence intervals of the estimated LogW value is therefore,

LogW, 7 =LogW, " ir\/diag(J(P*)COV(P*)J(P*)Tj. t(v.a,[2) =-2.64£041

s (1-005)
—264 02134 19604

It can be observed that the experimental value of the LogW (-2.79) lies within the predicted
confidence intervals indicating reliability of the developed model for estimating property
values of LogW; and uncertainties of the estimated values. This, of course, can only be
checked when experimental data is available. This is further illustrated in Figure 2 by plotting
the experimental values of LogW; and the calculated 95% confidence intervals (shown as
vertical bars) for the entire experimental data-set of LogW; used for the regression purpose.
About 42% of the experimental values in the data-set (with 4681 data points) of LogW; falls

within the confidence intervals calculated at 95% confidence level.
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Figure 2. Experimental values of LogW; and the calculated 95% confidence intervals versus

data-set of LogW;

Data-set of LogWs
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For the case where no experimental data is available, the calculated confidence intervals
provide a measure of the likely prediction (that is, uncertainty) error of the predicted property
value. We have considered here the calculation of confidence intervals of the estimated
property values using models analysed by simultaneous regression method in order to
simplify the illustration of the application of the developed property models, since there will
be a single covariance matrix containing covariance of all the listed groups and universal
parameters. The approach discussed in this section is the same for the case of property
models analysed using the step-wise regression method. In the case of step-wise regression
method, there will be a covariance matrix for each type of the groups, i.e., first-order, second-
order and third-order and hence, quantification of uncertainty in the predicted property value
is to be performed (using these covariance matrices) for each step (that is stepl, step 2, and

step 3) of property estimation.

CONCLUSIONS

Property models for environment-related properties based on the GC" approach have been
developed with the objective of providing reliable estimation of these properties together with
the uncertainties of the estimated values for their use in the synthesis, design, and analysis of
sustainable processes. The estimation of environment-related properties using these models
requires only the molecular structure of the organic chemicals. Large experimental data-sets
of environment-related properties taken from the database of US Environmental Protection
Agency (EPA) and from the database of USEtox™ are used for the regression purpose in
order to achieve good model performance and large application range of the property models.
In total 22 environment-related properties of organic chemicals have been modelled and
analysed. The use of the developed property models to estimate environment-related

properties and the uncertainties of the estimated property values is illustrated through an

41

ACS Paragon Plus Environment



©CoO~NOUTA,WNPE

Journal of Chemical Information and Modeling

application example. The models for some of the properties analysed in this work have been
implemented in ProPred, a property estimation toolbox of ICAS ® (Integrated Computer
Aided System) software. The developed property models provide reliable estimates of
environment-related properties needed to perform design and analysis of sustainable
processes and allow one to evaluate the effect of uncertainties of estimated property values on
the calculated potential impact that the processes would have on the environment giving
useful insights into quality and reliability of the design of sustainable processes. Our current
and future work is focused on quantification of the effect of uncertainties of estimated

properties on the design of sustainable processes.
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ABBREVIATIONS

AAE average absolute error

a; contribution of atom of type-i
A; occurrence of atom of type-i
ARE average relative error [%]

b adjustable parameter of Eq. (6)

B (1/2,v/2)  beta function

CI

Ci

adjustable parameter of Eq. (6)

atom connectivity index

contribution of first-order group of type-i

COV(P*) covariance matrix

Ex
0
GC
GC*
J(P*)

MG

universal parameter of Eq. (6)

contribution of second-order group of type-j

contribution of third-order group of type-k

function of property X

group-contribution

group-contribution”

local sensitivity of the model to variations in estimated model parameters

Marrero and Gani
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M; occurrence of second-order group of type-j

MSECYV mean squared error of cross-validation

N number of experimental data-points used in the regression
N; occurrence of first-order group of type-i

Oy occurrence of third-order group of type-k

P model parameters

P estimated values of model parameters

P.(t, v) Students t-distribution function

| percentage of the experimental data-points [%]

R universal gas constant [cc-bar/mol-K]

R’ coefficient of determination

S(P) cost function

SD  standard deviation

SSE  minimum sum of squared errors

t(v, o, /2) t-distribution value corresponding to the a,/2 percentile
X“?  experimental property value

X7 predicted property value

Greek Symbols

VXO zeroth-order (atom) connectivity index
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e first-order (bond) connectivity index
v degrees of freedom
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Table S5. MG Method Based Property Models Analysed Using Simultaneous Regression

Method: First-Order Groups and their Contributions for the Environment-Related Properties

Table S6. MG Method Based Property Models Analysed Using Simultaneous Regression

Method:  Second-Order Groups and their Contributions for the Environment-Related

Properties

Table S7. MG Method Based Property Models Analysed Using Simultaneous Regression

Method: Third-Order Groups and their Contributions for the Environment-Related Properties

Table S8. CI Method Based Property Models: Atom Contributions and Model Constants for

the Environment-Related Properties
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Table S1. Performance of MG Method Based Property Models Analysed Using Simultaneous Regression Method

sl. property L.H.S. of
no. MG method based MG group-contribution model
property
prediction model f(X)=ZNI.CI- +ZM].D]. +;Ek0k
i j
fX) N v R? residual Prc Prc Prc SD AAE ARE 2
distributionplot (10} (4s%)  (+10%)
1 fathead —LogLCSO(FM) 809 541 0.81 j 9.64 33.00 57.11 0.63 0.45 20.14
minnow 96- j
hr LCso +FMo
(LCso (FM)) !
in mol/lit T
2 daphnia -LogLCs(DM) 320 124 0.87 | 28.75 4813  67.50 0.61 0.38 11.19
magna 48- .
hr LCso +DM,
(LCso (DM))
in mol/lit
0.42 0.35 16.09
1 Rat -
3 ‘ESSO a -LogLD50- 5995 5617 074 187 796 1418
(LDsp) in ALDSO - BLDSOMW
mol/kg
0.97 0.71
4 aqueous log(W- )- 3.23 14.80  28.97
solubility g(Ws ) 4681 4311 0.79
(LogWs) in Ay, -By MW
gm/lit
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bioconcentr
ation factor
(BCF)

permissible
Exposure
Limit
(PEL))in
mol/lit

photochemi
cal
Oxidation
Potential
(PCO)

global
Warming
Potential
(GWP)

ozone
Depletion
Potential
(ODP)

acidification
Potential
(ODP)

LogBCF

-LogPEL

-LogPCO

LogGWP

LogODP

LogAP

662

425

639

51

28

423

239

488

31

12

0.80

0.78

0.86

0.87

0.89

1.0

9.37

23.53

5.95

15.69

17.86

100.0

20.85

48.47

18.31

37.25

21.43

30.36

65.88

28.64

56.86

28.5

0.60

0.72

0.20

0.41

0.30

3.4E-04

0.44

0.38

0.12

0.29

0.16

2.1E-4

11.02

6.60

11.57
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12

13

14

emission to urban
air (EUA()

in cases/kg emitted
(carcinogenic)

emission to urban
air (EUANC)

in cases/kg emitted
(non-carcinogenic)

emission to
continental rural air
(ERAC)

in cases/kg emitted
(carcinogenic)

emission to
continental rural air
(ERANC)

in cases/kg emitted
(non-carcinogenic)

-Log(EUAG )+Ag, A

-Log ( EUANC ) +AEUA

NC

-Log(ERAG )+AERAC

-Log ( ERANC ) +AERA

NC

456

341

470

349

214

128

229

134

0.84

0.88

0.83

0.87

1 0 1 7 3 ¢

15

F R T

15

23.03

27.57

20.43

26.36

48.90

60.70

45.53

55.30

75.22

84.46

71.91

80.52

0.51

0.36

0.56

0.45

0.36

0.26

0.42

0.32

7.42

4.87

7.18

5.50
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emission to 'LOQ(EFWC)+AEFW 472 230 0.83 y 20.34 41.95 68.43 0.55 0.41 8.87
continental fresh c

water (EFWc¢) 1
in cases/kg emitted

(carcinogenic)

emission to 'LOg(EFWNC )+AEFW 345 131 0.89 1 23.19 52.75 77.97 0.42 0.31 6.33
continental fresh ne

water (EFWnc)

in cases/kg emitted "
(non-carcinogenic)

2045 4 05 0 05 115

emission to -Log(ESWC )+AESW 477 235 0.87 t 22.22 46.96 76.10 0.63 0.48 6.72
continental sea ¢ 1

water (ESW(¢) Y
in cases/kg emitted .
(carcinogenic)

71 0 1 1 3

emission to 'LOg(ESWNC )+Aesw 360 146 0.91 1 23.33 58.06 80.56 0.52 0.38 6.06
continental sea ne

water (ESWnc¢)

in cases/kg emitted 1§
(non-carcinogenic)

emission to Log(ENSg )+A,, +B . XN 460 219 0.84 ; 24.13 50.00 76.52 0.52 0.38 6.22
continental natural © .

soil (ENSC) [k
in cases/kg emitted

(carcinogenic)
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20 emission to 'LOg(ENSNC )+AENS 362 148 0.85 & 23.48 55.25 77.90
continental natural Ne
soil (ENSnc)
in cases/kg emitted
(non-carcinogenic) N

21  emission to 'LOQ(EASC)+AEAS 470 228 0.84 y 22.34 47.23 73.83
continental agri- ¢
cultural soil
(EASC)
in cases/kg emitted
(carcinogenic) R R R

22 emission fo -Log(EAS\c )*Ags 392 138 087 e 2386  56.53  82.39
continental agri- Ne
cultural soil )

(EASNC)
in cases/kg emitted
(non-carcinogenic)

0.51

0.53

0.44

0.37

0.40

0.32

5.91

6.91

5.30

a ARE is not defined for LogWs, BCF, ODP and AP since these properties have both positive and negative values.
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Table S2. MG Method Based Property Models Analysed Using Step-Wise Regression Method: First-Order Groups and their Contributions ? for the

Properties= LCso(FM), LCs(DM), LDso, LogW,, BCF, PEL(OSHA-TWA), PCO, GWP, ODP, and AP.

Group LC50(FM)ui  LC50(DM)1i LD503; LogWsii BCFui PELi PCOu; GWPy; ODPy; AP
1 CHs 0.0972 -0.0386 -0.0742 -5.2494 0.6657 0.7723 0.1227 0.3880 -0.9453 -0.1290
2 CH: 0.2885 0.1710 0.0223 -5.0706 0.0948 0.0727 0.0463 -1.0699 Hokokok HEkK
3 CH 0.2441 -0.1654 0.1335 -4.8948 -0.3921 -0.6557 -0.0790 okkok HAokk okkok
4 C -0.3822 0.4640 0.2641 -4.6277 -0.9137 -1.3404 -0.0434 Hokokok ook kK
5 CH,=CH 1.0340 0.1698 0.1087 -9.6240 0.7712 2.2638 -0.2572 ok Hon oo
6 CH=CH 0.3890 -0.2512 0.0977 -9.5597 Hhkx 0.7658 -0.5513 okkok Hkk *Hkx
7 CH2=C 0.5436 0.5657 0.1358 -9.4175 -0.1358 0.1652 -0.3932 Hokkok Aofetok Hokkok
8 CH=C 0.5902 0.6270 0.2376 -9.4095 -0.0639 -0.7468 -0.6306 okkok Hkk *Hkx
9 Cc=C 0.8302 0.2129 0.3451 -9.0081 -0.1808 -1.2669 -0.6010 okkok Hkk *Hkx
10 CH2=C=CH sokokosk s*okkok sokokok s*kokokok sokokok *okkok *okkok skokokok *okkok skokokok
11 CH,=C=C sokokok sokkok sokokok sokkok seokokok sokkok sk sokokok $okkok sokokok
13 CH=C 0.7491 Hoxkok 0.0609 -9.0073 Hokokok 3.0138 -0.3025 sk seokokok Kk
14 C=C 1.6682 -0.2044 0.3876 -8.6808 Hhkx ok -0.9074 kX okkok okokok
15 aCH 0.1530 0.0743 0.0230 -4.6135 0.2561 0.4045 0.0137 Hokkok Aofetok Hokkok
16 aC fused with aromatic ring 0.1782 0.2851 0.0398 -4.7032 -0.0341 0.2664 0.0053 okkok Hkk *Hkx
17 aC fused with non-aromatic ring 0.6141 0.4121 0.1363 -4.5533 0.1641 0.3003 -0.0341 Forkok ook *orkok
18 aC except as above 0.3150 0.3864 0.0501 -4.5067 -0.0071 -0.0178 0.8000 rokkok Aodokok ook
19 aN in aromatic ring -0.1501 -0.2125 0.0755 -4.4745 0.0130 1.4732 Hokokok Hohokok ok Hokkok
20 aC-CHs 0.4050 0.4345 0.0699 -9.6580 0.4333 0.5522 -0.1132 rokkok Aodokok ook
21 aC-CH: 0.3350 0.2087 0.0821 -9.3278 -0.1904 -0.3934 -0.2018 Hokkok Aodokok ook
22 aC-CH 0.7893 0.9717 0.4545 -9.0233 -0.9151 -1.1787 -0.2998 Hokkok Hkk kX
23 aC-C 0.5639 1.0938 0.4264 -8.7328 -0.9509 -0.9892 -0.3527 Hokkok Aodokok ook
24 aC-CH=CH: 0.8110 0.0652 0.1599 -14.0398 0.8698 0.5330 0.3822 Hokkok Hkk kX
25 aC-CH=CH 0.5427 ok 0.0900 -14.4421 0.1297 ok 0.8379 Hokkok HkK kX
26 aC-C=CH. S ik -0.6814 -14.2994  0.3000 -0.4032 0.1949 wbkk ok s
27 aC-C=CH sokokok skokokok sokokok -13.6670 sokokok skokkok skokkok sokokok sokokok sokokok
28 aC-C=C sokokosk sokkok -0.3680 -14.4769 sokokok sokkok sokkok skokokok sokskok skokokok
29 OH -0.6115 -0.8815 -0.1955 -5.1862 -0.0340 1.3612 0.0359 okkok Hofokok Hokkok
30 aC-OH 0.2670 0.2670 0.0705 -9.6989 -0.2700 1.2393 0.3113 ok -1.5842 -0.0769
31 COOH -0.1104 -0.3982 0.0320 -14.8398 -0.8830 2.3281 -0.0379 okkok Hofokok *HkX
32 aC-COOH 0.0172 -1.6411 0.0391 -19.4187 -0.9232 1.1988 Hokokok Hokkk wokkok sokkok
33 CHsCO 0.0835 -1.4018 -0.0172 -14.2841 0.6654 1.4016 0.1409 ook ok ok
34 CH2CO -0.5508 ok 0.1931 -14.6443 -1.4842 1.2601 -0.0515 okkok i ofkok
35 CHCO dkk ok 0.4130 -15.1578 rohkx okt 0.0505 okkok ook HoHkk
37 aC-Co 0.2699 0.4353 0.2190 -14.1140 -0.9893 0.9671 okdok Aokdk Hkokk Hokokok
38 CHO 0.6008 0.7531 -0.1338 -9.3615 -0.3560 2.3662 -0.1855 Hokkok ok ok
39 aC-CHO 0.8678 0.9419 -0.0626 -14.4954 -1.3452 okdok Aokokok ohkok sokokok kK
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

CHsCOO
CH2C00
CHCOO
CCOoO

HCOO
aC-Coo
aC-00CH
aC-00C
COO except as above
CHs0

CH20

CH-0

c-0

aC-0
CH:NH:
CHNH:
CNH:
CHsNH
CH2NH
CHNH

CH3N

CHz2N
aC-NH2
aC-NH

aC-N

NH: except as above
CH=N

C=N

CH2CN
CHCN

CCN

aC-CN

CN except as above
CH2NCO
CHNCO
CNCO
aC-NCO
CH2NO:2
CHNO:
CNO:
aC-NO:

NO: except as above
ONO

ONO:
HCON(CH32)2
HCONHCH:

0.4393
0.1823
-0.0242
-1.9110

kokokk

0.4382
EEEES
0.9868
0.4138
-0.5209
-0.2160
-0.8189
kskskk
0.0896
-0.0246
-0.0983
0.5803
-0.4593
0.0524
*kkk
0.1273
-0.3121
0.0721
0.3195
0.0691
0.1130
2.4719
0.9533
-0.0683
2.0149
1.0777
0.0788
0.5895

kskskk
kskskk
*kkk
skskskk
*kkk
*kkk

1.4039
0.7014
1.0513
skskskk
-0.0796
-0.2502

*kkk

-0.6598
0.4007

kkkk
Fkokok
kkkk
0.0355
Fkokok

kkkk

1.3113
0.7930
0.2341

Fkokok

kKK k

0.7875
0.1531
0.9878
Fkokok
0.1983
0.0553
-0.3115
-0.9599
-1.4049
1.0918
0.4657
0.5173
0.2107
0.0832
1.1620

kkkk
Fkokok
Fkokok

0.6363
0.2307

kkkk
kKK k
Fkokok
kkkk
Fkokok
Fkokok

kkkk

0.2756
-1.3024
kkkk
-0.3048
kkkk

Fkokok

-0.1734
-0.0357
0.1329
0.3242
-0.0612
-0.0431
-0.2398
0.4845
0.0657
-0.0259
0.0974
0.4987
0.2275
0.1839
0.0450
0.3764
0.4151
-0.0593
0.2571
0.2506
0.3338
0.4337
0.1189
0.1796
0.2682
0.0130
0.1706
0.2576
-0.0168
1.0312
0.7798
0.1041
0.3921
0.0453

kokokk

*kkk

-0.1489
0.1374
0.6535
1.1115
0.2627
-0.0320
0.8495
0.2883

skokokk

Kk

-19.9009
-19.7361
-19.3313
-19.3558
-15.4178
-19.3244
Fkokok
-19.5174
-14.9256
-10.1615
-9.9546
-9.8757
-9.2509
-9.6929
-9.5161
-10.1966
-8.7982
-9.5708
-9.2845
-8.8957
-9.5015
-9.3647
-9.8417
-9.7080
-9.5308
-5.2748
-9.5889
-8.8434
-13.5365
-13.2307
-12.9126
-13.5595
-9.2357

kKK k
kKK k
Fkokok

kkkk

-20.3294
-20.6143
-18.8805
-20.3307
-16.4594
kkkk

-21.5057
-22.5375
-19.5759

0.3988
0.2378

kokokk
Kk
kokokk
-1.1633
Kk
-2.9904
-0.5196
0.2530
-0.1060
-0.3114
-0.7149
-0.3264
0.2885

kokokk
Kk
kokokk
-0.3334
Kk
-0.4163
-1.4607
-0.3313
-0.4387
-0.6948
-0.1643
0.1155
-1.0204
0.3979
-0.4915
Kk
-0.3186
1.2018

skokokk
skokokk
Kk
skokokk
Kk

-1.0104

skokokk
-0.0368
skokokk
skokokk
Kk
sokokk

Kk

1.2544
1.6798

kkkk

Fkkok

1.5780
0.5326
Fkkok
0.9678
0.4342
2.1251
0.9276
-0.7462
kkkk
0.4621
1.9265
2.1480
Fokokok
2.8505
1.2126
1.2708
1.1981
0.2724
2.0982
0.7464
-0.7120
2.0449

kkkk

Fokokok

2.0501
1.9526
0.7938
kkkk

2.5607
3.1956

kkkk

Fokokok

2.0353
1.8813
1.4511
0.1482
1.5088
1.4137
kkkk

2.0086
kkkk

Hokokok

0.3858
0.3021
0.1068
Fkkok
0.8282
-0.0378

Fkkok

kkkk

-0.2744
0.1499
-0.1226
-0.2064
kkkk
-0.4603
-0.3290
-0.5376
Fokokok
0.0046
-0.0060
Fokokok
-0.4139
-0.3483

Fokokok
kkkk
Fokokok
-0.4319
kkkk
Fokokok
kkkk
Fokokok
Fokokok
kkkk
0.4704
kkkk
kkkk

Hokokok

-0.0504
1.0797

Hokokok
kkkk
1.3371
kkkk
kkkk
Fokokok
kkkk

Fokokok

Hkokk
kKK ok
kKK ok
Hkokk
kKK ok
Hkokk
Hkokk
kKK ok
Hkokk

0.1245

kKK ok
-1.8521
kkkk
Hkkk
Hkkk
kkkk
Hkkk
kkkk
kkkk
Hkkk
kkkk
Hkkk
Hkkk
skkkk
Kk
skkkk
skkkk
Hkkk
skkkk
Hkkk
Hkkk
skkkk
Hkkk
skkkk
skkkk
Hkkk
kkkk
Hkkk
Hkkk
kkkk
Hkkk
kkkk
kkkk
Hkkk
skkkk

Hkkk

sokskok

*kkkk

*kkkk

sokskok

*kkkk

sokskok

sokskok

kkkk

sokskok

*kkkk

KKKk

EEES

*kkkk

EEES

EEE S

*kkkk

EEES

*kkkk

*kkkk

EEE S

*kkkk

EEES

EEES

*kkkk

EEE S

*kkkk

*kkkk

EEE S

*kkkk

EEE S

EEE S

*kkkk

EEE S

*kkkk

*kkkk

Fokokok

kkkk

Fokokok

Fokokok

kkkk

Fokokok

kkkk

kkkk

Fokokok

kkkk

Fokokok

Hkokk
kKK ok
kKK ok
Hkokk
kKK ok
Hkokk
Hkokk
kKK k
Hkokk
kKK ok
kKK k
Kk
kkkk
Kk
Kk
kkkk
Kk
kkkk
kkkk
Kk
kkkk
Kk
Kk
skkkk
Kk
skkkk
kkkk
Kk
skkkk
Kk
Kk
kkkk
Kk
kkkk
kkkk
Hkkk
kkkk
Hkkk
Hkkk
kkkk
Hkkk

-0.0775

kkkk
-0.0775
skkkk

Hkkk
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86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

CONH;
CONHCHs
CONHCH:
CON(CH3):
CONCH3CHz
CON(CH2):
CONHCO
CONCO
aC-CONH.
aC-NH(CO)H
aC-N(CO)H
aC-CONH
aC-NHCO
aC-(N)CO
NHCONH
NH2CONH
NH2CON
NHCON
NCON
aC-NHCONH:
aC-NHCONH

NHCO except as above

CHCl

CHCI

Ccl

CHCI2

CClL2

CCl3

CH:F

CHF

CF

CHF:

CF2

CF3

CCLF

HCCIF

CCIF2

aC-Cl

aC-F

aC-I

aC-Br

-] except as above
-Br except as above
-F except as above
-Cl except as above
CHNOH

-0.1815
1.2999
0.9036
-0.9938

kokokk

-0.5947
EEEES
1.3874
-0.3693
-0.0863
-0.3164
1.2356
-0.1143
0.1407

*kkk
kskskk
*kkk
-0.6989
kskskk

*kkk

-0.5009
0.6549
0.6181
0.1069
*kkk
0.5662
0.7493
1.3517

kskskk
*kkk
*kkk

1.0749
0.1261
0.6351

kskskk
*kkk

skskskk

0.6323
0.3392
0.9439
0.7252
0.9066
0.6769
0.0814
0.3776
0.7400

1.2951
-0.2366
3.7503

Fkokok
kkkk
-0.5260
Fkokok
kkkk
-1.3986
kkkk

kkkk

-2.8641
0.0285
-0.0767

Fkokok
kKK k
Fkokok
kKK k
-1.2393
Fkokok
2.1330
-0.9079
-0.1689
0.5411

Fkokok

0.3245

kkkk
1.2019