Journal of Chemical Information and Modeling

Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution+ (GC+) Property Models and Uncertainty Analysis

Journal:	Journal of Chemical Information and Modeling
Manuscript ID:	Draft
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Hukkerikar, Amol; Technical University of Denmark, Chemical and Biochemical Engineering Kalakul, Sawitree; The Petroleum and Petrochemical College, Sarup, Bent; Alfa Laval Copenhagen A/S, Vegetable Oil Technology Business Unit Young, Douglas; U.S. Environmental Protection Agency, Clean Processes Branch, National Risk Management Research Laboratory Sin, Gurkan; Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering Gani, Rafiqul; Technical University of Denmark, Department of Chemical Engineering

SCHOLARONE™ Manuscripts

Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution $^+$ (GC $^+$) Property Models and Uncertainty Analysis

Amol Shivajirao Hukkerikar ^a, Sawitree Kalakul ^b, Bent Sarup ^c, Douglas M. Young ^d,

Gürkan Sin a, and Rafiqul Gani a,*

^a Computer Aided Process-Product Engineering Center (CAPEC), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.

^b The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.

^c Vegetable Oil Technology Business Unit, Alfa Laval Copenhagen A/S, Maskinvej 5, DK-2860, Søborg, Denmark.

^d U.S. EPA, National Risk Management Research Laboratory, Cincinnati, Ohio 45268.

*Corresponding author: E-mail address: rag@kt.dtu.dk (R. Gani); Phone no: +45-45252882; Fax no: +45-45932906.

ABSTRACT: The aim of this work is to develop group-contribution⁺ (GC⁺) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data-sets of experimentally measured property values of wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly-functional chemicals, etc.) taken from the database of US Environmental Protection Agency (EPA) and from the database of USEtoxTM is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total 22 environmentrelated properties, which include the fathead minnow 96-hr LC₅₀, daphnia magna 48-hr LC₅₀, oral rat LD₅₀, aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and non-carcinogenic), emission to continental rural air (carcinogenic and non-carcinogenic), emission to continental fresh water (carcinogenic and non-carcinogenic), emission to continental sea water (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and non-carcinogenic), emission to continental agricultural soil (carcinogenic and non-carcinogenic) have been modeled and analysed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.

KEYWORDS: group-contribution⁺ (GC⁺) method, uncertainty analysis, potential environmental impact, life cycle impact assessment, sustainable process design.

INTRODUCTION

Currently, there is a great deal of interest in the development of computer aided methods and tools for the process synthesis, design, and analysis of sustainable processes. The design of sustainable processes require the satisfying of various conditions (or constraints) such as, increased productivity, minimum energy consumption, reduction in raw materials, recovery of products, and minimum generation of pollution. This task can be effectively accomplished by using a chemical process simulator (to perform mass and energy balances for the concerned process) together with the waste reduction (WAR) algorithm²⁻³ to obtain a quantitative measure of the potential environmental impact (PEI) which, as part of the life cycle assessment (LCA) of process synthesis and design, contributes to identifying sustainable processing paths and design alternatives. The PEI is a relative measure of the potential for a chemical to have an adverse effect on human health and the environment. Several studies in literature⁴⁻⁶ have reported the application of the WAR algorithm for generating sustainable process design alternatives and deciding on sustainable process designs that are environmentally friendly and economically attractive. In the WAR algorithm, the total PEI of a process is evaluated based on the following eight categories of potential impacts: (i) human toxicity potential by ingestion, calculated using oral rat LD₅₀; (ii) human toxicity potential by exposure both dermal and inhalation, calculated using

permissible exposure limit (OSHA-TWA); (iii) terrestrial toxicity potential, calculated using oral rat LD₅₀; (iv) aquatic toxicity potential, calculated using fathead minnow 96-hr LC₅₀; (v) global warming potential; (vi) ozone depletion potential; (vii) photochemical oxidation potential; and (viii) acidification potential. Therefore, the basis for the quantification of PEI is a set of environment-related properties (such as fathead minnow 96-hr LC50, oral rat LD50, global warming potential etc.) of chemical substances involved in the process. The USEtoxTM model is an environment model for characterisation of human and ecotoxicological impacts in life cycle impact assessment (LCIA) and Comparative Risk Assessment (CRA) and is designed to describe the fate, exposure and effects of chemicals.⁷⁻⁸ The USEtoxTM model calculates characterisation factors for carcinogenic impacts, non-carcinogenic impacts, and total impacts (carcinogenic + non-carcinogenic) based on the chemical emissions to urban air, rural air, freshwater, sea water, agricultural soil and/or natural soil. For many chemicals of interest the experimental data of environment-related properties is not available since the measurement of these properties are extremely time consuming and expensive. Also, processes that deal with the synthesis of new chemicals require a suitable property prediction method in order to obtain reliable estimates of environment-related properties of new chemicals. A review article by Boethling et al. discusses available experimental data sources and various estimation methods including group-contribution (GC) methods, methods based on quantitative structure-property relationships (QSPR), and correlation equations, to name a few for obtaining values of environment-related properties of chemicals.

For the estimation of properties of organic chemicals, GC methods such as those reported by Joback and Reid¹⁰, Lydersen¹¹, Constantinou and Gani¹², and Marrero and Gani¹³, have been widely employed to obtain the needed property values since these methods provide the advantage of quick estimates without requiring substantial computational work. In GC methods, the property of a chemical is a function of structurally dependent parameters, which

are determined as a function of the frequency of the groups representing the chemical and their contributions. Among GC methods for estimation of properties of chemicals, the Marrero and Gani (MG) method¹³ is well-known. The MG method allows estimation of properties based exclusively on the molecular structure of the chemical and exhibits a good accuracy and a wide range of applicability covering chemical, biochemical, and environmentrelated chemicals. Note, that for reliable estimation of properties of chemicals using a GC method, the user needs: (i) a property model; (ii) group definitions (model parameters of the selected property model) and their contributions; and (iii) a tool to quantify uncertainties (prediction errors) of estimated property values in order to check the quality (reliability) of estimation. In many cases, however, the selected property model may not have all the needed model parameters (that is, groups describing the molecular structure of a given chemical) and/or their contributions. In such cases where the molecular structure of a given chemical is not completely described by any of the available groups, the atom connectivity index (CI) method has been employed together with MG method to create the missing groups and to predict their contributions.¹⁴ This combined approach has led to the development of group contribution (GC) method of a wider application range than before since the missing groups and their contributions can now be easily predicted through the regressed contributions of connectivity indices. 14

There are numerous LCA software tools available (for example, SimaPro, GaBi etc.) for quantification of potential impact that the processes would have on the environment on average. Most of these tools have built-in databases containing properties of chemicals needed for the environmental-impact analysis. However, for chemicals that are not included in the database, a suitable property prediction method is necessary to obtain the needed environment-related property values which will allow one to perform synthesis, design, and analysis of sustainable chemical processes. For the estimation of fathead minnow 96-hr LC₅₀

and aqueous solubility, various GC-methods have been developed. Martin and Young¹⁵ developed a GC method to correlate the acute toxicity (96-hr LC₅₀) to the fathead minnow using 397 organic chemicals based on the multi-linear regression and computational neural networks approach for the parameter estimation. Casalegno et al. 16 used a diatomic fragment approach based GC method to correlate the acute toxicity (96-hr LC₅₀) of 607 organic chemicals. For the estimation of aqueous solubility, Marrero and Gani¹⁷ developed a GC method using a three-level parameter estimation approach (with a dataset of 2087 organic chemicals used for the regression purpose) and this method requires only molecular structural information for the estimation of aqueous solubility. There are several other GC methods available for estimation of aqueous solubility (Klopman and Zhu¹⁸; Kühne et al. 19). For the estimation of oral rat LD₅₀ and bio-concentration factor (BCF), the more common approach has been to employ correlation equations (for example, bio-concentration factor for a chemical is estimated using known value of its octanol/water partition coefficient). Moreover, Martin et al.²⁰ have developed a hierarchical clustering technique to predict a variety of endpoints, including oral rat LD₅₀, BCF, aqueous solubility, fathead minnow LC₅₀ that combines group contributions with descriptors from graph theory. Software platforms have been developed both in the U.S. (US EPA 2012²¹⁻²²) and in Europe (Isitutio Mario Negri 2012²³) to predict these same endpoints. The application range and capability of these estimation equations is limited by the availability of the required property values. To the best of our knowledge, there are no GC methods reported in the literature for the estimation of following environment-related properties: permissible exposure limit (OSHA-TWA), global warming potential, photochemical oxidation potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and non-carcinogenic), emission to continental rural air (carcinogenic and non-carcinogenic), emission to continental fresh water (carcinogenic and non-carcinogenic), emission to continental sea water (carcinogenic and

non-carcinogenic), emission to continental natural soil (carcinogenic and non-carcinogenic), and emission to continental agricultural soil (carcinogenic and non-carcinogenic). In addition to the accurate estimation of environment-related properties, it is also important to know the uncertainties (for example, prediction error in terms of 95% confidence interval) of the estimated property values that arise due to uncertainties of the regressed parameters of the selected property model. With this information, it is possible to evaluate the effect of these uncertainties on the calculated potential impact that the processes would have on the environment and to verify the quality and reliability of the design of sustainable processes. Motivated by the preceding literature review and by the need of reliable estimation of environment-related properties in synthesis, design, and analysis of sustainable processes, this work aims to develop property prediction models based on the GC⁺ approach (combined GC method and CI method) to provide reliable estimates of environment-related properties together with uncertainties of the estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis developed by Hukkerikar et al.²⁴ is used. The methodology includes a parameter estimation step to determine parameters (group/atom contributions, adjustable parameters, and a universal parameter) of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For property modeling with a GC method, the MG method¹³ has been considered. For property modeling with a CI method, the models proposed by Gani et al. 14 have been considered. For parameter estimation, large data-sets of experimentally measured property values of wide range of chemicals taken from the database of US Environmental Protection Agency (EPA) and from the database of USEtoxTM is used. In total 22 environment-related properties, which include the fathead minnow 96-hr LC₅₀ (LC₅₀(FM)), daphnia magna 48-hr LC50 (LC₅₀(DM)), oral rat LD₅₀, aqueous solubility

 $(LogW_s)$, bioconcentration factor (BCF), permissible exposure limit (PEL(OSHA-TWA)), photochemical oxidation potential (PCO), global warming potential (GWP), ozone depletion potential (ODP), and acidification potential (AP), emission to urban air (carcinogenic (EUA_C) and non-carcinogenic (EUA_{NC})), emission to continental rural air (carcinogenic (ERA_C) and non-carcinogenic (ERA_{NC})), emission to continental fresh water (carcinogenic (EFW_C) and non-carcinogenic (EFW_{NC})), emission to continental sea water (carcinogenic (ESW_C) and non-carcinogenic (ESW_{NC})), emission to continental natural soil (carcinogenic (ENS_C) and non-carcinogenic (ENS_{NC})), emission to continental agricultural soil (carcinogenic (EAS_C) and non-carcinogenic (EAS_{NC})) have been modeled and analysed.

The paper first gives a brief overview of the methodology for property modeling and uncertainty analysis; followed by model performance statistics; and finally, application of the developed property models for estimation of environment-related properties. Tables containing list of property model parameters together with parameter values, due to their large size, are provided as supporting information.

METHODS AND TOOLS FOR PROPERTY MODELING AND UNCERTAINTY ANALYSIS

MG Group-Contribution Method. In the MG method¹³ the property estimation is performed at three levels. The first level has a large set of simple groups that allow for the representation of a wide variety of organic chemicals. However, these groups only partially capture the proximity effects and are unable to distinguish among isomers. The second level of estimation involves groups that provide better description of proximity effects and can differentiate among isomers. Hence, second level of estimation is intended to deal with polyfunctional, polar or non-polar, and cyclic chemicals. The third level estimation includes groups that provide more structural information about molecular fragments of chemicals whose description is insufficient through the first- and second-order groups; hence, this level allows estimation of complex heterocyclic and polyfunctional acyclic chemicals. The MG method includes 220 first-order groups, 130 second-order groups, and 74 third-order groups to represent the molecular structure of the organic chemicals. The property prediction model to estimate the properties of organic chemicals employing MG method has the form¹³,

$$f(X) = \sum_{i} N_i C_i + w \sum_{j} M_j D_j + z \sum_{k} E_k O_k$$
(1)

The function f(X) is a function of property X and it may contain additional adjustable model parameters (universal constants) depending on the property involved. In eq. (1), C_i is the contribution of the first-order group of type-i that occurs N_i times. D_j is the contribution of the second-order group of type-j that occurs M_j times. E_k is the contribution of the third-order group of type-k that has O_k occurrences in a component. Eq. (1) is a general model for all the properties and the definition of f(X) is specific for each property X (see Table- 2 for definition of f(X) for models of environment-related properties). For determination of the contributions, C_i , D_j , and E_k , Marrero and Gani¹³ suggested a three-step regression procedure.

• Step 1: In this step, the constants w and z are assigned zero values because only contributions of the first-order groups are estimated, that is, the first-order groups, C_i and the additional adjustable parameters of the model.

$$f(X) = \sum_{i} N_i C_i \tag{2}$$

• Step 2: In this step, the constants w and z are assigned unity and zero values, respectively, because only first and second-order groups are considered. The regression is performed (by keeping fixed the C_i and the adjustable parameters obtained from step 1) to determine the contributions of the second-order groups, D_i .

$$f(X) = \sum_{i} N_i C_i + w \sum_{j} M_j D_j \tag{3}$$

• Step 3: In this step, both w and z are set to unity and regression is performed (by keeping fixed the obtained C_i , D_j , and the adjustable parameters obtained from steps 1 and 2) to determine the contributions of the third-order groups, E_k (see eq. 1).

In this way, the contributions of higher levels act as corrections to the approximations of the lower levels. Hukkerikar et al.²⁴ discussed a new approach for estimating the contributions, C_i , D_j , and E_k based on the simultaneous regression method in which regression is performed by considering all the terms of the eq. (1) to obtain contributions of first-, second-, and third-order groups in a single regression step.

Atom Connectivity Index (CI) Method. This method employs the following model for the estimation of properties of organic chemicals¹⁴:

$$f(X) = \sum_{i} a_{i} A_{i} + b({}^{v} \chi^{0}) + 2c({}^{v} \chi^{1}) + d$$

$$\tag{4}$$

Where a_i is the contribution of the atom of type-*i* that occurs A_i times in the molecular structure, $^{\text{v}}\chi^0$ is the zeroth-order (atom) valence connectivity index, $^{\text{v}}\chi^1$ is the first-order

(bond) valence connectivity index, b and c are adjustable parameters, and d is a universal parameter. Please note that f(X) of models in the MG method¹³ and in the CI method¹⁴, (i.e. left hand side of eq. (1) and eq. (4)) has the same functional form for a particular pure component property X and the values of universal constants for the CI models are the same as those for the GC models.

Database. For the estimation of property model parameters, large experimental data-sets of organic chemicals of various classes (hydrocarbons, oxygenated components, nitrogenated components, poly-functional components, etc.) from the database of US Environmental Protection Agency (EPA) and from the database of USEtoxTM is used. The details of data-set of each property in terms of number of organic chemicals belonging to various classes are given in Table 1(a) (data-sets from US Environmental Protection Agency (EPA)) and in Table 1(b) (data-sets from USEtoxTM).

Table 1(a). Description of the US EPA Data-sets Used for the Regression Purpose

class of chemicals	LC ₅₀ (FM)	LC ₅₀ (DM)	LD ₅₀	LogWs	BCF	PCO	PEL	GWP	ODP	AP
hydrocarbons	32	19	69	236	79	337	98	0	0	0
oxygenated	238	54	1382	1110	76	244	127	1	0	0
nitogenated	80	24	397	244	57	8	45	0	0	0
chlorinated	48	37	111	274	77	23	41	5	3	5
fluorinated	1	0	3	21	1	5	4	23	0	0
brominated	10	4	14	47	15	5	7	2	1	0
iodinated	1	0	5	17	0	0	1	0	0	0
phosphorous containing	0	0	5	0	0	0	0	0	0	0
sulfonated	9	8	24	19	5	0	15	0	0	0
silicon containing	0	0	1	2	0	0	0	0	0	0
multifunctional	390	174	3984	2711	352	17	87	20	24	5
total number of chemicals	809	320	5995	4681	662	639	425	51	28	10

Table 1(b). Description of the USEtoxTM Data-sets Used for the Regression Purpose

class of chemicals	EUA _C	EUA _{NC}	ERA_C	ERA _{NC}	EFW_C	EFW _{NC}	ESW_C	ESW _{NC}	ENS _C	ENS _{NC}	EAS _C	EAS _{NC}
hydrocarbons	25	14	18	16	19	14	19	16	18	16	20	16
oxygenated	107	56	96	60	98	57	101	60	96	58	97	58
nitogenated	29	14	27	14	27	13	26	15	27	15	27	14
chlorinated	46	23	43	26	44	27	45	32	45	30	43	28
fluorinated	4	1	4	1	4	1	4	1	4	1	4	1
brominated	6	2	5	2	4	2	5	2	5	3	5	3
iodinated	0	0	0	0	0	0	0	0	0	0	0	0
phosphorous	0	0	0	0	0	0	0	0	0	0	0	0
containing sulfonated	3	1	3	1	3	1	3	1	3	1	3	1
silicon containing	0	0	0	0	0	0	0	0	0	0	0	0
multifunctional	236	230	274	229	273	230	274	233	262	238	271	231
total number of chemicals	456	341	470	349	472	345	477	360	460	362	470	352

Parameter Estimation and Uncertainty Analysis (Maximum-Likelihood Estimation).

The following discussion on parameter estimation and uncertainty analysis is based on the methodology discussed by Hukkerikar et al.²⁴ Let the property prediction model be represented by f and the model parameters (group/atom contributions, adjustable parameters, and universal parameter) by P. The minimization of a cost function, S(P), defined as the sum of the squares of the difference between the experimental value, X^{exp} , and evaluated property value, X^{pred} , provides the values of unknown parameters P^* . This implies that P^* is a set of model parameter values obtained at the minimum value of the cost function value.

$$S(\mathbf{P}) = \min \sum_{j=1}^{N} \left(X_j^{exp} - X_j^{pred} \right)^2$$
 (5)

The subscript j indicates the chemical evaluated and N is the total number of chemicals included in the evaluation. After the estimation of the model parameters, uncertainty analysis is performed to quantify the model prediction errors. In this work, since the proposed models

for environment-related properties are linear in nature, the following discussion is intended to provide information on linear least squares theory. For linear least squares, the covariance matrix of the estimated model parameters, $COV(P^*)$, is given by (Seber and Wild²⁵),

$$COV\left(\boldsymbol{P}^{*}\right) = \frac{SSE}{V}\left(\boldsymbol{A}^{T}\boldsymbol{A}\right)^{-1} \tag{6}$$

Where, SSE is the sum of squared errors obtained from the least-squares parameter estimation method, v is the degrees of freedom (that is, the total number of measurements, n minus the number of unknown parameters, m). For the GC model with linear form of f(X), A is the matrix containing frequencies (or occurrences) of groups used to represent the chemicals in the data-set used for the regression. For the CI model with linear form of f(X), A is the matrix containing frequencies of atoms and zeroth-order and first-order connectivity index for each chemical included in the data-set. The covariance matrix computed using eq. (6) is used for assessing the quality of the parameter estimation. The diagonal elements of this matrix are the variances of the errors of the parameter estimates and the off-diagonal elements are the covariances between the parameter estimation errors.

The confidence interval of the parameters, P^* , at α_t significance level is given as (Seber and Wild²⁵; Sin et al.²⁶),

$$\mathbf{P}_{1-\alpha_{t}}^{*} = \mathbf{P}^{*} \pm \sqrt{\operatorname{diag}\left(COV(\mathbf{P}^{*})\right)} \cdot t(\nu, \alpha_{t}/2)$$
(7)

In eq. (7), $t(v, \alpha_t/2)$ is the t-distribution value corresponding to the $\alpha_t/2$ percentile (α_t is usually a value of 0.05) and diag($COV(\boldsymbol{P}^*)$) represents the diagonal elements of $COV(\boldsymbol{P}^*)$. The t-distribution value is obtained from the probability distribution function of Students t-distribution, (Abramowitz and Stegun²⁷), $P_r(t, v)$, and is given as,

$$0 = \sqrt{\nu} B \left(\frac{1}{2}, \frac{\nu}{2}\right)^{-1} \int_{-t}^{t} \left(1 + x^2 / \nu\right)^{-\frac{1}{2}(\nu + 1)} dx - P_r(t, \nu)$$
(8)

Where $x = \frac{v}{v + t^2}$ and B (1/2, v/2) is the beta function. For 95% confidence interval calculation, the value of $P_r(t, v)$ is 0.95. The t-distribution value can also be obtained using the "tinv" function available in MatLab.

The confidence interval of the predicted property value, X^{pred} , at α_t significance level is given as,

$$X_{1-\alpha_{t}}^{pred} = X^{pred} \pm \sqrt{\operatorname{diag}\left(J(\boldsymbol{P}^{*})COV(\boldsymbol{P}^{*})J(\boldsymbol{P}^{*})^{T}\right)} \cdot t(v,\alpha_{t}/2)$$
(9)

Where, the Jacobian matrix $J(P^*)$ calculated using $\partial f/\partial P^*$ represents the local sensitivity of the property model f to variations in the estimated parameter values P^* . The $X_{1-\alpha_i}^{pred}$ calculated from eq. (9) can be used to assess the reliability of the prediction (when experimental data is available for the property). If the experimental value of the property is within the calculated confidence interval, then the property prediction method is verified as reliable. When experimental data is unavailable, the calculated confidence interval provides a measure of the likely prediction error (uncertainty) of the predicted property value. This information can be used in the design and analysis of sustainable processes to take into account the effect of uncertainties of predicted property values on the calculated impact that the processes would have on the environment (and hence on the decision of selection of sustainable process design).

Statistical Performance Indicators. The statistical significance of the developed correlations in this work is based on the following performance indicators (Hukkerikar et al.²⁴).

• *Standard deviation* (SD): This parameter measures the spread of the data about its mean value μ and is given by,

$$SD = \sqrt{\sum_{j} \left(X_{j}^{exp} - X_{j}^{pred} \right)^{2} / N}$$
 (10)

• Average absolute error (AAE): This is the measure of deviation of predicted property values from the experimentally measured property values and is given by,

$$AAE = \frac{1}{N} \sum_{j} \left| X_{j}^{exp} - X_{j}^{pred} \right| \tag{11}$$

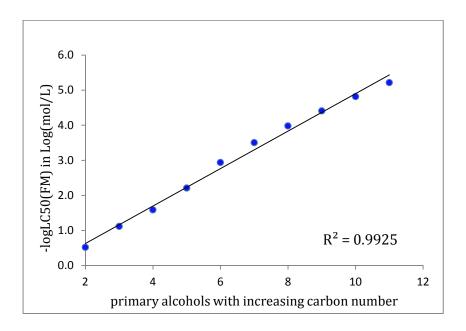
• Average relative error (ARE): This provides an average of relative error calculated with respect to the experimentally measured property values and is given by,

$$ARE = \frac{1}{N} \sum_{i} \left| \left(X_{j}^{exp} - X_{j}^{pred} \right) / X_{j}^{exp} \right| \times 100$$
 (12)

• Coefficient of determination (R²): This parameter provides information about the goodness of model fit. An R² close to 1.0 indicates that the experimental data used in the regression have been fitted to a good accuracy. It is calculated using,

$$R^{2} = 1 - \left[\sum_{j} \left(X_{j}^{exp} - X_{j}^{pred} \right)^{2} / \sum_{j} \left(X_{j}^{exp} - \mu \right)^{2} \right]$$

$$\tag{13}$$


The indicators SD, AAE, ARE, and R² provide measures of quality (reliability) of property prediction models on a global basis. However, it is important that the information of uncertainties of estimated values also be made available to the user in order to provide confidence in the estimated property values and hence in the design of sustainable processes.

RESULTS

In this section, the selection of suitable property models for modeling environment-related properties and the performance statistics for the developed property models are discussed. The results are presented for the following models:

- MG method based property models analyzed using step-wise regression method
- MG method based property models analyzed using simultaneous regression method
- CI method based property models

Selection of Suitable Property Models for Environment-related Properties. In this work, the basis for selecting an appropriate property model for the environment-related property has been the study of behaviour of that property of certain class of chemicals with increasing carbon number. This is illustrated for the case of $LC_{50}(FM)$. Figure 1 shows a plot of primary alcohols with increasing carbon number (propyl alcohol, butyl alcohol, and so on) versus their experimental values of $-Log LC_{50}(FM)$. It can be seen that this plot is almost a straight line (with R^2 value of 0.99) suggesting that the property $LC_{50}(FM)$ can be modelled using a linear model of the form $-Log LC_{50}(FM) + Constant = \sum_i N_i C_i + w \sum_j M_j D_j + z \sum_k E_k O_k$. Similar analysis have been performed (not shown in this paper) to obtain a suitable form of the property model for other environment-related properties with the objective of providing an accurate and reliable property estimation of environment-related properties.

Figure 1. Plot of primary alcohols versus their experimental values of $-\text{LogLC}_{50}(\text{FM})$

Model Performance. The model performance statistics for property models analysed using the step-wise regression method are provided in Table 2. The model performance statistics for properties analysed using the simultaneous regression method are given in Table S1 in the information which can be downloaded from the following http://www.capec.kt.dtu.dk/documents/environment_related_properties/supporting_informati on.pdf. In Table 2, N is the number of experimental data-points considered in the regression and v is the degrees of freedom and is obtained by subtracting number of estimated model parameters from N. $P_{rc}(\pm 1\%)$, $P_{rc}(\pm 5\%)$, and $P_{rc}(\pm 10\%)$ represents the percentage of the experimental data-points (N) found within $\pm 1\%$, $\pm 5\%$, and $\pm 10\%$ relative error range respectively. For property models analysed using step-wise regression method, the results for R², SD, AAE and ARE have been obtained after third-level estimation; hence, they represent the global results of the three sequential approximations. The residuals $(X^{exp}-X^{pred})$ for datapoints considered in the regression are plotted in the form of residual distribution plots and are included in Table 2 and Table S1 (note that Table S1 is included as supporting information). For most of the property models (except for ozone depletion potential and

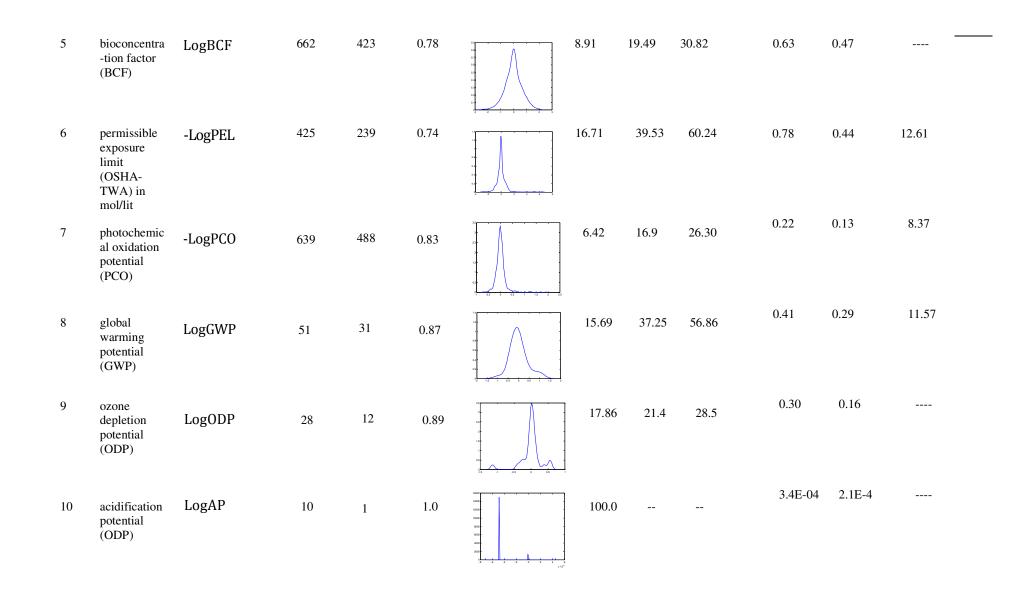
acidification potential) the residuals followed a normal distribution curve suggesting that the assumption of normal distribution of random errors is valid behind the followed approach. The model performance statistics for property models analysed using the CI method are provided in Table 3. These CI models have been employed together with the GC method for creating the missing groups and predicting their contributions through the regressed contributions of connectivity indices as suggested by Gani et al.¹⁴ This feature makes it possible to predict environment-related properties of organic chemicals for which neither experimental data nor the GC-property model parameters are available. The property models developed based on the CI method (see Table 3) have reasonable model performance statistics. High accuracy in the prediction of environment-related properties cannot be expected from this model since, only a few parameters are involved to represent large dataset of chemicals. Greater accuracy can be obtained by adding higher-order connectivity indices. However, the main objective of analyzing CI models in this work is to obtain the missing group contributions, for which only the first two connectivity indices should be sufficient.¹⁴ Hukkerikar et al.²⁴ discussed the effect of quantity of experimental data on the quality of parameter estimation and illustrated that by including all of the available experimental data of the property in the regression it is possible to improve the predictive capability and application range of the property model. Therefore, in this work we have considered all of the available experimental data of properties of chemicals for modeling environment-related properties. To illustrate this point, we have considered here an analysis of property model for oral rat LD₅₀, fathead minnow 96-hr LC₅₀, and emission to continental rural air (carcinogenic (ERA_C) and non-carcinogenic (ERA_{NC})). The whole experimental data-sets of these properties (5995 data-points for oral rat LD₅₀, 809 data-points for fathead minnow 96-hr LC₅₀, 456 data-points for emission to continental rural air (carcinogenic (ERA_C), and 341 data-points for emission to continental rural air (non-carcinogenic

(ERA_{NC}))) is divided randomly in 5 subsets (A, B, C, D, and E) of equal size. The property model is trained on 4 subsets (using simultaneous regression method) and 1 subset is used for testing purpose. This procedure is repeated 5 times so that all subsets are used for testing purpose. The results in terms of SD, AAE, and ARE for training sets and for test sets is presented in Table 4(a) for oral rat LD₅₀, Table 4(b) for fathead minnow 96-hr LC₅₀, Table 4(c) for emission to continental rural air (carcinogenic (ERA_C) and in Table 4(d) for emission to continental rural air (non-carcinogenic (ERA_{NC})). The *MSECV*, which is mean squared error of cross-validation (Mevik and Cederkvist²⁸) calculated using eq. (14) is also given in Tables 4(a)-4(d).

$$MSECV = \frac{1}{N_L} \sum_{k=1}^{K} \sum_{j \in L_k} \left(X_j^{exp} - X_j^{pred} \right)^2$$

$$\tag{14}$$

Where, N_L is the number of data-points in the training set, K = number of subsets (5 in this analysis), and L_k is the number of data-points in the subsets.


From Table 4(a), comparison of the model performance for training sets and test sets show that the predictive capability of the model for oral rat LD_{50} is fairly good. This is mainly due to the large amount of available experimental data of oral rat LD_{50} for the training purpose. For test sets, if we compare the SD, AAE, and ARE values calculated using the parameters obtained by regressing training set with those that are calculated using the parameters obtained by regression of the whole data-set, we find that better model performance statistics (lower SD, lower AAE, and lower ARE) is obtained when we use model parameters that are estimated using all of the experimental data-points in the regression.

For fathead minnow 96-hr LC₅₀, emission to continental rural air (carcinogenic (ERA_C)), and emission to continental rural air (non-carcinogenic (ERA_{NC})) it can be seen from Tables 4(b)-4(d) that the model performance for test sets is poor as compared to those of training sets

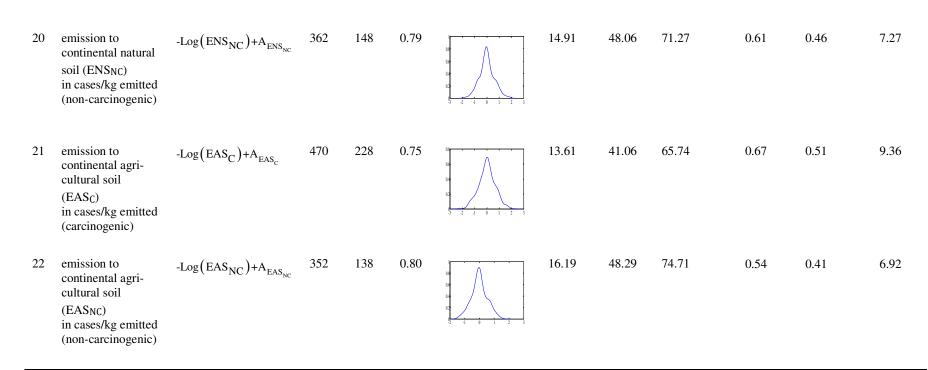
and this is due to the small amount of available experimental data of these properties for the training purpose. For these properties, it can be observed that the SD, AAE, and ARE values for test sets calculated using the model parameters as obtained by regression of the whole data-set are much better than those that are calculated using the parameters estimated using the training set indicating the importance of considering all of the available experimental data-points for the regression purpose. To sum up, this analysis shows both the robustness of the approach and the predictive capability of the developed models for estimating environmental related properties.

Table 2. Performance of MG Method Based Property Models Analysed Using Step-wise Regression Method

sl. no.	property	L.H.S. of MG method based property prediction model							_	ontribution mo $\sum_{j} M_{j} D_{j} + \sum_{k} E_{j}$		
		f(X)	N	v	\mathbb{R}^2	residual distribution plot	$\begin{array}{c} P_{rc} \\ ({}_{\pm1\%}) \end{array}$	P _{rc} (_{± 5%})	P _{rc} (_{± 10%})	SD	AAE	ARE ^a
1	fathead minnow 96- hr LC ₅₀ (LC ₅₀ (FM)) in mol/lit	-LogLC ₅₀ (FM) +FM ₀	809	541	0.78		8.53	31.52	54.02	0.69	0.48	21.56
2	$\begin{array}{c} \textit{daphnia} \\ \textit{magna} \ 48\text{-hr} \\ LC_{50} \\ (LC_{50} \ (DM)) \\ \textit{in mol/lit} \end{array}$	-LogLC ₅₀ (DM) +DM ₀	320	124	0.82		16.25	39.06	62.50	0.74	0.49	16.16
3	$\begin{array}{c} \text{oral rat} \\ LD_{50} \\ (LD_{50}) \text{ in} \\ \text{mol/kg} \end{array}$	-LogLD50 - A _{LD50} - B _{LD50} MW	5995	5617	0.73		1.52	6.92	13.61	0.43	0.35	16.40
4	aqueous solubility (LogW _S) in gm/lit	$LogW_S$ - A_{W_S} - B_{W_S} MW	4681	4311	0.78	50 50 50 50 50 50 50 50 50 50 50 50 50 5	3.12	14.36	28.63	0.99	0.73	

11	emission to urban
	air (EUAc)
	in cases/kg emitted
	(carcinogenic)

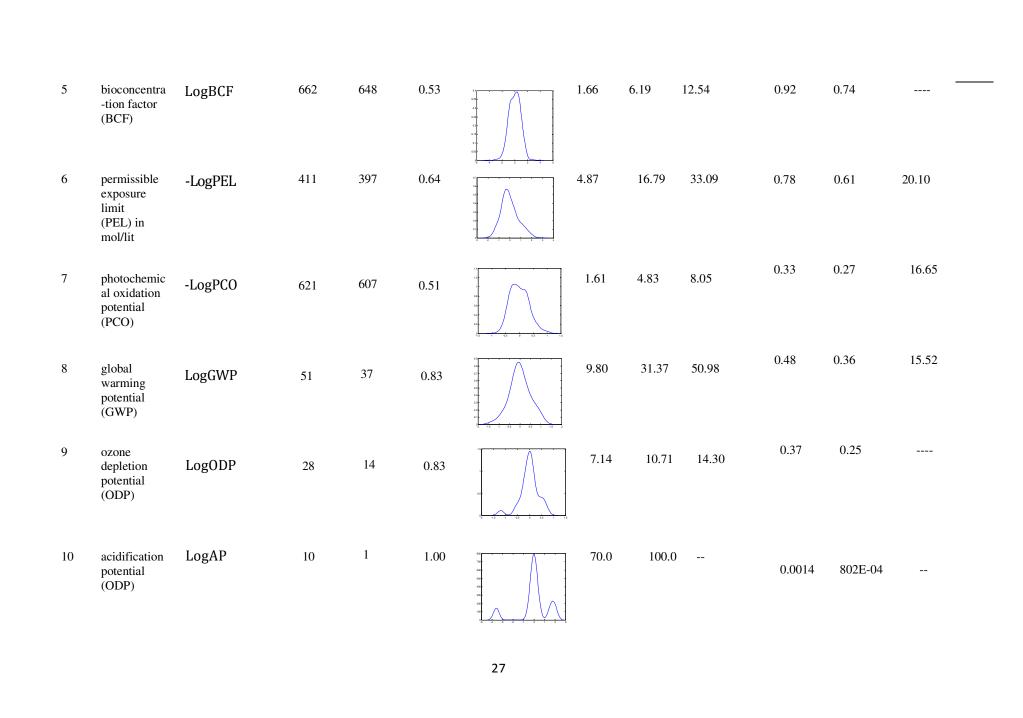
$$-Log(EUA_C) + A_{EUA_C}$$


-Log(EUA
$$_{
m NC}$$
)+A $_{
m EUA}_{
m NC}$

$$-Log(ERA_C) + A_{ERA_C}$$
 470

0.49

$$-Log(ERA_{NC}) + A_{ERA_{NC}}$$
 3


15	emission to continental fresh water (EFWc) in cases/kg emitted (carcinogenic)	$-\text{Log}(\text{EFW}_{\text{C}}) + \text{A}_{\text{EFW}_{\text{C}}}$	472	230	0.75	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	13.77	31.77	60.16	0.67	0.52	11.26
16	emission to continental fresh water (EFW _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{EFW}_{\text{NC}}\big) \text{+A}_{\text{EFW}_{\text{NC}}}$	345	131	0.83	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.33	44.63	67.82	0.52	0.40	8.15
17	emission to continental sea water (ESWc) in cases/kg emitted (carcinogenic)	$-Log(ESW_C) + A_{ESW_C}$	477	235	0.81	0.00	15.30	37.94	67.71	0.79	0.61	8.69
18	emission to continental sea water (ESW _{NC}) in cases/kg emitted (non-carcinogenic)	-Log(ESW _{NC})+A _{ESW_{NC}}	360	146	0.85		14.16	46.38	72.22	0.69	0.51	8.41
19	emission to continental natural soil (ENS _C) in cases/kg emitted (carcinogenic)	$-Log(ENS_C) + A_{ENS_C}$	472	231	0.76		13.98	39.61	63.55	0.72	0.55	9.28

^a ARE is not defined for LogWs, BCF, ODP and AP since these properties have both positive and negative values.

Table 3. Performance of CI Method Based Property Models

l. 10.	property	L.H.S. of CI method based						ato	om connectivi	ty index (CI) i	model	
		property prediction model						f(X)=	$= \sum_{i} a_{i} A_{i} + b$	$(^{v}\chi^{0})+2c($	$(^{v}\chi^{1})+d$	
		f(X)	N	v	\mathbb{R}^2	residual distribution plot	$\begin{array}{c} P_{rc} \\ ({}_{\pm1\%}) \end{array}$	P _{rc} (_{± 5%})	P _{rc} (_{± 10%})	SD	AAE	ARE ^a
	fathead minnow 96-hr LC_{50} (LC_{50} (FM)) in mol/lit	-LogLC ₅₀ (FM) +FM ₀	809	796	0.56	10 10 10 10 10 10 10 10 10 10 10 10 10 1	3.96	16.70	34.20	0.98	0.75	40.47
	daphnia magna 48-hr LC ₅₀ (LC ₅₀ (DM)) in mol/lit	$-LogLC_{50}(DM) \\ + DM_0$	320	307	0.58		5.0	22.81	40.94	1.14	0.85	35.21
	oral rat LD_{50} (LD_{50}) in mol/kg	-LogLD50 - A _{LD50} - B _{LD50} MW	5662	5647	0.60	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.02	5.35	11.48	0.48	0.40	18.49
	aqueous solubility $(LogW_S)$ in gm/lit	$\log(W_S) - A_{W_S} - B_{W_S} MW$	4681	4676	0.62	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	2.22	9.98	19.80	1.29	0.98	

11	emission to urban air (EUA _C) in cases/kg emitted (carcinogenic)	$-Log(EUA_C)+A_{EUA_C}$	232	220	0.66	0.4 0.5 0 0.5 1 1.5	5.17	40.08	83.18	0.40	0.34	6.36
12	emission to urban air (EUA _{NC}) in cases/kg emitted (non-carcinogenic)	-Log(EUA $_{ m NC}$)+A $_{ m EUA}_{ m NC}$	259	247	0.66	0.5	7.72	40.92	69.11	0.49	0.41	7.50
13	emission to continental rural air (ERA _C) in cases/kg emitted (carcinogenic)	$-Log(ERA_C)+A_{ERA_C}$	226	214	0.79	0.5 0.5 1 1.5	11.94	49.55	88.05	0.39	0.32	5.43
14	emission to continental rural air (ERA _{NC}) in cases/kg emitted (non-carcinogenic)	-Log(ERA $_{NC}$)+A $_{ERA}_{NC}$	257	245	0.74		7.78	39.69	68.48	0.53	0.44	7.57

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
10	
17	
12	
19	
20	
21	
22	
23	
2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 6 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
37	
38	
40	
41	
42	
43	
44	
45	
46	
47	

15	emission to continental fresh water (EFW _C) in cases/kg emitted (carcinogenic)	$-\text{Log}(\text{EFW}_{\text{C}})+\text{A}_{\text{EFW}_{\text{C}}}$	286	274	0.65		7.34	36.36	61.53	0.52	0.44	8.51
16	emission to continental fresh water (EFW _{NC}) in cases/kg emitted (non-carcinogenic)	$-Log(EFW_{NC}) + A_{EFW_{NC}}$	259	247	0.70		9.26	33.59	60.61	0.54	0.44	9.02
17	emission to continental sea water (ESW _C) in cases/kg emitted (carcinogenic)	$-Log(ESW_C)+A_{ESW_C}$	286	274	0.78		4.89	35.31	75.17	0.62	0.54	7.20
18	emission to continental sea water (ESW _{NC}) in cases/kg emitted (non-carcinogenic)	$-Log(ESW_{NC}) + A_{ESW_{NC}}$	291	279	0.77	03 03 03 03 04 03 04 04 04 04 04 04 04 04 04 04 04 04 04	5.84	32.30	65.63	0.72	0.60	8.76
19	emission to continental natural soil (ENS _C) in cases/kg emitted (carcinogenic)	$-Log(ENS_C) + A_{ENS_C}$	285	273	0.61		6.66	38.59	74.38	0.52	0.44	6.89

20	emission to continental natural soil (ENS _{NC}) in cases/kg emitted (non-carcinogenic)	-Log(ENS $_{NC}$)+A $_{ENS}_{NC}$	247	235	0.70	0.0	9.31	39.67	72.06	0.53	0.45	7.08
21	emission to continental agri- cultural soil (EAS _C) in cases/kg emitted (carcinogenic)	$-Log(EAS_C) + A_{EAS_C}$	240	228	0.68	0.5 -1 -0.5 -0 -0.5 1 1.5	8.33	42.50	88.33	0.42	0.36	5.76
22	emission to continental agri- cultural soil (EAS _{NC}) in cases/kg emitted (non-carcinogenic)	$-Log(EAS_{NC}) + A_{EAS_{NC}}$	247	235	0.70	0.0	8.50	40.89	74.08	0.49	0.42	6.94

^a ARE is not defined for LogWs, BCF, ODP and AP since these properties have both positive and negative values.

Table 4(a). Performance of Model for Oral Rat LD₅₀ Based on Different Combinations of Training Sets and Test Sets

datasets u	used for	model performa	ance statistics for tra	aining set			nce statistics for te estimated from re	model performance statistics for test set using the parameters estimated from regression of the whole data-set (containing 5995 data- points)			
training	testing	MSECV	SD	AAE	ARE	SD	AAE	ARE	SD	AAE	ARE
purpose	purpose		Log(mol/kg)	Log(mol/kg)	%	Log(mol/kg)	Log(mol/kg)	%	Log(mol/kg)	Log(mol/kg)	%
A, B, C, D	Е	0.1812	0.4257	0.3479	15.97	0.4628	0.3732	17.32	0.4220	0.3424	15.91
A, B, C, E	D	0.1796	0.4238	0.3456	15.90	0.4755	0.3839	17.72	0.4287	0.3506	16.21
A, B, D, E	C	0.1805	0.4248	0.3462	15.97	0.4754	0.3823	17.23	0.4251	0.3500	15.90
A, C, D, E	В	0.1788	0.4229	0.3449	15.89	0.4677	0.3813	17.20	0.4338	0.3536	16.00
B, C, D, E	Α	0.1794	0.4236	0.3455	15.86	0.4694	0.3848	17.93	0.4302	0.3532	16.46
average perf	average performance 0.1799 0.4241 0.3460 15.5					0.4701	0.3811	17.48	0.4279	0.3499	16.09

Table 4(b). Performance of Model for Fathead Minnow 96-hr LC₅₀ Based on Different Combinations of Training Sets and Test Sets

datasets t	used for	model performance statistics for training set				model performance statistics for test set using the parameters estimated from regression of the training set			model performance statistics for test set using the parameters estimated from regression of the whole data-set (containing 809 data- points)		
training	testing	MSECV	SD	AAE	ARE	SD	AAE	ARE	SD	AAE	ARE
purpose	purpose		Log(mol/kg)	Log(mol/kg)	%	Log(mol/kg)	Log(mol/kg)	%	Log(mol/kg)	Log(mol/kg)	%
A, B, C, D	Е	0.3400	0.5831	0.4015	19.68	1.3753	0.8615	27.04	0.6732	0.4786	15.68
A, B, C, E	D	0.3339	0.5778	0.3991	19.10	1.3944	0.9325	28.91	0.6854	0.4778	17.65
A, B, D, E	C	0.3624	0.6020	0.4237	14.99	1.3517	0.9127	47.19	0.6581	0.4802	33.19
A, C, D, E	В	0.3645	0.6037	0.4201	20.39	1.4857	0.9072	28.26	0.6399	0.4654	14.62
B, C, D, E	A	0.3453	0.5876	0.4142	17.62	1.5178	0.9710	35.12	0.6722	0.4831	21.19
average performance		0.3492	0.5908	0.4117	18.35	1.4249	0.9169	33.30	0.6657	0.4770	20.47

Table 4(c). Performance of Model for Emission to Urban Air (Carcinogenic) Based on Different Combinations of Training Sets and Test Sets

datasets used for		model performance statistics for training set				model performance statistics for test set using			model performance statistics for test set using			
							the parameters estimated from regression of			parameters estimated from regression of the		
				the training set	he training set			whole data-set (containing 456 data-points)				
training	testing	MSECV	SD	AAE	ARE	SD	AAE	ARE	SD	AAE	ARE	
purpose	purpose		Cases/kg	Cases/kg	%	Cases/kg	Cases/kg	%	Cases/kg	Cases/kg	%	
			emitted	emitted		emitted	emitted		emitted	emitted		
A, B, C, D	E	0.2050	0.4528	0.3024	5.86	1.8293	1.1974	27.82	0.5386	0.4135	9.16	
A, B, C, E	D	0.2206	0.4697	0.3252	6.55	1.4664	0.9823	17.63	0.4766	0.3534	6.60	
A, B, D, E	C	0.1675	0.4093	0.2871	5.52	1.6849	1.2268	25.79	0.6160	0.4165	9.52	
A, C, D, E	В	0.2111	0.4595	0.3052	6.42	2.0921	1.3187	24.12	0.4854	0.3480	6.33	
B, C, D, E	A	0.2182	0.4671	0.3267	6.63	1.3597	1.0115	19.55	0.4572	0.3478	6.55	
average performance		0.2045	0.4517	0.3093	6.19	1.6865	1.1473	22.98	0.4713	0.3479	6.44	

Table 4(d). Performance of Model for Emission to Urban Air (Non-Carcinogenic) Based on Different Combinations of Training Sets and Test Sets

datasets used for		model performance statistics for training set				model performance statistics for test set using			model performance statistics for test set using		
1						the parameters estimated from regression of			parameters estimated from regression of the		
		the				the training set			whole data-set (containing 341 data-points)		
training	testing	MSECV	SD	AAE	ARE	SD	AAE	ARE	SD	AAE	ARE
purpose	purpose		Cases/kg	Cases/kg	%	Cases/kg	Cases/kg	%	Cases/kg	Cases/kg	%
			emitted	emitted		emitted	emitted		emitted	emitted	
A, B, C, D	E	0.0655	0.2560	0.1716	3.14	2.3797	1.4854	26.38	0.3872	0.2801	5.03
A, B, C, E	D	0.0997	0.3157	0.2217	4.12	1.7248	1.0980	19.22	0.3693	0.2708	4.89
A, B, D, E	C	0.0831	0.2882	0.1894	3.50	2.4662	1.5963	30.72	0.3684	0.2615	5.01
A, C, D, E	В	0.0846	0.2909	0.1936	3.51	3.0908	1.6401	29.28	0.3980	0.3007	5.62
B, C, D, E	A	0.1097	0.3313	0.2289	4.23	8.7061	3.9458	80.85	0.3096	0.2166	3.80
average performance		0.0885	0.2964	0.2010	3.69	3.6735	1.9531	37.28	0.3665	0.2659	4.87

Marrero and Gani¹³ reported SD, AAE, and R² values for the GC model for LogW_s as 0.55, 0.46 and 0.93 respectively. In their analysis, the number of estimated model parameters (groups) are 155 first order groups, 99 second order groups, and 48 third-order groups (that is, total 302 groups estimated out of 424 groups). Referring to the Table 2, it can be seen that the property model for LogWs has SD, AAE, and R² values of 0.99, 0.73, and 0.78 respectively. In this work, the number of estimated groups are 197 first order groups, 124 second order groups, and 57 third-order groups (total 378 groups estimated out of 424 groups). It is to be noted that in the present work, a much larger data-set (4681 data-points as compared to 2087 data-points used by Marrero and Gani¹³) of LogW_s comprising complex and polyfunctional environment-related chemicals is used in the regression, which makes it possible to estimate larger number of model parameters thereby contributing to improved application range of the property model for LogW_s. A similar note can be made for the case of property model for LC₅₀(FM). The developed property model for LC₅₀(FM) has SD, AAE, and R² values of 0.69, 0.48, and 0.78 respectively. Martin and Young¹⁵ reported SD and R² values for their GC model for LC₅₀(FM) as 0.37 and 0.91 respectively. The use of the large data-set for LC₅₀ (FM) allows estimation of a large number of model parameters which in turn allows one to estimate LC₅₀ (FM) for a wide range of organic chemicals. For the property LC₅₀(DM), the model performance statistics are similar to that of LC₅₀(FM) model. The developed property model for LD₅₀ (using a data-set of 5995 chemicals) has reasonably good performance statistics with SD, AAE, and R² values as 0.43, 0.35 and 0.73 respectively. Several estimation methods based on the QSAR approach have been reported in the literature that uses other properties such as $LC_{50}(DM)$ as an input to their estimation method to estimate LD₅₀. Also, these methods have been developed based on relatively smaller data-sets (with few hundreds of chemicals in the data-set) of chemicals. The application of such methods is restricted by the availability of the experimental data of the needed input properties for their estimation. A similar issue is associated with the estimation methods for BCF requiring additional inputs such as the octanol/water partition coefficient. In this work, the developed property model for BCF has SD, AAE, and R² values of 0.63, 0.47, and 0.78 respectively. Note, that the developed property models for LD₅₀ and for BCF only require the molecular structure of the chemical for the property estimation. For properties GWP, ODP, and AP the number of experimental data points used in the regression are smaller as compared to other properties analysed in this work. However, it can be noted that these properties belong to a particular class of chemicals (for example, global warming potential and ozone depletion potential properties involve halogenated chemicals, acidification potential property involves nitrogenated chemicals); hence, even though the experimental data-sets are smaller, the models for these properties are able to provide estimation of these properties with good accuracy. The model performance statistics for the remaining properties namely, EUA_C, EUA_{NC}, ERA_C, ERA_{NC}, EFW_C, EFW_{NC}, ESW_C ESW_{NC}, ENS_C, ENS_{NC}, EAS_C and EAS_{NC} show that the experimental data have been fitted to a good degree of accuracy. The estimation of these properties is based exclusively on the molecular structure of the chemical and allows the user to calculate Human Toxicity Potential (HTP)⁸ (which is needed to perform life cycle impact assessment of the product) thus increasing the application range of the USEtoxTM model to a wide range of chemicals.

The variables FM₀,DM₀, A_{LogWs}, B_{LogWs}, A_{LD50}, B_{LD50}, A_{EUAC}, A_{EUAC}, A_{ERAC}, A_{ERAC}, A_{EFWC}, $A_{EFW_{NC}}$, $A_{ESW_{C}}$, $A_{ESW_{NC}}$, $A_{ENS_{C}}$, $A_{ENS_{NC}}$, $A_{EAS_{C}}$, $A_{EAS_{NC}}$ as defined in the functional forms, f(X)given in Tables 2-3 are additional adjustable parameters of property prediction models. The values of these parameters are listed in Table 5. The total list of groups and their contributions C_i , D_j , and E_k for the 22 environment-related properties analysed in this work are given in the supporting information (see Tables S2-S4 for MG method based models analysed using step-wise regression method, and Tables S5-S7 for MG method based models analysed using simultaneous regression method). The list of atoms, their contributions a_i , adjustable model parameters (b and c), and the universal parameter d for CI method based property prediction models are given in the supporting information (see Table S8). The covariance matrix computed using eq. (6) for each property prediction model analyzed using the MG method (for models with step-wise regression method and simultaneous regression method) and using the CI method is available upon request from the authors. The developed models for environment-related properties (for LC₅₀(FM), LC₅₀(DM), LD₅₀, LogW_s, BCF, PEL(OSHA-TWA), PCO, GWP, ODP, and AP) have been implemented in ProPred, a property estimation toolbox of ICAS ® (Integrated Computer Aided System²⁹) software developed by CAPEC, DTU.

Table 5. Values of Universal Constants (Additional Adjustable Parameters) ^a

universal constants	value (step-wise method)	value (simultanous method)
FM_0	2.1949	2.1841
DM_0	2.9717	3.5907
A_{LogWs}	4.5484	4.3098
B_{LogWs}	0.3411	0.3404
A_{LD50}	1.9372	1.9372
B_{LD50}	0.0016	0.0016
A_{EUAC}	5.2801	5.22536
A_{EUAnc}	6.8181	7.06605
A_{ERAC}	6.5561	6.68611
A_{ERANC}	7.5541	9.53269
A_{EFWc}	5.6726	5.0706
$A_{\text{EFW}_{NC}}$	6.4429	7.33378
A_{ESWc}	8.3962	9.33319
$A_{ESW_{NC}}$	8.6360	10.0724
A_{ENSc}	6.4837	5.93334
A_{ENSNC}	7.0265	6.4159
A_{EASc}	6.2913	5.48504
AEASNC	6.9723	6.06003

^a values of universal constants for the CI models are the same as those based on the step-wise method.

Application of the Developed Property Models for the Estimation of Environment-Related Properties. The application of the developed property models to estimate properties of environment-related properties and to quantify the uncertainties of the estimated property values is illustrated by considering predictions of $LogW_s$ (using model parameters obtained from simultaneous regression method) for the chemical, Benzo[a]pyrene, (CAS No. 50-32-8) which is a polycyclic aromatic hydrocarbon and is highly carcinogenic. The experimentally measured value of $LogW_s$ (mg/L) for Benzo[a]pyrene is -2.79. Table 6 provides information of first-order, second-order, and third-order groups used to represent Benzo[a]pyrene, their frequency (that is, occurrences in the structure) and the contributions for each group $(LogW_{s1i}, LogW_{s2j}, and LogW_{s3k})$ taken from Tables S5-S7 given in the supporting

information. Using this information and the universal constants of the property model for $LogW_s$, the value of $LogW_s$ for Benzo[a]pyrene was estimated as -2.64 (with absolute error = |-2.79 - (-2.64)| = 0.15).

Table 6. Estimation of LogW_s of Benzo[a]pyrene

molecular structure
Benzo[a]pyrene

- -1.

CAS No. 50-32-8

molecular formula: $C_{20}H_{12}$

first-order groups	occurrences	contribution
аСН	12	-4.5565
aC fused with aromatic ring	8	-4.7557
second-order groups	occurrences	contribution

No second-order groups are involved

third-order groups	occurrences	contribution
AROM.FUSED[2]	1	-0.0759
AROM.FUSED[3]	1	-0.1255
AROM.FUSED[4p]	2	0.0500

$$\text{LogW}_{s} = A_{\text{LogWs}} + (B_{\text{LogWs}} \cdot MW) + \sum_{i} N_{i}C_{i} + w \sum_{j} M_{j}D_{j} + z \sum_{k} E_{k}O_{k} = -2.64$$

note: estimated value of $LogW_s$ using Marrero and Gani (2002) method = -2.20

As a next step, the uncertainty of the estimated LogW_s is quantified. For this purpose, information of covariance $COV(\textbf{P}^*)$ of the involved groups and the universal constants A_{LogWs} and B_{LogWs} and also the local sensitivity $J(\textbf{P}^*)$ of the LogW_s model is needed. The covariance of the involved groups (as listed in Table 7) and universal constants A_{LogWs} and B_{LogWs} was noted from the overall covariance matrix for all the groups of the LogW_s model analysed using simultaneous regression method. In Table 7, only lower triangular elements are shown since the upper triangular matrix elements are identical to the lower ones. Table 8 lists the local sensitivity of the LogW_s model with respect to the model parameters (for contributions listed in Table 6 and universal constants A_{LogWs} and B_{LogWs}).

Table 7. Covariance Matrix $COV(P^*)$ with Dimensions (7×7)

	A_{LogWs}	B_{LogWs}	аСН	aC	AROM.FUSED[2]	AROM.FUSED[3]	AROM.FUSED[4p]
A_{LogWs}	0.0154						
B_{LogWs}	-1.28E-07	4.97E-07					
аСН	-0.0025	-8.1E-06	6.71E-04				
aC	-0.002	-4.7E-06	-3.7E-04	0.0048			
AROM.FUSED[2]	7.7E-05	-4.3E-06	-5.9E-04	-0.0047	0.0113		
AROM.FUSED[3]	-0.0013	-2.4E-06	-8.9E-06	-0.0084	0.0111	0.0375	
AROM.FUSED[4p]	-4.5E-04	1.6E-06	8.25E-06	-0.0092	0.009	0.0136	0.0283

Table 8. Local Sensitivity $J(P^*)$ with Dimensions (1×7) of LogW_s Model with Respect to the Model Parameters

δLogWs/	δLogWs /	δLogWs /	δLogWs /	δLogWs /	δLogWs /	δLogWs /
δA_{LogWs}	δB_{LogWs}	/баСН	/δaC	$\delta \; AROM.FUSED[2]$	δ AROM.FUSED[3]	δ AROM.FUSED[4p]
1.0	252.31	12	8	1	1	2

To calculate the confidence intervals of estimated property values, say the 95% confidence intervals of the estimated LogW_s value, the covariance matrix $COV(P^*)$ given in Table 7 and

the local sensitivity $J(\textbf{P}^*)$ given in Table 8 are substituted in eq. (9). For 95% confidence interval calculation, the t-distribution value corresponding to 0.05/2 percentile (i.e. α_t /2 percentile) and with 4311 degrees of freedom (taken from Table 2) is obtained by solving eq. 8 for t and this value is 1.9604. The predicted value of the LogW_s is -2.64 (see Table 6). The calculated 95% confidence intervals of the estimated LogW_s value is therefore,

$$\operatorname{LogW}_{s} \underset{(1-0.05)}{\overset{pred}{=}} = \underbrace{\operatorname{LogW}_{s}^{pred}}_{-2.64} \pm \underbrace{\sqrt{\operatorname{diag}\left(J(\boldsymbol{P}^{*})COV(\boldsymbol{P}^{*})J(\boldsymbol{P}^{*})^{T}\right)}}_{0.2134}. \ \underline{t(v,\alpha_{t}/2)}_{1.9604} = -2.64 \pm 0.41$$

It can be observed that the experimental value of the LogW_s (-2.79) lies within the predicted confidence intervals indicating reliability of the developed model for estimating property values of LogW_s and uncertainties of the estimated values. This, of course, can only be checked when experimental data is available. This is further illustrated in Figure 2 by plotting the experimental values of LogW_s and the calculated 95% confidence intervals (shown as vertical bars) for the entire experimental data-set of LogW_s used for the regression purpose. About 42% of the experimental values in the data-set (with 4681 data points) of LogW_s falls within the confidence intervals calculated at 95% confidence level.

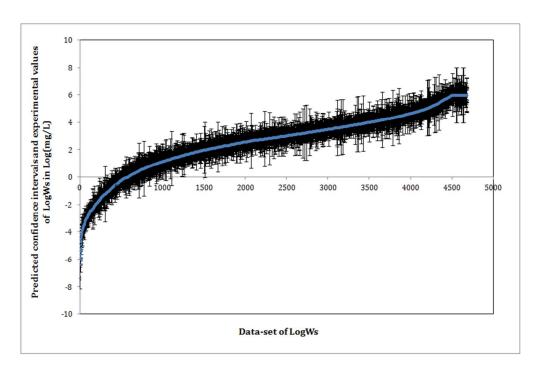


Figure 2. Experimental values of $LogW_s$ and the calculated 95% confidence intervals versus data-set of $LogW_s$

For the case where no experimental data is available, the calculated confidence intervals provide a measure of the likely prediction (that is, uncertainty) error of the predicted property value. We have considered here the calculation of confidence intervals of the estimated property values using models analysed by simultaneous regression method in order to simplify the illustration of the application of the developed property models, since there will be a single covariance matrix containing covariance of all the listed groups and universal parameters. The approach discussed in this section is the same for the case of property models analysed using the step-wise regression method. In the case of step-wise regression method, there will be a covariance matrix for each type of the groups, i.e., first-order, second-order and third-order and hence, quantification of uncertainty in the predicted property value is to be performed (using these covariance matrices) for each step (that is step1, step 2, and step 3) of property estimation.

CONCLUSIONS

Property models for environment-related properties based on the GC⁺ approach have been developed with the objective of providing reliable estimation of these properties together with the uncertainties of the estimated values for their use in the synthesis, design, and analysis of sustainable processes. The estimation of environment-related properties using these models requires only the molecular structure of the organic chemicals. Large experimental data-sets of environment-related properties taken from the database of US Environmental Protection Agency (EPA) and from the database of USEtoxTM are used for the regression purpose in order to achieve good model performance and large application range of the property models. In total 22 environment-related properties of organic chemicals have been modelled and analysed. The use of the developed property models to estimate environment-related properties and the uncertainties of the estimated property values is illustrated through an

application example. The models for some of the properties analysed in this work have been implemented in ProPred, a property estimation toolbox of ICAS ® (Integrated Computer Aided System) software. The developed property models provide reliable estimates of environment-related properties needed to perform design and analysis of sustainable processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated potential impact that the processes would have on the environment giving useful insights into quality and reliability of the design of sustainable processes. Our current and future work is focused on quantification of the effect of uncertainties of estimated properties on the design of sustainable processes.

ABBREVIATIONS

AAE average absolute e	error
------------------------	-------

- a_i contribution of atom of type-i
- A_i occurrence of atom of type-i
- ARE average relative error [%]
- b adjustable parameter of Eq. (6)
- B(1/2, v/2) beta function
- c adjustable parameter of Eq. (6)
- CI atom connectivity index
- C_i contribution of first-order group of type-i

$COV(\mathbf{P}^*)$ covariance matrix

- d universal parameter of Eq. (6)
- D_i contribution of second-order group of type-j
- E_k contribution of third-order group of type-k
- f(X) function of property X
- GC group-contribution
- GC⁺ group-contribution⁺
- $J(\mathbf{P}^*)$ local sensitivity of the model to variations in estimated model parameters
- MG Marrero and Gani

- M_j occurrence of second-order group of type-j
- MSECV mean squared error of cross-validation
- N number of experimental data-points used in the regression
- N_i occurrence of first-order group of type-i
- O_k occurrence of third-order group of type-k
- **P** model parameters
- **P*** estimated values of model parameters
- $P_r(t, v)$ Students t-distribution function
- P_{rc} percentage of the experimental data-points [%]
- R universal gas constant [cc-bar/mol-K]
- R² coefficient of determination
- $S(\mathbf{P})$ cost function
- SD standard deviation
- SSE minimum sum of squared errors
- $t(v, \alpha_t/2)$ t-distribution value corresponding to the $\alpha_t/2$ percentile
- X^{exp} experimental property value
- *X*^{pred} predicted property value

Greek Symbols

 $^{v}\chi^{0}$ zeroth-order (atom) connectivity index

- $^{v}\chi^{1}$ first-order (bond) connectivity index
- v degrees of freedom

ACKNOWLEDGMENT

The authors acknowledge U.S. EPA, National Risk Management Research Laboratory, Cincinnati, Ohio for providing experimental data for this work. This research work is a part of the collaboration between Technical University of Denmark, Denmark and Alfa Laval Copenhagen A/S, Denmark. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7-MC-ITN] under grant agreement no. 238013.

SUPPORTING INFORMATION: Following tables are included as a supporting information and is available free of charge via the Internet at http://pubs.acs.org, or at http://www.capec.kt.dtu.dk/documents/environment_related_properties/supporting_information.pdf.

Table S1. Performance of MG Method Based Property Models Analysed Using <u>Simultaneous</u>

<u>Regression Method</u>

Table S2. MG Method Based Property Models Analysed Using <u>Step-Wise Regression</u> <u>Method</u>: First-Order Groups and their Contributions for the Environment-Related Properties

Table S3. MG Method Based Property Models Analysed Using <u>Step-Wise Regression</u> <u>Method</u>: Second-Order Groups and their Contributions for the Environment-Related Properties

Table S4. MG Method Based Property Models Analysed Using <u>Step-Wise Regression</u> <u>Method</u>: Third-Order Groups and their Contributions for the Environment-Related Properties

Table S5. MG Method Based Property Models Analysed Using Simultaneous Regression Method: First-Order Groups and their Contributions for the Environment-Related Properties

Table S6. MG Method Based Property Models Analysed Using Simultaneous Regression Method: Second-Order Groups and their Contributions for the Environment-Related Properties

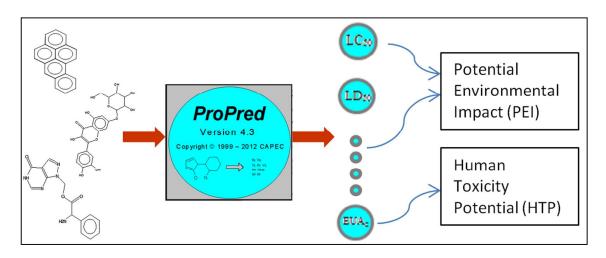
Table S7. MG Method Based Property Models Analysed Using Simultaneous Regression Method: Third-Order Groups and their Contributions for the Environment-Related Properties

Table S8. CI Method Based Property Models: Atom Contributions and Model Constants for the Environment-Related Properties

REFERENCES

- (1) Carvalho, A.; Gani, R.; Matos, H. Design of sustainable processes: Systematic generation and evaluation of alternatives. *Comput.-Aided Chem. Eng.* **2006**, *21*, 817–822.
- (2) Cabezas, H.; Bare, J. C.; Mallick, S. K. Pollution prevention with chemical process simulators: The generalized waste reduction (WAR) algorithm full version. *Comput. Chem. Eng.* **1999**, 23(4–5), 623–634.
- (3) Young, D. M.; Cabezas, H. Designing sustainable processes with simulation: The waste reduction (WAR) algorithm. *Comput. Chem. Eng.* **1999**, 23(10), 1477–1491.
- (4) Young, D. M.; Sharp, R.; Cabezas, H. The waste reduction (WAR) algorithm: Environmental impacts, energy consumption, and engineering economics. *Waste Manage*. **2000**, *20*, 605–615.
- (5) Jensen, N.; Coll, N.; Gani, R. An integrated computer-aided system for generation and evaluation of sustainable process alternatives. *Clean Technol. Environ. Policy.* **2003**, *5*, 209–225.
- (6) Carvalho, A.; Gani, R.; Matos, H. Design of sustainable chemical processes: Systematic retrofit analysis generation and evaluation of alternatives. *Process Saf. Environ. Prot.* **2008**, 86(5), 328–346.
- (7) USEtoxTM model. http://www.usetox.org/.
- (8) Rosenbaum R. K.; Huijbregts M. A. J.; Henderson A. D.; Margni M.; McKone T. E.; van de Meent D.; Hauschild M. Z.; Shaked S.; Li D: S.; Gold L. S.; Jolliet O. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. *Int. J. Life Cycle Assess.* **2011**, *16*, 710–727.
- (9) Boethling, R. S.; Howard, P. H.; Meylan, W. M. Finding and estimating chemical property data for environmental assessment. *Environ. Toxicol. Chem.* **2004**, *23*, 2290-2308.

- (10) Joback, K. K.; Reid, R. Estimation of pure component properties from group contribution. *Chem. Eng. Commun.* **1987**, *57*, 233-247.
- (11) Lydersen, A. L. Estimation of critical properties of organic compounds. Report 3; University of Wisconsin, College of Engineering, Engineering Experimental Station: Madison, WI, 1955.
- (12) Constantinou, L.; Gani, R. A new group contribution method for the estimation of properties of pure compounds. *AIChE Journal*. **2004**, *40*(10), 1697-1710.
- (13) Marrero, J.; Gani, R. Group-contribution based estimation of pure component properties. *Fluid Phase Equilib.* **2001**, *183-184*, 183-208.
- (14) Gani, R.; Harper, P. M.; Hostrup, M. Automatic creation of missing groups through connectivity index for pure-component property prediction. *Ind. Eng. Chem. Res.* **2005**, *44*, 7262-7269.
- (15) Martin, T. M.; Young, D.M. Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (*pimephales promelas*) using a group contribution method. *Chem. Res. Toxicol.* **2000**, *14*, 1378-1385.
- (16) Casalegno, M.; Benfenati, E.; Sello, G. An automated group contribution method in predicting aquatic toxicity: the diatomic fragment approach. *Chem. Res. Toxicol.* **2005**, *18*, 740-746.
- (17) Marrero, J.; Gani, R. A group contribution based estimation of octanol-water partition coefficient and aqueous solubility. *Ind. Eng. Chem. Res.* **2002**, *41*, 6623-6633.
- (18) Klopman, G.; Zhu, H. Estimation of the aqueous solubility of organic molecules by the group contribution approach. *J. Chem. Inf. Model.* **2001**, *41*, 439-445.
- (19) Kühne, R.; Ebert, R.-U.; Kleint, F.; Scmidt, G.; Schüürmann, G. Group contribution methods to estimate water solubility of organic chemicals. *Chemosphere*. **1995**, *30*, 2061-2077.

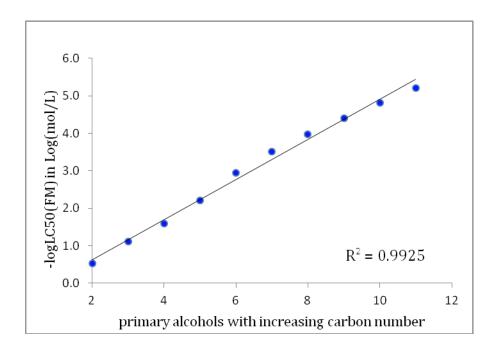

- (20) Martin T.; Harten, P.; Venkatapathy, R.; Das, S.; Young, D. A Hierarchical Clustering Methodology for the Estimation of Toxicity. *Toxicol. Mech. Methods*. **2008**, *18*, 251-266.
- (21) U.S. Environmental Protection Agency (2012a). Estimation Program Interface Suite (EPISUITE). http://www.epa.gov/oppt/exposure/pubs/episuite.htm.
- (22) U.S. Environmental Protection Agency (2012b). Toxicity Estimation Software Tool (T.E.S.T.). http://www.epa.gov/nrmrl/std/qsar/qsar.html.
- (23) Isitutio Mario Negri (2012). VEGA. http://www.vega-qsar.eu/contributors.html.
- (24) Hukkerikar, A. S.; Sarup, B.; Ten Kate, A.; Abildskov, J.; Sin, G.; Gani, R. Group contribution⁺ (GC⁺) based estimation of properties of pure components: Improved property estimation and uncertainty analysis. *Fluid Phase Equilib.* **2012**, *321*, 25-43.
- (25) Seber, G.; Wild, C. Nonlinear regression; Wiley: New York, 1989.
- (26) Sin, G.; Meyer, A. S.; Gernaey, K.V. Assessing reliability of cellulose hydrolysis models to support biofuel process design identifiability and uncertainty analysis. *Comput. Chem. Eng.* **2010**, *34*, 1385–1392.
- (27) Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables; New York: Dover, 1972.
- (28) Mevik, B-H.; Cederkvist, H. R. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). *J. Chemom.* **2004**, *18*, 422-429.
- (29) Integrated Computer Aided System (ICAS), version 15.0; Department of Chemical Engineering, Technical University of Denmark, Lyngby, Denmark, 2012.

FOR TABLE OF CONTENTS USE ONLY

TITLE: Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution⁺ (GC⁺) Property Models and Uncertainty Analysis

AUTHORS: Amol Shivajirao Hukkerikar, Sawitree Kalakul, Bent Sarup, Douglas M. Young, Gürkan Sin, and Rafiqul Gani.

TABLE OF CONTENTS (TOC) GRAPHIC



Figures and TABLE OF CONTENTS (TOC) GRAPHIC for the manuscript

Figure 1. Plot of primary alcohols versus their experimental values of –LogLC₅₀(FM)

Figure 2. Experimental values of $LogW_s$ and the calculated 95% confidence intervals versus data-set of $LogW_s$

TABLE OF CONTENTS (TOC) GRAPHIC

Figure 1. Plot of primary alcohols versus their experimental values of –LogLC₅₀(FM)

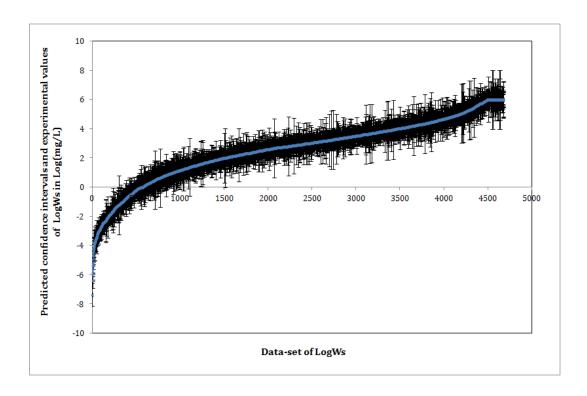
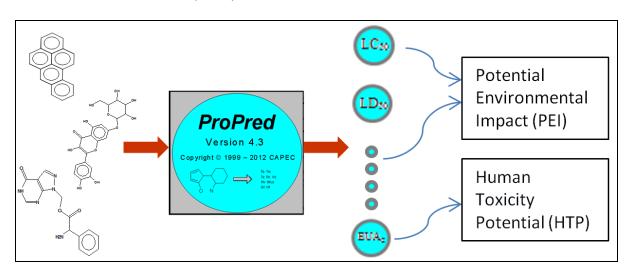



Figure 2. Experimental values of $LogW_s$ and the calculated 95% confidence intervals versus data-set of $LogW_s$

TABLE OF CONTENTS (TOC) GRAPHIC

SUPPORTING INFORMATION

Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution $^+$ (GC $^+$) Property Models and Uncertainty Analysis

Amol Shivajirao Hukkerikar ^a, Sawitree Kalakul ^b, Bent Sarup ^c, Douglas M. Young ^d,

Gürkan Sin ^a, and Rafiqul Gani ^{a,*}

^a Computer Aided Process-Product Engineering Center (CAPEC), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.

^b The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.

^c Vegetable Oil Technology Business Unit, Alfa Laval Copenhagen A/S, Maskinvej 5, DK-2860, Søborg, Denmark.

^d U.S. EPA, National Risk Management Research Laboratory, Cincinnati, Ohio 45268.

*Corresponding author: E-mail address: rag@kt.dtu.dk (R. Gani); Phone no: +45-45252882; Fax no: +45-45932906.

Following tables are included as supporting information.

Table S1. Performance of MG Method Based Property Models Analysed Using <u>Simultaneous</u>

<u>Regression Method</u>

Table S2. MG Method Based Property Models Analysed Using <u>Step-Wise Regression</u>
Method: First-Order Groups and their Contributions for the Environment-Related Properties

Table S3. MG Method Based Property Models Analysed Using <u>Step-Wise Regression</u> <u>Method</u>: Second-Order Groups and their Contributions for the Environment-Related Properties

Table S4. MG Method Based Property Models Analysed Using <u>Step-Wise Regression</u> <u>Method</u>: Third-Order Groups and their Contributions for the Environment-Related Properties

Table S5. MG Method Based Property Models Analysed Using <u>Simultaneous Regression</u>
Method: First-Order Groups and their Contributions for the Environment-Related Properties

Table S6. MG Method Based Property Models Analysed Using <u>Simultaneous Regression</u>

<u>Method</u>: Second-Order Groups and their Contributions for the Environment-Related

Properties

Table S7. MG Method Based Property Models Analysed Using Simultaneous Regression Method: Third-Order Groups and their Contributions for the Environment-Related Properties

Table S8. CI Method Based Property Models: Atom Contributions and Model Constants for the Environment-Related Properties

Table S1. Performance of MG Method Based Property Models Analysed Using Simultaneous Regression Method

sl. no.	property	L.H.S. of MG method based property prediction model								tribution mod $\sum_{j} M_{j} D_{j} + \sum_{k} E_{j}$		
		f(X)	N	ν	\mathbb{R}^2	residual distribution plot	P _{rc} (± 1%)	P _{rc} (± 5%)	P _{rc} (± 10%)	SD	AAE	ARE ^a
1	fathead minnow 96- hr LC ₅₀ (LC ₅₀ (FM)) in mol/lit	-LogLC ₅₀ (FM) +FM ₀	809	541	0.81		9.64	33.00	57.11	0.63	0.45	20.14
2	daphnia magna 48- hr LC_{50} (LC_{50} (DM)) in mol/lit	-LogLC ₅₀ (DM) +DM ₀	320	124	0.87		28.75	48.13	67.50	0.61	0.38	11.19
3	oral Rat LD_{50} (LD_{50}) in mol/kg	-LogLD50 - A _{LD50} - B _{LD50} MW	5995	5617	0.74		1.87	7.96	14.18	0.42	0.35	16.09
4	aqueous solubility (LogW _S) in gm/lit	$\log(W_S) - A_{W_S} - B_{W_S} MW$	4681	4311	0.79		3.23	14.80	28.97	0.97	0.71	

_										0.60		
5	bioconcentr ation factor (BCF)	LogBCF	662	423	0.80	00 00 00 00 00 00 00 00 00 00 00 00 00	9.37	20.85	30.36	0.60	0.44	
6	permissible Exposure Limit (PEL)) in mol/lit	-LogPEL	425	239	0.78		23.53	48.47	65.88	0.72	0.38	11.02
7	photochemi cal Oxidation Potential (PCO)	-LogPCO	639	488	0.86	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.95	18.31	28.64	0.20	0.12	6.60
8	global Warming Potential (GWP)	LogGWP	51	31	0.87	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	15.69	37.25	56.86	0.41	0.29	11.57
9	ozone Depletion Potential (ODP)	LogODP	28	12	0.89	15 15 15 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	17.86	21.43	28.5	0.30	0.16	
10	acidification Potential (ODP)	LogAP	10	1	1.0		100.0			3.4E-04	2.1E-4	

11	emission to urban air (EUA _C) in cases/kg emitted (carcinogenic)	$-Log(EUA_C)+A_{EUA_C}$	456	214	0.84		23.03	48.90	75.22	0.51	0.36	7.42
12	emission to urban air (EUA _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{EUA}_{\text{NC}}\big) \text{+A}_{\text{EUA}_{\text{NC}}}$	341	128	0.88	0.5	27.57	60.70	84.46	0.36	0.26	4.87
13	emission to continental rural air (ERAc) in cases/kg emitted (carcinogenic)	$-Log(ERA_C)+A_{ERA_C}$	470	229	0.83	0.5	20.43	45.53	71.91	0.56	0.42	7.18
14	emission to continental rural air (ERA _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{ERA}_{\text{NC}}\big) \text{+A}_{\text{ERA}_{\text{NC}}}$	349	134	0.87		26.36	55.30	80.52	0.45	0.32	5.50

15	emission to continental fresh water (EFW _C) in cases/kg emitted (carcinogenic)	$-Log(EFW_C)+A_{EFW_C}$	472	230	0.83	05	20.34	41.95	68.43	0.55	0.41	8.87
16	emission to continental fresh water (EFW _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{EFW}_{\text{NC}}\big) + \text{A}_{\text{EFW}_{\text{NC}}}$	345	131	0.89	0.5	23.19	52.75	77.97	0.42	0.31	6.33
17	emission to continental sea water (ESW _C) in cases/kg emitted (carcinogenic)	$-Log(ESW_C) + A_{ESW_C}$	477	235	0.87	000	22.22	46.96	76.10	0.63	0.48	6.72
18	emission to continental sea water (ESW _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{ESW}_{\text{NC}}\big) + A_{\text{ESW}_{\text{NC}}}$	360	146	0.91		23.33	58.06	80.56	0.52	0.38	6.06
19	emission to continental natural soil (ENS _C) in cases/kg emitted (carcinogenic)	$-Log(ENS_C) + A_{ENS_C} + B_{ENS_C} \times N$	v 460	219	0.84	05 05 0 1 2	24.13	50.00	76.52	0.52	0.38	6.22

20	emission to continental natural soil (ENS _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{ENS}_{\text{NC}}\big) \text{+A}_{\text{ENS}_{\text{NC}}}$	362	148	0.85		23.48	55.25	77.90	0.51	0.37	5.91
21	emission to continental agri- cultural soil (EAS _C) in cases/kg emitted (carcinogenic)	$-Log(EAS_C) + A_{EAS_C}$	470	228	0.84	05	22.34	47.23	73.83	0.53	0.40	6.91
22	emission to continental agri- cultural soil (EAS _{NC}) in cases/kg emitted (non-carcinogenic)	$\text{-Log}\big(\text{EAS}_{\text{NC}}\big) \text{+A}_{\text{EAS}_{\text{NC}}}$	352	138	0.87		23.86	56.53	82.39	0.44	0.32	5.30

^a ARE is not defined for LogWs, BCF, ODP and AP since these properties have both positive and negative values.

Table S2. MG Method Based Property Models Analysed Using <u>Step-Wise Regression Method</u>: First-Order Groups and their Contributions ^a for the Properties÷ $LC_{50}(FM)$, $LC_{50}(DM)$, LD_{50} , $LogW_s$, BCF, PEL(OSHA-TWA), PCO, GWP, ODP, and AP.

	Group	LC50(FM) _{1i}	LC50(DM) _{1i}	$LD50_{1i}$	$LogWs_{1i}$	BCF_{1i}	PEL_{1i}	PCO_{1i}	GWP_{1i}	ODP_{1i}	AP_{1i}
1	CH ₃	0.0972	-0.0386	-0.0742	-5.2494	0.6657	0.7723	0.1227	0.3880	-0.9453	-0.1290
2	CH_2	0.2885	0.1710	0.0223	-5.0706	0.0948	0.0727	0.0463	-1.0699	****	****
3	СН	0.2441	-0.1654	0.1335	-4.8948	-0.3921	-0.6557	-0.0790	****	****	****
4	С	-0.3822	0.4640	0.2641	-4.6277	-0.9137	-1.3404	-0.0434	****	****	****
5	CH ₂ =CH	1.0340	0.1698	0.1087	-9.6240	0.7712	2.2638	-0.2572	****	****	****
6	CH=CH	0.3890	-0.2512	0.0977	-9.5597	****	0.7658	-0.5513	***	****	****
7	CH ₂ =C	0.5436	0.5657	0.1358	-9.4175	-0.1358	0.1652	-0.3932	****	****	****
В	CH=C	0.5902	0.6270	0.2376	-9.4095	-0.0639	-0.7468	-0.6306	****	****	****
9	C=C	0.8302	0.2129	0.3451	-9.0081	-0.1808	-1.2669	-0.6010	***	****	****
10	CH ₂ =C=CH	****	****	****	****	****	****	****	****	****	****
11	$CH_2=C=C$	****	****	****	****	****	****	****	****	****	****
12	C=C=C	****	****	****	****	****	****	****	****	****	****
13	CH≡C	0.7491	****	0.0609	-9.0073	****	3.0138	-0.3025	****	****	****
14	C≡C	1.6682	-0.2044	0.3876	-8.6808	****	****	-0.9074	****	****	****
15	аСН	0.1530	0.0743	0.0230	-4.6135	0.2561	0.4045	0.0137	****	****	****
16	aC fused with aromatic ring	0.1782	0.2851	0.0398	-4.7032	-0.0341	0.2664	0.0053	****	****	****
17	aC fused with non-aromatic ring	0.6141	0.4121	0.1363	-4.5533	0.1641	0.3003	-0.0341	****	****	****
18	aC except as above	0.3150	0.3864	0.0501	-4.5067	-0.0071	-0.0178	0.8000	****	****	****
19	aN in aromatic ring	-0.1501	-0.2125	0.0755	-4.4745	0.0130	1.4732	****	****	****	****
20	aC-CH ₃	0.4050	0.4345	0.0699	-9.6580	0.4333	0.5522	-0.1132	****	****	****
21	aC-CH ₂	0.3350	0.2087	0.0821	-9.3278	-0.1904	-0.3934	-0.2018	****	****	****
22	aC-CH	0.7893	0.9717	0.4545	-9.0233	-0.9151	-1.1787	-0.2998	****	****	****
23	aC-C	0.5639	1.0938	0.4264	-8.7328	-0.9509	-0.9892	-0.3527	****	****	****
24	aC-CH=CH ₂	0.8110	0.0652	0.1599	-14.0398	0.8698	0.5330	0.3822	****	****	****
25	aC-CH=CH	0.5427	****	0.0900	-14.4421	0.1297	****	0.8379	****	****	****
26	aC-C=CH ₂	****	****	-0.6814	-14.2994	0.3000	-0.4032	0.1949	****	****	****
27	aC-C≡CH	****	****	****	-13.6670	****	****	****	****	****	****
28	aC-C≡CI aC-C≡C	****	****	-0.3680	-14.4769	****	****	****	****	****	****
29	OH	-0.6115	-0.8815	-0.1955	-5.1862	-0.0340	1.3612	0.0359	****	****	****
30	аС-ОН	0.2670	0.2670	0.0705	-9.6989	-0.2700	1.2393	0.3113	****	-1.5842	-0.0769
31	СООН	-0.1104	-0.3982	0.0703	-14.8398	-0.2700	2.3281	-0.0379	****	****	****
32	aC-COOH	0.0172	-1.6411	0.0320	-14.6396	-0.8830	1.1988	****	****	****	****
33		0.0172							****	****	****
	CH ₃ CO		-1.4018 ****	-0.0172	-14.2841	0.6654	1.4016	0.1409	****	***	****
34	CH ₂ CO	-0.5508 ****	****	0.1931	-14.6443	-1.4842 ****	1.2601 ****	-0.0515	****	****	****
35	CHCO	****	****	0.4130	-15.1578	****		0.0505 ****	****	****	****
36	CCO			1.1655	-14.0177		0.1081		****	****	
37	aC-CO	0.2699	0.4353	0.2190	-14.1140	-0.9893	0.9671	****			****
88	СНО	0.6008	0.7531	-0.1338	-9.3615	-0.3560	2.3662	-0.1855	****	****	****
39	aC-CHO	0.8678	0.9419	-0.0626	-14.4954	-1.3452	****	****	****	****	****

40	CH₃COO	0.4393	-0.6598	-0.1734	-19.9009	0.3988	1.2544	0.3858	****	****	****
41	CH ₂ COO	0.1823	0.4007	-0.0357	-19.7361	0.2378	1.6798	0.3021	****	****	****
42	CHCOO	-0.0242	****	0.1329	-19.3313	****	****	0.1068	****	****	****
43	CCOO	-1.9110	****	0.3242	-19.3558	****	****	****	****	****	****
44	HC00	****	****	-0.0612	-15.4178	****	1.5780	0.8282	****	****	****
45	aC-COO	0.4382	0.0355	-0.0431	-19.3244	-1.1633	0.5326	-0.0378	****	****	****
46	aC-00CH	****	****	-0.2398	****	****	****	****	****	****	****
47	aC-OOC	0.9868	****	0.4845	-19.5174	-2.9904	0.9678	****	****	****	****
48	COO except as above	0.4138	1.3113	0.0657	-14.9256	-0.5196	0.4342	-0.2744	****	****	****
49	CH ₃ O	-0.5209	0.7930	-0.0259	-10.1615	0.2530	2.1251	0.1499	0.1245	****	****
50	CH ₂ O	-0.2160	0.2341	0.0974	-9.9546	-0.1060	0.9276	-0.1226	****	****	****
51	CH-O	-0.8189	****	0.4987	-9.8757	-0.3114	-0.7462	-0.2064	-1.8521	****	****
52	C-O	****	****	0.2275	-9.2509	-0.7149	****	****	****	****	****
53	aC-O	0.0896	0.7875	0.1839	-9.6929	-0.3264	0.4621	-0.4603	****	****	****
54	CH ₂ NH ₂	-0.0246	0.1531	0.0450	-9.5161	0.2885	1.9265	-0.3290	****	****	****
55	CHNH ₂	-0.0983	0.9878	0.3764	-10.1966	****	2.1480	-0.5376	****	****	****
56	CNH ₂	0.5803	****	0.4151	-8.7982	****	****	****	****	****	****
57	CH ₃ NH	-0.4593	0.1983	-0.0593	-9.5708	****	2.8505	0.0046	****	****	****
58	CH ₂ NH	0.0524	0.0553	0.2571	-9.2845	-0.3334	1.2126	-0.0060	****	****	****
59	CHNH	****	-0.3115	0.2506	-8.8957	****	1.2708	****	****	****	****
60	CH ₃ N	0.1273	-0.9599	0.3338	-9.5015	-0.4163	1.1981	-0.4139	****	****	****
61	CH ₂ N	-0.3121	-1.4049	0.4337	-9.3647	-1.4607	0.2724	-0.3483	****	****	****
62	aC-NH ₂	0.0721	1.0918	0.1189	-9.8417	-0.3313	2.0982	****	****	****	****
63	aC-NH	0.3195	0.4657	0.1796	-9.7080	-0.4387	0.7464	****	****	****	****
64	aC-N	0.0691	0.5173	0.2682	-9.5308	-0.6948	-0.7120	****	****	****	****
65	NH ₂ except as above	0.1130	0.2107	0.0130	-5.2748	-0.1643	2.0449	-0.4319	****	****	****
66	CH=N	2.4719	0.0832	0.1706	-9.5889	0.1155	****	****	****	****	****
67	C=N	0.9533	1.1620	0.2576	-8.8434	-1.0204	****	****	****	****	****
68	CH ₂ CN	-0.0683	****	-0.0168	-13.5365	0.3979	2.0501	****	****	****	****
69	CHCN	2.0149	****	1.0312	-13.2307	-0.4915	1.9526	****	****	****	****
70	CCN	1.0777	****	0.7798	-12.9126	****	0.7938	****	****	****	****
71	aC-CN	0.0788	0.6363	0.1041	-13.5595	-0.3186	****	****	****	****	****
72	CN except as above	0.5895	0.2307	0.3921	-9.2357	1.2018	2.5607	0.4704	****	****	****
73	CH ₂ NCO	****	****	0.0453	****	****	3.1956	****	****	****	****
74	CHNCO	****	****	****	****	****	****	****	****	****	****
75	CNCO	****	****	****	****	****	****	****	****	****	****
76	aC-NCO	****	****	-0.1489	****	****	2.0353	-0.0504	****	****	****
77	CH2NO ₂	****	****	0.1374	-20.3294	****	1.8813	1.0797	****	****	****
78	CHNO ₂	****	****	0.6535	-20.6143	-1.0104	1.4511	****	****	****	****
79	CNO ₂	1.4039	****	1.1115	-18.8805	****	0.1482	****	****	****	****
80	aC-NO ₂	0.7014	0.2756	0.2627	-20.3307	-0.0368	1.5088	1.3371	****	****	****
81	NO ₂ except as above	1.0513	-1.3024	-0.0320	-16.4594	****	1.4137	****	****	****	-0.0775
82	ONO	****	****	0.8495	****	****	****	****	****	****	****
83	ONO_2	-0.0796	-0.3048	0.2883	-21.5057	****	2.0086	****	****	****	-0.0775
84	HCON(CH ₂) ₂	-0.2502	****	****	-22.5375	****	****	****	****	****	****
85	HCONHCH ₂	****	****	****	-19.5759	****	****	****	****	****	****

Section County												
B8	86	CONH ₂	-0.1815	1.2951	0.1678	-14.6677	****	3.1108	****	****	****	****
B8	87	CONHCH ₃	1.2999	-0.2366	1.0423	-19.5825	-0.6677	****	****	****	****	****
Pos	88	CONHCH ₂	0.9036	3.7503	0.1446	-19.3632	-1.7679	****	****	****	****	****
Post CONCH-Schee Conchise								2.6238	****	****	****	****
Section Sec				****					****	****	****	****
Section Sect			-0.5947	-0.5260			-0.6649	****	****	****	****	****
CONCO		. ,						****	****	****	****	****
GCONH;												
Second S												
Company Comp												
Company Comp												
Second Color		. ,										
P9												
100 NHCONH						-18.9709						
NH_CON	99	aC-(N)CO	0.1407	-0.0767	0.2094	-18.1536	-2.0069	****	****	****	****	****
NII_CON	100	NHCONH	****	****	0.1069	-20.4704	-3.0761	****	****	****	****	****
NHCON	101	NH ₂ CONH	****	****	-0.0066	-20.2551	****	****	****	****	****	****
104 NCON	102	NH ₂ CON	****	****	0.7208	-19.6286	****	****	****	****	****	****
105 aC-NHCONH2	103	NHCON	-0.6989	****	0.5454	-19.0554	****	****	****	****	****	****
105 aC-NHCONH2	104	NCON	****	-1.2393	0.4743	-17.1827	****	****	****	****	****	****
106 aC-NHCONH 0.5009 2.1330 0.0802 2.49922 1.4420 ***** **** **** **** ***** **** ***** **** **** **** **** **** **** ***			****				****	****	****	****	****	****
107 NHCO except as above 0.6549 -0.9079 0.1199 -14.2024 0.6908 *** **** **** **** **** **** **** **** 108 CH2C 0.6181 -0.1689 0.3896 -17.3359 0.4043 2.3309 0.3730 -0.2757 -1.4515 **** 1.3742 **** 110 CCI **** **** **** 0.2454 -17.1019 0.3504 -0.9263 0.6117 **** -1.3742 **** 111 CHCl2 0.5662 0.3245 0.2650 -29.1152 0.4145 1.7348 1.5265 -0.0233 -1.7873 **** 1.7873 1.2019 0.3039 -1.6097 0.9977 1.8541 2.7667 1.8173 -0.0399 -0.0132 1.4 CH2F **** ***			-0.5009	2 1330			-1 4420	****	****	****	****	****
108								****	****	****	****	****
109		•						2 2200	0.3730	-0.2757	-1 4515	****
110 CCl												****
111 CHCl2 0.5662 0.3245 0.2650 -29.1152 0.4145 1.7348 1.5265 -0.0233 -1.7873 **** 112 CCl2 0.7493 **** -0.0580 -28.3154 0.8521 **** **** **** **** ***** ***** 113 CCl3 1.3517 1.2019 0.3039 -41.6097 0.9977 1.8541 2.7667 1.8173 -0.0399 -0.0132 1.4 CH ₂ F **** **** 2.1620 -10.7960 **** **** 1.9489 0.8584 **** **** 1.9489 0.8584 **** **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 **** 1.9489 0.8584 0.8521 0.9489 0.9489 0.8584 0.9489 0.9499												
112 CCl2												
113 CCl ₃ 1.3517 1.2019 0.3039 -41.6097 0.9977 1.8541 2.7667 1.8173 -0.0399 -0.0132 114 CH ₂ F												
114 CH ₂ F ***** ***** 2.1620 -10.7960 ***** ***** 1.9489 0.8584 ***** ***** 115 CHF ***** ***** ***** -9.2501 ***** ***** -0.6900 **** ***** 116 CF ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****												
115 CHF												
116 CF												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_										
118												
119 CF ₃ 0.6351 -0.4425 1.3466 -24.1014 0.3278 1.3676 0.5828 2.1289 0.0883 **** 120 CCl ₂ F												
120 CCl ₂ F **** **** -0.2211 -36.0704 0.8196 0.5580 2.4794 2.1575 0.0131 0.1546 121 HCClF	118		0.1261	****	0.1139	-18.6216	0.6323	-0.6817	****	-0.0026	-0.2492	
121 HCClF	119	CF ₃			1.3466	-24.1014	0.3278	1.3676	0.5828	2.1289	0.0883	****
122 CCIF ₂	120	CCl₂F	****	****	-0.2211	-36.0704	0.8196	0.5580	2.4794	2.1575	0.0131	0.1546
123 aC-Cl	121	HCClF	****	****	-0.4169	-23.5774	****	0.0865	2.0994	0.9439	-1.4911	****
124 aC-F 0.3392 0.6346 0.2812 -11.0066 0.5743 **** 0.3160 **** **	122	CClF ₂	****	****	0.1143	-30.0684	0.8033	0.4950	2.4794	2.0786	-0.0409	****
125 aC-I 0.9439 **** 0.2841 -47.8855 0.7695 **** **** **** **** **** **** **** *	123	aC-Cl	0.6323	0.4909	0.1991	-17.1355	0.6407	0.9796	0.6083	****	-0.2832	-0.0290
125 aC-I 0.9439 **** 0.2841 -47.8855 0.7695 **** </td <td>124</td> <td>aC-F</td> <td>0.3392</td> <td>0.6346</td> <td>0.2812</td> <td>-11.0066</td> <td>0.5743</td> <td>****</td> <td>0.3160</td> <td>****</td> <td>****</td> <td>****</td>	124	aC-F	0.3392	0.6346	0.2812	-11.0066	0.5743	****	0.3160	****	****	****
126 aC-Br 0.7252 0.8113 0.4920 -32.2539 0.3579 **** *								****		****	****	****
127 -I except as above 0.9066 -0.2044 0.4522 -43.7256 **** 2.9327 **** -2.1289 **** **** 128 -Br except as above 0.6769 0.4380 0.3970 -27.6030 0.5466 1.5345 0.9433 1.0645 0.4320 **** 129 -F except as above 0.0814 0.1183 -0.0353 -6.6241 0.5813 1.2998 0.4224 1.9617 -0.0074 **** 130 -Cl except as above 0.3776 0.1975 0.0133 -12.4658 0.5005 1.3093 0.5640 1.2757 -0.0056 -0.0682				0.8113				****	****	****	****	****
128 -Br except as above 0.6769 0.4380 0.3970 -27.6030 0.5466 1.5345 0.9433 1.0645 0.4320 **** 129 -F except as above 0.0814 0.1183 -0.0353 -6.6241 0.5813 1.2998 0.4224 1.9617 -0.0074 **** 130 -Cl except as above 0.3776 0.1975 0.0133 -12.4658 0.5005 1.3093 0.5640 1.2757 -0.0056 -0.0682								2 9327	****	-2 1289	****	****
129 -F except as above 0.0814 0.1183 -0.0353 -6.6241 0.5813 1.2998 0.4224 1.9617 -0.0074 **** 130 -Cl except as above 0.3776 0.1975 0.0133 -12.4658 0.5005 1.3093 0.5640 1.2757 -0.0056 -0.0682		•					0.5466		0.0433		0.4320	****
130 -Cl except as above 0.0014 0.1163 -0.0333 -0.0241 0.3013 1.2990 0.4224 1.9017 -0.0074 1.3013 -12.4658 0.5005 1.3093 0.5640 1.2757 -0.0056 -0.0682		•										
		•										
151 CHIVON 0.7400 0.2480 -15.5088		-										
	131	CHINUH	0.7400		0.2486	-15.5688	************	************	**********	********	2	

132	CNOH	-0.4679	****	0.1320	-14.8149	-1.2471	****	****	****	****	****
133	aC-CHNOH	1.5961	****	0.9452	****	****	****	****	****	****	****
134	OCH ₂ CH ₂ OH	-0.7009	-1.2305	-0.1547	-19.6115	-0.2796	1.7163	0.0024	****	****	****
135	OCHCH ₂ OH	****	****	0.0366	-19.2869	****	-0.6939	-0.1438	****	****	****
136	OCH ₂ CHOH	0.1611	****	0.0275	-19.5555	****	0.2807	-0.1101	****	****	****
137	-0-0H	****	****	0.1372	-10.3102	****	****	0.6889	****	****	****
138	CH ₂ SH	1.5431	1.8996	0.1372	-16.6831	-2.2197	3.2668	****	****	****	****
139	CHSH	0.2299	****	0.4204	-16.7708	-2.217/ ****	3.2000 ****	****	****	****	****
	CSH	0.2299 ****	****			****	****	****	****	****	****
140		****	****	-0.1342	-14.8742	****		***	****	***	****
141	aC-SH		****	0.8198	-16.6828	***	3.3208	***	***	***	****
142	-SH except as above	0.7657		-0.0389	-10.6945		3.0292				
143	CH ₃ S	0.4408	0.4059	0.4553	-16.4597	0.5000	2.6231	****	****	****	****
144	CH ₂ S	0.6252	1.0444	0.3767	-16.2943	-0.4380	****	****	****	****	****
145	CHS	0.6236	-0.3983	0.5770	-15.8430	-1.3246	-1.5055	****	****	****	****
146	CS	1.4408	****	0.2262	-16.8443	****	****	****	****	****	****
147	aC-S-	0.8459	0.3129	0.3336	-15.7817	-1.0938	****	****	****	****	****
148	SO	-1.3615	-2.3995	0.1737	-14.8690	-1.4619	1.7578	-0.5158	****	****	****
149	S02	2.5611	****	0.3939	-21.8506	-0.5763	2.2691	****	****	****	****
150	SO ₃ (sulfite)	****	****	-0.2231	-31.4604	****	****	****	****	****	****
151	SO ₃ (Sulfonate)	0.4219	****	0.3187	-26.8991	****	****	****	****	****	****
152	SO ₄ (Sulfate)	****	****	0.7967	-32.6492	****	2.8573	****	****	****	****
153	aC-SO	-0.5944	****	0.6778	-21.4786	-2.4005	****	****	****	****	****
154	aC-SO ₂	0.2814	-1.0660	0.0021	-25.8954	-0.3242	****	****	****	****	****
	-	****	****	****	****	****	****	****	****	****	****
155											
155 156	PH (phosphine) P (Phospine)	****	****		****	***	****	****	***	****	****
156	P (Phospine)			0.5950		****					
156 157	P (Phospine) PO ₃ (Phospite)	****	****	0.5950 0.4576	****		****	****	****	****	****
156 157 158	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate)	**** **** 0.3208	**** **** ****	0.5950 0.4576 0.0665	**** **** -25.9962	**** -2.1138 ****	**** ****	**** ****	**** **** ****	**** ****	**** ****
156 157 158 159	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate)	**** **** 0.3208 -0.0390	**** **** **** 3.2035	0.5950 0.4576 0.0665 1.4048	**** **** -25.9962 -26.0106	**** -2.1138 **** -1.5601	**** *** ****	**** *** ****	**** **** ****	**** *** ****	**** *** ****
156 157 158 159 160	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate)	**** 0.3208 -0.0390 1.4767	**** **** 3.2035 ****	0.5950 0.4576 0.0665 1.4048 0.0500	**** -25.9962 -26.0106 -30.9428	**** -2.1138 **** -1.5601 -2.2271	**** **** **** ****	**** **** **** ****	**** *** *** ****	**** **** **** ****	**** **** ****
156 157 158 159 160 161	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate)	**** 0.3208 -0.0390 1.4767 0.0857	**** **** 3.2035 **** 1.6308	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110	**** **** -25.9962 -26.0106 -30.9428 -30.7800	**** -2.1138 **** -1.5601 -2.2271 -2.2559	**** **** **** **** ****	**** **** **** **** ****	**** *** *** **** ****	**** **** **** **** ****	**** **** **** ****
156 157 158 159 160 161 162	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄	**** 0.3208 -0.0390 1.4767 0.0857 1.9467	**** **** 3.2035 **** 1.6308 2.5522	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535	**** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727	**** **** **** **** -0.4513	**** **** **** **** **** ****	**** **** **** **** ****	**** **** **** **** ****	**** **** **** **** ****
156 157 158 159 160 161 162 163	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 ****	**** **** 3.2035 **** 1.6308 2.5522 ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 ****	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 ****	**** *** *** *** *** -0.4513 ****	**** **** **** **** **** ****	**** **** **** **** ****	**** **** **** **** **** ****	**** *** *** *** *** *** ****
156 157 158 159 160 161 162 163 164	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate)	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 ****	**** **** 3.2035 **** 1.6308 2.5522 **** ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** ****	**** *** *** *** -0.4513 **** ****	**** *** *** *** *** *** 1.5672	**** **** **** **** **** ****	**** **** **** **** **** ****	**** *** *** *** *** *** *** ****
156 157 158 159 160 161 162 163 164	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** 0.8514	**** **** 3.2035 **** 1.6308 2.5522 **** ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** ****	**** *** *** *** -0.4513 **** 1.0419	**** *** *** *** *** *** 1.5672 0.7183	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** *** *** *** *** *** *** *** ****
156 157 158 159 160 161 162 163 164 165	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** 0.8514 -0.4972	**** **** 3.2035 **** 1.6308 2.5522 **** **** ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** ****	**** *** *** *** -0.4513 **** 1.0419 ****	**** *** *** *** *** *** 1.5672 0.7183 ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** *** *** *** *** *** *** ****
156 157 158 159 160 161 162 163 164 165 166	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** 0.8514	**** **** 3.2035 **** 1.6308 2.5522 **** ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** ****	**** *** *** *** -0.4513 **** 1.0419	**** *** *** *** *** *** 1.5672 0.7183	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** *** *** *** *** *** *** ****
156 157 158 159 160 161 162 163 164 165	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** 0.8514 -0.4972	**** **** 3.2035 **** 1.6308 2.5522 **** **** ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** ****	**** *** *** *** -0.4513 **** 1.0419 ****	**** *** *** *** *** *** 1.5672 0.7183 ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO	**** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** 0.8514 -0.4972 ****	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** ****	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** ****	**** *** *** *** -0.4513 **** 1.0419 **** ****	**** *** *** *** *** *** 1.5672 0.7183 **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic) C (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** -0.0164	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** **** 0.2381	**** **** **** -0.4513 **** 1.0419 **** **** 0.2678	**** *** *** *** *** *** 1.5672 0.7183 *** **** 0.0522	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167 168	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phosponate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** -0.0164 0.2230	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** **** 0.2381 0.0526	**** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033	**** *** *** *** *** *** 1.5672 0.7183 *** **** 0.0522 0.0076	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic) C (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440 -0.0751	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** -0.0164 0.2230 0.1635	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009 0.2675	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455 -4.2661	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** **** 0.2381 0.0526 -0.4317	**** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033 -0.6719	**** **** **** **** **** 1.5672 0.7183 **** 0.0522 0.0076 0.0405	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** *** *** *** *** *** *** *** ****
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic) C (cyclic) CH=CH (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440 -0.0751 0.4053	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** -0.0164 0.2230 0.1635 0.1881	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009 0.2675 0.0342	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455 -4.2661 -9.1455	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** **** 0.2381 0.0526 -0.4317 0.8670	**** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033 -0.6719 1.1926	**** **** **** **** **** 1.5672 0.7183 **** 0.0522 0.0076 0.0405 -0.1694	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PO ₃ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic) C (cyclic) CH=CH (cyclic) CH=C (cyclic) CH=C (cyclic) C=C (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440 -0.0751 0.4053 0.7101	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** -0.0164 0.2230 0.1635 0.1881 0.6201	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009 0.2675 0.0342 0.1961	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455 -4.2661 -9.1455 -9.0741 -9.1726	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** **** 0.2381 0.0526 -0.4317 0.8670 -0.9429	**** **** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033 -0.6719 1.1926 -0.3924	**** **** **** **** **** 1.5672 0.7183 **** 0.0522 0.0076 0.0405 -0.1694 -0.5956	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PHO ₄ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic) C (cyclic) CH=CH (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH ₂ =C (cyclic) CH ₂ =C (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440 -0.0751 0.4053 0.7101 0.8299	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** **** -0.0164 0.2230 0.1635 0.1881 0.6201 0.9138	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009 0.2675 0.0342 0.1961 0.3052	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455 -4.2661 -9.1455 -9.0741	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** 0.2381 0.0526 -0.4317 0.8670 -0.9429 -0.1101	**** **** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033 -0.6719 1.1926 -0.3924 -0.7986	**** **** **** **** **** 1.5672 0.7183 **** 0.0522 0.0076 0.0405 -0.1694 -0.5956 ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PHO ₄ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH (cyclic) CH (cyclic) C (cyclic) CH=CH (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH ₂ =C (cyclic) NH (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440 -0.0751 0.4053 0.7101 0.8299 1.3284 -0.5359	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** **** -0.0164 0.2230 0.1635 0.1881 0.6201 0.9138 0.3457 0.0690	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009 0.2675 0.0342 0.1961 0.3052 0.6753 0.1039	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455 -4.2661 -9.1455 -9.0741 -9.1726 -8.3601 -5.0559	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** 0.2381 0.0526 -0.4317 0.8670 -0.9429 -0.1101 1.2508 -0.4237	**** **** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033 -0.6719 1.1926 -0.3924 -0.7986 1.6196 3.5925	**** **** **** **** **** 1.5672 0.7183 **** 0.0522 0.0076 0.0405 -0.1694 -0.5956 **** -0.4417 ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	P (Phospine) PO ₃ (Phospite) PHO ₃ (Phosponate) PHO ₄ (Phosponate) PHO ₄ (Phospate) PO ₄ (Phospate) aC-PO ₄ aC-P CO ₃ (Carbonate) C ₂ H ₃ O C ₂ H ₂ O C ₂ HO CH ₂ (cyclic) CH (cyclic) C (cyclic) CH=CH (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH=C (cyclic) CH ₂ =C (cyclic) CH ₂ =C (cyclic)	**** **** 0.3208 -0.0390 1.4767 0.0857 1.9467 **** **** 0.8514 -0.4972 **** 0.0897 0.3440 -0.0751 0.4053 0.7101 0.8299 1.3284	**** **** 3.2035 **** 1.6308 2.5522 **** **** **** **** -0.0164 0.2230 0.1635 0.1881 0.6201 0.9138 0.3457	0.5950 0.4576 0.0665 1.4048 0.0500 1.8110 1.1535 0.6937 0.4026 0.1473 -0.0635 -0.0608 0.0305 0.1009 0.2675 0.0342 0.1961 0.3052 0.6753	**** **** -25.9962 -26.0106 -30.9428 -30.7800 -36.5009 **** -20.0556 -14.0019 -13.5542 -13.9569 -4.9128 -4.7455 -4.2661 -9.1455 -9.0741 -9.1726 -8.3601	**** -2.1138 **** -1.5601 -2.2271 -2.2559 -1.3727 **** **** **** 0.2381 0.0526 -0.4317 0.8670 -0.9429 -0.1101 1.2508	**** **** **** **** -0.4513 **** 1.0419 **** 0.2678 -0.1033 -0.6719 1.1926 -0.3924 -0.7986 1.6196	**** **** **** **** **** 1.5672 0.7183 **** 0.0522 0.0076 0.0405 -0.1694 -0.5956 **** -0.4417	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****	**** **** **** **** **** **** ****

178	C=N (cyclic)	-0.0297	1.6297	0.1815	-9.3322	-0.6622	****	****	****	****	****
179	O (cyclic)	-0.0178	-0.3136	0.0485	-5.2684	-0.4086	1.0976	0.1839	****	****	****
180	CO (cyclic)	-0.0751	-0.0348	0.0362	-9.7030	-0.2482	1.4906	0.1464	****	****	****
181	S (cyclic)	0.5408	-0.0221	0.0662	-11.1395	0.2438	-3.4289	****	****	****	****
182	SO ₂ (cyclic)	****	-0.1274	0.2491	-21.4443	-0.5767	****	****	****	****	****
183	>NH	0.0122	-0.2127	0.2383	-4.6764	-0.6793	****	****	****	****	****
184	-0-	-1.0802	1.9031	0.3655	-5.2880	-0.2204	-6.9696	****	****	****	****
185	-S-	0.3532	2.2864	0.0645	-11.7688	-0.1536	****	****	****	****	****
186	>CO	1.1595	0.4557	0.0463	-9.8009	0.4628	1.8939	0.1130	****	****	****
187	PO_2	****	****	0.1374	****	****	****	****	****	****	****
188	CH-N	****	1.7603	-0.1090	-8.9657	****	****	****	****	****	****
189	SiHO	****	****	****	****	****	****	****	****	****	****
190	SiO	****	****	-0.0007	-16.0461	-0.3101	-3.1492	****	****	****	****
191	SiH ₂	****	****	-0.2393	****	****	****	****	****	****	****
192	SiH	****	****	****	****	****	****	****	****	****	****
193	Si	****	****	0.3458	-11.2041	-1.3606	****	****	****	****	****
194	(CH ₃) ₃ N	****	****	****	****	****	****	****	****	****	****
195	N=N	0.4933	****	0.0539	-9.3563	****	****	****	****	****	****
196	C _{cyclic} =N-	0.4733	****	0.6162	-9.3709	-0.7675	****	****	****	****	****
197	C _{cyclic} =CH-	2.3085	2.1495	0.6016	-8.8475	-0.6405	1.3880	****	****	****	****
198	· ·	2.3003 ****	2.1473 ****	-0.0748	-9.8549	****	****	****	****	****	****
196	C _{cyclic} =NH N=O	-0.3575	-0.1965	0.3113	-9.6549 -10.0720	-0.3770	****	****	****	****	-0.0775
200			****	0.5113	-10.0720 -8.5743	-0.9050	****		****	****	-0.0773 ****
	C _{cyclic} =C	0.6756					****	-0.1664 ****	***	****	***
201	P=0	1.2123 ****	2.2490	0.8100	-16.0285	-1.1477	****	***	***	***	****
202	N=N		-1.2397 ****	0.3611	-10.7648	-1.4104	****	****	***	****	****
203	C=NH	-0.4605		-0.1942	-9.9767	-0.8936	****	****	****	****	****
204	>C=S	0.9273	0.3273	0.3458	-15.7902	0.0321	****	****	****	****	****
205	aC-CON	-0.1061	2.2769	0.2972	-17.6529	-2.6869					
206	aC=0	-0.3836	****	-0.0132	-10.1596	0.1362	***	****	***	****	***
207	aN-	-0.6546	0.3255	0.1369	-4.1070	-1.0346	****	****	****	****	****
208	-Na	****	****	****	****	****	****	****	****	****	****
209	-K	****	****	****	****	****	****	****	****	****	****
210	HCONH	****	****	-0.1554	-14.4278	-0.7736	****	****	****	****	****
211	СНОСН	1.2130	0.4709	0.3383	-13.6062	****	****	****	****	****	****
212	C_2O	***	****	****	****	****	****	****	****	****	****
213	SiH ₃	***	****	****	****	****	****	****	****	****	****
214	SiH ₂ O	****	****	****	****	****	****	****	****	****	****
215	CH=C=CH	****	****	****	-13.3744	****	****	****	****	****	****
216	CH=C=C	****	****	****	****	****	****	****	****	****	****
217	OP(=S)O	0.8141	2.9977	1.4164	-33.4285	-0.2438	0.5000	****	****	****	****
218	R	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
219	CF _{2cyclic}	****	****	0.2788	-17.8927	****	****	****	1.0010	****	****
220	CF _{cyclic}	****	****	0.3840	-11.5240	****	****	****	****	****	****
m	1 1 resolution resolution		11 D.O.D. D		OLLID ODD	1.45			(0) (.1	<i>C</i> 1	

^a The symbols LC50(FM)_{1i}, LC50(DM)_{1i}, LD50_{1i}, LogWs_{1i}, BCF_{1i}, PEL_{1i}, PCO_{1i}, GWP_{1i}, ODP_{1i}, and AP_{1i} represent the contributions (C_i) of the first-order groups for the corresponding properties.

Table S2 (continued). MG Method Based Property Models Analysed Using <u>Step-Wise Regression Method</u>: First-Order Groups and their Contributions a for the Properties \div EUA_C, EUA_{NC}, ERA_C, ERA_{NC}, EFW_C, EFW_{NC}, ESW_C, ESW_{NC}, ENS_C, ENS_{NC}, EAS_C, and EAS_{NC}.

	Group	EUA _{C 1i}	EUA _{NC 1i}	ERA _{C 1i}	ERA _{NC 1i}	EFW _{C 1i}	EFW _{NC 1i}	ESW _{C 1i}	ESW _{NC 1i}	ENS _{C 1i}	ENS _{NC 1i}	EAS _{C 1i}	EAS _{NC 1i}
1	CH ₃	0.2812	0.0044	0.3053	0.1229	0.2626	0.1627	0.1362	-0.1075	0.2433	0.0393	0.1771	0.0598
2	CH ₂	-0.0243	-0.0768	-0.0173	-0.0888	-0.0503	-0.1054	-0.1035	-0.1460	0.1514	0.0997	0.0888	0.0041
3	СН	-0.2311	0.0074	-0.0458	-0.0536	0.1164	-0.1383	0.1699	-0.1374	0.2068	0.2690	0.0505	0.0314
4	С	-0.2714	-0.2538	-0.8209	-0.8273	-0.5915	-0.9984	-0.6146	-0.5315	-0.6888	-0.1677	-0.7997	-0.5965
5	CH ₂ =CH	0.4720	-1.1792	0.7120	-0.7414	0.3625	-1.0817	-0.1128	-0.9796	0.4585	-0.4659	0.3632	-0.4702
6	CH=CH	0.0099	-0.6462	-0.0053	-0.3547	-0.5021	-0.3094	-0.6042	-0.1727	-0.2822	-0.3880	-0.3203	-0.3861
7	CH ₂ =C	-0.0002	-0.3848	0.9076	-0.0390	0.4974	-0.3473	-0.0990	-0.1033	1.7056	0.4189	1.1123	0.1110
8	CH=C	-0.4408	0.2765	-0.1353	-0.0375	-0.3035	-0.1969	-0.5763	0.0312	0.0683	0.2096	0.2482	-0.0689
9	C=C	-0.3975	-0.0285	-0.9184	-0.4819	-0.8157	-0.4467	-1.4670	-0.2164	-0.4700	-0.0352	-0.5471	-0.1193
10	$CH_2=C=CH$	****	****	****	****	****	****	****	****	****	****	****	****
11	$CH_2=C=C$	****	****	****	****	****	****	****	****	****	****	****	****
12	C=C=C	****	****	****	****	****	****	****	****	****	****	****	****
13	CH≡C	-1.4524	-0.7521	-0.6233	-0.7808	-0.6030	-0.7958	-0.0924	0.1487	-0.5263	-0.4364	-0.6330	-0.5975
14	C≡C	****	****	****	****	****	****	****	****	****	****	****	****
15	аСН	0.1490	-0.0163	0.1566	0.0107	0.1167	0.0106	0.0640	-0.0121	0.1571	0.0233	0.1393	0.0255
16	aC fused with aromatic ring	-0.3459	0.0171	-0.4712	0.0209	-0.3477	-0.0973	-0.4930	-0.2515	-0.1678	0.2473	-0.2880	0.1559
17	aC fused with non-aromatic ring	-0.2140	-0.0898	-0.2943	-0.1356	-0.2763	-0.1125	-0.5172	-0.3238	-0.0410	0.2553	-0.1375	0.1006
18	aC except as above	-0.8266	-0.0240	-0.8915	-0.3353	-0.9367	-0.3258	-1.0364	-0.9082	-0.4495	0.2073	-0.4613	-0.0179
19	aN in aromatic ring	0.1644	-0.3598	-0.0029	-0.3664	0.2228	-0.1959	0.3106	0.1521	0.2173	-0.4254	0.2630	-0.3613
20	aC-CH₃	-0.2600	-0.1517	0.1183	0.0806	-0.1506	0.0707	-0.2347	-0.1264	-0.0250	0.2765	-0.1506	0.1845
21	aC-CH ₂	-0.2461	-0.0119	-0.5533	-0.0096	-0.3687	-0.0487	-0.4396	-0.0241	-0.1477	0.6430	-0.1678	0.3112
22	aC-CH	-0.0544	-0.2853	-0.5470	-0.5044	-0.6417	-0.7429	-0.0676	-0.3662	-0.0490	-0.3446	0.0021	-0.4457
23	aC-C	-0.6955	-0.4066	-1.1136	-0.7185	-1.2866	-1.3071	-1.6503	-0.9373	-0.8133	-0.5220	-0.8327	-0.5737
24	aC-CH=CH ₂	-0.0279	-0.0406	0.4409	0.8714	1.6304	1.6651	0.1127	0.8952	0.8303	1.6498	1.1118	1.6201
25	aC-CH=CH	0.3962	-0.6772	-0.0339	-1.2093	-0.0013	-0.9732	-0.5925	-2.3205	0.8344	-0.5988	0.4860	-0.6970
26	aC-C=CH ₂	****	****	****	****	****	****	****	****	****	****	****	****
27	aC-C≡CH	***	****	****	****	****	****	****	****	****	****	****	****
28	aC-C≡C	****	****	****	****	****	****	****	****	****	****	****	****
29	ОН	0.1973	-0.1329	0.1224	-0.0335	0.3576	0.1939	0.5909	0.4026	0.0373	-0.3806	0.1133	-0.2356
30	аС-ОН	0.3579	-0.2124	0.2272	-0.3507	0.4162	-0.1482	0.6553	0.4879	0.6292	0.3186	0.6065	0.1571
31	СООН	0.4136	-0.4133	0.1754	-0.7440	0.4426	0.0566	0.8145	1.3425	0.1276	-0.4999	0.1350	-0.6773
32	аС-СООН	-0.4401	0.0701	0.3832	-0.2474	0.4901	0.2991	1.1441	1.6362	0.6152	0.0521	0.3617	-0.0445
33	CH₃CO	-0.5659	0.2394	-1.0870	0.4385	-0.7815	0.8784	-0.8496	0.7182	-0.5576	0.9002	-0.7829	0.7620
34	CH ₂ CO	-1.2892	****	-1.4790	****	-0.6787	****	0.1067	****	-2.2429	****	-1.9003	****
35	CHCO	***	-0.4946	****	-0.6214	****	-0.2234	****	-0.0715	****	-0.2631	***	-0.5728
36	CCO	***	****	****	****	****	****	****	****	****	****	****	****
37	aC-CO	-0.6823	-0.2301	-1.7511	-0.8199	-0.8861	-0.8717	-0.2081	-0.7125	-1.3882	0.0514	-1.3193	-0.5369
38	СНО	0.9768	-1.2611	0.6049	-0.8794	0.7182	-0.4964	0.7156	-0.0583	0.5516	-0.8968	0.5158	-0.9705
39	aC-CHO	1.4448	-0.1404	1.3160	-0.1508	1.3270	-0.1747	1.2618	-0.2802	1.0550	0.4847	0.9880	0.0184

40 41 42 43	CH₃COO CH₂COO CHCOO CCOO	0.5459 0.6057 **** -0.8771	0.9003 1.0128 -0.0308 ****	0.4241 0.0881 **** -1.1997	0.6052 0.7938 -0.4444 ****	0.7444 0.5648 **** -1.4991	1.4409 1.5247 1.0059 ****	0.3646 0.9133 **** -1.2924	1.5768 2.4827 0.4328 ****	0.2724 -0.3351 **** -1.7785	0.9531 1.4263 1.3017 ****	0.2505 0.1243 **** -1.8290	0.8098 1.3393 0.2341 ****
44	HCOO	****	****	****	****	****	****	****	****	****	****	****	****
45	aC-COO	-0.3185	0.2823	-0.4614	-0.0342	0.0421	0.3270	-0.0685	0.7594	0.2976	0.5649	0.0071	0.2475
46	aC-OOCH	****	****	****	****	****	****	****	****	****	****	****	****
47	aC-OOC	0.6800	0.8397	1.1171	0.2293	4.3179	0.6441	7.4590	0.3575	3.2164	1.1469	1.2900	0.6910
48	COO except as above	-0.1330	0.0421	-0.5584	-0.1768	-0.0621	0.3225	0.5514	0.7978	-0.2484	0.6865	-0.1042	0.3132
49	CH ₃ O	-0.0737	0.3926	0.0890	0.3819	0.3565	0.2597	-0.0584	0.3986	-0.0537	-0.1449	0.1894	0.0078
50	CH ₂ O	0.5146	0.3708	0.5731	0.1905	0.2700	0.2248	0.1110	0.2236	0.2602	-0.2207	0.1187	-0.1002
51	СН-О	****	0.2217	****	0.2546	****	-0.1904	****	0.8482	****	0.2456	****	-0.1258
52	C-0	0.7438	****	0.3865	****	0.9454	****	2.4004	****	0.9286	****	0.1394	****
53	aC-O	-0.1124	-0.2269 ****	-0.1606	-0.3367 ****	-0.1500	-0.4353 ****	0.1490	-0.1858 ****	-0.0825	-0.1939 ****	-0.1134	-0.1872 ****
54	CH ₂ NH ₂	2.6417	****	2.2328	****	2.3637	****	2.6710	****	1.9022	****	2.1752	****
55 56	CHNH ₂	-0.4403 ****	****	-0.4944 ****	****	-0.6307 ****	****	0.2293 ****	****	-0.9306 ****	****	-0.6118 ****	****
56 57	CNH ₂ CH₃NH	0.5989	1.1599	1.2116	0.8850	0.1976	1.7821	0.3662	1.8835	0.2348	2.1442	0.2376	1.6882
57 58	CH ₂ NH	-0.2935	2.6870	0.2179	2.9085	-0.4139	1.6683	-0.3472	0.4786	-0.3451	2.1442	-0.2829	2.6186
50 59	CHNH	-0.2933 ****	-1.0359	0.21/9 ****	-0.8527	-0.4139 ****	-1.5413	-0.3472 ****	-0.8592	-0.3431 ****	-1.9285	-U.2029 ****	-1.9808
60	CHNH CH ₃ N	-0.9628	0.5031	-0.7580	-0.0527	-0.8942	0.0312	-0.7265	0.5274	-0.7908	0.1335	-0.7504	0.2359
61	CH ₂ N	-0.9626	-2.9995	-0.7380	-2.5338	-0.3720	-3.8875	-0.7203	-3.2261	-0.7908	-3.0576	-0.7304	-2.5588
62	aC-NH ₂	0.3571	-0.2153	0.2748	-0.3095	0.1398	-0.2644	0.4196	-0.0304	0.2464	-0.1121	0.2767	-0.1759
63	aC-NH	-0.0048	0.2582	-0.2628	-0.1291	-0.2814	-0.2055	-0.1881	-0.0304	-0.2280	0.1322	-0.2492	0.0722
64	aC-N	-0.4604	1.0680	-0.4588	0.7264	-0.2014	0.3995	-0.1001	0.1869	-0.2200	0.1322	-0.2472	0.0722
65	NH ₂ except as above	-0.1142	0.0985	-0.4335	0.0042	-0.2549	0.2402	0.0728	1.3282	-0.3473	0.4343	-0.3593	0.2852
66	CH=N	0.0044	-0.4784	0.3889	-0.7022	0.3618	-0.9722	0.3871	-0.5138	0.7647	-0.5477	0.8108	-0.7022
67	C=N	0.3823	0.1238	-0.0164	0.0187	0.2669	-0.6474	0.1658	-0.0183	1.0080	0.5949	0.9758	0.3875
68	CH ₂ CN	****	****	****	****	****	****	****	****	****	****	****	****
69	CHCN	****	****	****	****	****	****	****	****	****	****	****	****
70	CCN	-1.8216	****	-1.9527	****	-1.7907	****	-1.5534	****	-2.2276	****	-2.1245	****
71	aC-CN	1.2567	-0.1886	0.9475	-0.2222	1.2346	-0.0152	1.5580	0.2173	1.3322	-0.1325	1.3219	0.0023
72	CN except as above	0.0264	-0.1436	-0.7595	-0.1718	-0.1286	0.3670	0.0422	0.0000	-0.1534	0.0266	-0.2672	-0.0738
73	CH ₂ NCO	****	****	****	****	****	****	****	***	****	****	****	****
74	CHNCO	****	****	****	****	****	****	****	****	****	****	****	****
75	CNCO	****	****	****	****	****	****	****	****	****	****	****	****
76	aC-NCO	1.1089	-1.9959	0.5349	-2.1334	0.4265	-2.0027	-0.2182	-2.4080	0.9661	-1.5508	0.8283	-1.7168
77	CH2NO ₂	****	****	****	****	****	****	****	****	****	****	****	****
78	CHNO ₂	-0.9658	-0.9958	-1.7870	-1.4643	-1.0063	-0.6800	-2.0912	-0.9445	-1.5018	-0.5350	-1.1962	-0.6291
79	CNO ₂	0.7609	****	1.1691	****	0.4194	****	-1.2488	****	0.7154	****	0.7829	****
80	aC-NO ₂	0.0987	-0.7413	-0.5705	-0.9110	-0.1609	-0.6097	-0.1511	-0.4803	-0.0347	-0.3346	0.0709	-0.4266
81	NO ₂ except as above	-0.6643	0.2770	-1.0546	0.2802	-0.6147	0.5173	-0.5777	0.5233	-0.7462	1.3837	-0.7208	1.1761
82	ONO	0.6316	****	-0.0875	****	0.2952	****	-0.7739	****	-0.2319	****	0.2707	****
83	ONO ₂	0.4802	****	0.0600	****	0.2000	****	0.3815 ****	***	0.0576 ****	****	0.1529 ****	****
84	HCON(CH ₂) ₂	****	****	****	****	****	****	****	****	****	****	****	****
85	HCONHCH ₂	****	****	***	***	****	****	***	***	***	****	****	****

86	CONH ₂	0.0134	-0.4139	0.1691	-0.0586	0.8177	-0.1241	1.4121	0.8899	0.7314	-0.5006	0.8945	0.0155
87	CONH ₂ CONHCH ₃	-0.0313	-0.4139	-0.7594	-1.0911	-0.4951	-0.1241	-0.1024	0.8899	-0.8420	-0.8833	-0.5860	-1.0145
88	CONHCH ₂	1.9518	1.1442	1.4832	1.4330	1.2426	1.1152	1.5296	1.6594	2.2234	2.1503	2.1266	1.9013
89	CON(CH ₃) ₂	-0.6537	-0.0950	-1.0803	-0.3867	-1.1343	-0.1322	-0.1937	0.6511	-1.3163	-0.2674	-1.2917	-0.3364
90	CONCH ₃ CH ₂	****	****	****	-0.3007 ****	****	-U.1322 ****	-U.1737 ****	****	****	-U.ZU/4 ****	-1.271/ ****	****
91	CON(CH ₂) ₂	-0.8273	-0.3936	-0.9693	-0.7407	-1.3969	-0.8424	-1.1112	-0.1034	-1.1740	-0.5455	-0.9545	-0.8783
92	CONHCO	-U.OZ/3 ****	****	****	-U.74U7 ****	****	****	-1.1112 ****	****	****	****	****	****
93	CONCO	****	-0.9068	****	-1.4827	****	-0.8258	****	0.3186	****	-1.0391	****	-0.8294
94	aC-CONH ₂	0.8871	****	-0.0865	****	0.8239	****	0.5860	****	0.2734	****	0.4742	****
95	aC-NH(CO)H	****	****	****	****	****	****	****	***	****	****	****	****
96	aC-N(CO)H	****	****	****	****	****	****	****	****	****	****	****	****
97	aC-CONH	-0.7583	1.2697	-1.4627	0.6663	-0.6019	1.0400	-0.2033	2.0214	-1.3456	1.0294	-0.8983	0.6978
98	aC-NHCO	-0.0004	-0.0637	-0.2983	-0.5320	-0.1121	0.0350	0.3804	0.1428	-0.4114	0.2488	-0.2086	0.1182
99	aC-(N)CO	-1.0967	0.3045	-1.4759	-0.3026	-1.3678	-0.4157	-0.5218	0.6672	-0.6634	-0.2291	-0.4365	-0.2363
100	NHCONH	1.4303	****	0.9832	****	1.1946	****	1.9429	****	0.4362	****	0.5252	****
101	NH ₂ CONH	0.3821	****	-0.3543	****	0.0467	****	0.7847	****	-0.0753	****	0.0593	****
102	NH ₂ CON	-0.4982	****	-1.1906	****	-0.7382	****	-0.0828	****	-0.7912	****	-0.7436	****
103	NHCON	0.3024	0.0100	-0.5509	-0.7257	0.2361	0.2184	0.6711	1.3846	0.3913	-0.6951	0.2303	-0.4350
104	NCON	****	****	****	****	****	****	****	****	****	****	****	****
105	aC-NHCONH ₂	****	****	****	****	****	****	****	****	****	****	****	****
106	aC-NHCONH	1.4478	1.0207	1.2121	0.5931	0.9761	0.4899	1.8983	0.5083	1.4380	-0.0717	1.3208	0.0327
107	NHCO except as above	0.1199	-0.0146	0.0454	0.0032	0.2878	0.2213	0.8196	0.3913	0.2920	0.0295	0.3624	0.0287
108	CH ₂ Cl	-0.3830	-0.7636	-0.3819	-0.6860	-0.3472	-0.3273	-0.4563	-0.8939	-0.3392	-0.6522	-0.4056	-0.5439
109	CHCl	0.6637	0.1485	-0.2285	-0.2019	0.5142	-0.6331	-0.9817	-0.9698	0.1789	-0.2755	0.2965	0.1149
110	CCl	****	****	****	****	****	****	****	****	****	****	****	****
111	CHCl ₂	0.4531	-0.7610	-0.1357	-1.1547	0.3226	-0.5988	-0.6482	-1.1267	0.0549	-0.6492	0.0719	-0.6546
112	CCl_2	****	0.0162	****	-0.1154	****	-0.4194	****	-1.0026	****	0.1964	****	0.0306
113	CCl ₃	-0.0116	-1.2569	-0.6886	-1.3607	-0.3901	-1.2703	-1.5385	-1.5906	-0.6039	-0.9174	-0.5410	-0.9872
114	CH ₂ F	1.8052	1.9109	1.2625	1.2313	1.6943	2.6100	1.0269	1.5339	1.2637	2.2373	1.3172	1.8204
115	CHF	****	****	****	****	****	****	****	****	****	****	****	****
116	CF	****	****	****	****	****	****	****	****	****	****	****	****
117	CHF ₂	****	-0.0027	****	0.1968	****	0.2337	****	-0.6164	****	0.8043	****	0.3066
118	CF ₂	****	****	****	****	****	****	****	****	****	****	****	****
119	CF ₃	0.7993	-0.4068	0.0981	-0.4311	0.5850	-0.6634	-0.8071	-1.1163	0.1960	-0.8828	0.3345	-0.4122
120	CCl ₂ F	****	-1.4244	****	-2.2499	****	-1.2401	****	-2.6623	****	-1.6824	****	-1.6484
121	HCClF	****	1.3816	****	0.4334	****	1.5902	****	0.3557	***	1.1147	***	1.1246
122	CClF ₂	****	0.9918	****	1.0841	****	1.2244	****	1.0152	****	1.0564	****	1.0765
123	aC-Cl	-0.1496	-0.2926	-0.2917	-0.4226	-0.3034	-0.3287	-0.7378	-0.7018	-0.3028	-0.2349	-0.2799	-0.2913
124	aC-F	-0.5147	-0.6887	-1.2858	-0.5469	-0.8683	-0.4136	-1.0689	-0.4146	-0.8543	-0.2960	-1.0622	-0.3001
125	aC-I	****	****	****	****	****	****	****	****	****	****	****	****
126	aC-Br	0.1178	-0.2363	-0.0015	-0.2642 ****	0.1150	-0.1578	-0.0861	-0.2954	0.1426	-0.1230	0.0672	-0.1986
127	-I except as above	****	****	****		****	****	****	****	****	****	****	****
128	-Br except as above	-0.0869	-0.1776	-0.0596	-0.2436	-0.2059	0.2137	-0.3641	-0.1295	-0.3791	-0.1064	-0.2836	-0.0557
129	-F except as above	0.3896	-0.1807	0.3099	0.0680	0.4146	0.1057	0.3737	0.0762	0.2175	-0.0558	0.2341	-0.0119
130	-Cl except as above	0.0452 ****	-0.2286 ****	-0.0167 ****	-0.2860 ****	-0.0168 ****	-0.0381 ****	-0.1609 ****	-0.3444 ****	-0.0951 ****	-0.2142 ****	-0.0896 ****	-0.2182 ****
131	CHNOH	****	****	****	****	****	~~~~	****	****	****	~~~	~~~	" ጥጥጥ

132	CNOH	0.0478	****	-0.7777	****	-0.3279	****	0.1303	****	-0.1868	****	0.0328	****
133	aC-CHNOH	****	****	****	****	****	****	****	****	****	****	****	****
134	OCH ₂ CH ₂ OH	2.1707	-0.1215	1.7390	-0.2071	1.8167	-0.0192	2.7585	1.5986	1.3109	-0.1664	1.3937	-0.2047
135	OCHCH ₂ OH	****	****	****	****	****	****	****	****	****	****	****	****
136	OCH₂CHOH	****	1.0611	****	1.0028	****	0.9576	****	2.7896	****	1.1904	****	1.0355
137	-0-0H	****	****	****	****	****	****	****	****	****	****	****	****
138	CH ₂ SH	-0.7931	****	-1.8639	****	-1.3399	****	-0.5572	****	-0.2854	****	-0.2384	****
139	CHSH	****	****	****	****	****	****	****	****	****	***	****	****
140	CSH	****	****	****	****	****	****	****	****	****	****	****	****
141	aC-SH	-1.6674	****	-3.2165	****	-2.0555	****	-0.7549	****	-2.3760	****	-2.0847	****
142	-SH except as above	****	****	****	****	****	****	****	****	****	****	****	****
143	CH ₃ S	1.7560	-1.1500	-0.1111	-0.4163	0.0458	-0.3930	0.4226	-1.2235	0.1624	-1.4553	-0.0226	-1.2049
144	CH ₂ S	-0.3952	-0.2160	-0.9617	-0.2021	-1.1017	-0.3669	-1.3556	-0.6114	-0.9489	-0.2602	-0.9053	-0.4426
145	CHS	****	-0.1118	****	-0.3187	****	-1.2181	****	-1.6430	****	-1.7585	****	-1.3933
146	CS	1.6458	-0.0620	1.4751	0.5075	1.2477	-1.0085	0.4709	-0.6864	1.0890	-0.8233	1.1165	-0.8747
147	aC-S-	-1.1541	-0.2388	-1.6190	-0.6546	-1.3791	-0.6194	-1.5459	-0.9009	-1.1808	-0.2158	-1.2017	-0.4052
148	SO	1.4991	1.2728	0.5711	1.4900	0.2190	1.3598	0.4583	0.6590	0.2160	1.7927	0.4250	1.1434
149	S02	****	-0.7598	****	-1.1765	****	-0.3042	****	-0.4479	****	-0.0085	****	-0.0109
150	SO ₃ (sulfite)	0.6697	0.6069	-0.1826	0.1647	-0.5130	0.3638	-0.8241	-0.7865	-0.2758	0.2651	0.0493	0.1334
151	SO ₃ (Sulfonate)	-0.3168 ****	****	-1.3506 ****	****	-0.5966 ****	****	0.4606 ****	****	-0.8646 ****	****	-0.6894 ****	****
152	SO ₄ (Sulfate)	****		****		****		****		****		****	
153	aC-SO		-1.5062		-1.6110		-1.3267		-0.0555		-1.4480		-1.2697
154	aC-SO ₂	0.2941 ****	-0.6688 ****	-0.4563 ****	-1.0517 ****	0.0824 ****	-0.7098 ****	0.5214 ****	-0.4493 ****	-0.2997 ****	0.0352 ****	-0.1496 ****	-0.2397 ****
155	PH (phosphine)	****		****		****		****		****		****	
156	P (Phospine)	****	-1.2820 ****	****	-1.5965 ****	****	-2.3001 ****	****	-1.6462 ****	****	-0.6856 ****	****	-0.0428 ****
157	PO ₃ (Phospite)		****		****		****		****		****		****
158	PHO ₃ (Phosponate)	0.7416		-0.0104		0.3076		1.1965		0.0906		0.2658	
159	PO ₃ (Phosponate)	1.8953 ****	-0.4482 ****	1.3651 ****	-1.2315 ****	1.2858 ****	-0.4895 ****	2.0993	1.0570 ****	1.4417 ****	-0.6521 ****	1.5191 ****	-0.1747 ****
160	PHO ₄ (Phospate)	1.0798		-0.2379	-2.1906	0.7802	-2.1982			0.9302	-2.1455	0.6254	-1.8969
161 162	PO ₄ (Phospate)	1.0790 ****	-2.2565 ****	-U.Z3/9 ****	-2.1900 ****	0.70UZ ****	-2.1902 ****	1.4306 ****	-0.5733 ****	0.9302 ****	-2.1433 ****	0.0234 ****	****
162	aC-PO ₄ aC-P	****	****	****	***	****	****	****	***	***	***	****	****
164	CO ₃ (Carbonate)	****	****	****	****	****	****	****	****	***	***	****	****
165	C ₂ H ₃ O	0.4798	-1.4409	-0.0067	-1.6703	0.4151	-1.0459	-0.2880	-1.2669	-0.3115	-1.0362	0.0989	-1.1662
166	C ₂ H ₂ O	****	-0.2548	****	-0.2048	****	-0.4602	****	-0.3366	****	-0.9231	****	-0.9071
167	C ₂ HO	****	****	****	****	****	****	****	****	****	****	****	****
168	CH ₂ (cyclic)	0.0517	0.0477	0.0258	0.0949	-0.0231	0.0852	-0.0035	0.0641	0.1168	0.1538	0.0651	0.1094
169	CH (cyclic)	-0.2099	-0.1818	-0.3139	-0.2209	-0.2499	-0.3282	-0.4216	-0.3743	-0.1332	-0.0170	-0.1400	-0.0728
170	C (cyclic)	-0.2783	-0.1269	-0.3415	-0.1110	-0.3659	-0.3299	-0.4277	-0.1314	-0.1758	-0.0743	-0.1693	-0.0609
171	CH=CH (cyclic)	0.2143	-0.3422	0.1756	-0.2311	-0.2314	-0.2424	-0.1734	-0.5072	0.2430	0.2965	0.1448	0.1844
172	CH=C (cyclic)	0.3631	0.1375	0.2563	0.1158	-0.0462	0.0647	-0.0189	-0.0488	0.4705	0.3370	0.2823	0.1311
173	C=C (cyclic)	-0.1056	-0.7511	-0.2382	-0.9559	-0.4197	-1.3426	-0.3613	-1.0790	0.1772	-0.9770	0.1060	-0.8705
174	CH ₂ =C (cyclic)	-0.1864	****	-0.5550	****	-1.2561	****	-1.4313	****	0.0896	****	0.3598	****
175	NH (cyclic)	0.0173	-0.2067	-0.0522	-0.3755	0.0650	-0.2712	0.2082	0.2561	0.0309	-0.5038	0.0956	-0.3555
176	N (cyclic)	0.0067	-0.3155	-0.1687	-0.4413	-0.0415	-0.5931	0.2860	-0.1578	-0.3214	-1.3094	-0.1979	-1.0750
177	CH=N (cyclic)	0.8193	0.1688	0.6106	0.1964	0.6874	0.3340	0.9412	0.2484	0.3549	0.6275	0.3681	0.7590

178 179 180 181 182 183 184 185 186	C=N (cyclic) O (cyclic) CO (cyclic) S (cyclic) SO ₂ (cyclic) >NH -OS- >CO PO ₂	-0.2137 -0.5237 0.0827 -0.2378 0.1035 -0.4571 1.7348 1.5902 0.0857 ****	-0.3953 -0.1128 0.2883 0.0549 -0.1536 -0.0645 0.1749 0.3574 -0.5621	-0.3968 -0.3063 -0.0578 -0.2629 -0.7377 -0.3987 0.3176 1.3400 ****	-0.4652 -0.1283 0.1261 0.3156 -0.4337 -0.3324 -0.5076 0.3992 -0.8385 ****	-0.1178 -0.2134 0.1300 -0.1562 0.9810 -0.2798 0.1044 0.9095 -0.6724 ****	-0.3734 -0.1151 0.4942 0.0932 -0.2873 -0.3977 0.5573 0.2659 -0.4349	0.1774 -0.1357 0.4265 -0.2200 1.0942 -0.5169 -0.6604 0.5240 -0.5629	-0.1057 0.0910 0.6506 0.3792 0.1567 -0.7340 0.6133 0.1034 -0.2143 ****	-0.1374 -0.7957 0.0014 0.0032 3.4223 -0.2534 0.2070 1.7518 -0.2026 ****	0.0737 -0.5423 0.6848 0.0763 -0.5213 -0.7876 0.5392 -0.2023 -0.3192 ****	0.0007 -0.6411 0.0099 0.0118 3.3165 -0.2042 -0.6565 1.6974 ****	0.0397 -0.4295 0.5919 -0.0247 -0.5782 -0.6020 0.6999 -0.0040 -0.4260 ****
188	CH-N	****	0.2157	-0.7919	0.2827	****	-0.7992	****	0.1344	****	0.2756	-0.6340	0.0122
189	SiHO	****	****	****	****	****	****	****	****	****	****	****	****
190	SiO SiO	***	****	****	****	****	****	****	****	****	****	****	****
191	SiH ₂	***	****	****	****	****	****	****	****	****	****	****	****
192	SiH	***	****	****	****	****	****	****	****	****	****	****	****
193	Si	****	****	****	****	****	****	****	****	****	****	****	****
194	$(CH_3)_3N$	****	****	****	****	****	****	****	****	****	****	****	****
195	N=N	****	0.0102	****	-0.1583	****	0.0432	****	0.1089	****	-0.4251	****	-0.1029
196	$C_{\text{cyclic}}=N$ -	-0.5479	-0.8507	-0.7442	-0.7851	-0.1413	-0.3556	-0.6733	-0.2041	0.3919	0.9717	0.1476	0.5806
197	C _{cyclic} =CH-	-0.3670	****	-0.6552	****	-0.5085	****	-0.6474	****	-0.9219	****	-0.7721	****
198	C _{cyclic} =NH	****	***	****	****	****	***	****	****	****	****	****	***
199	N=0	-0.9060	****	-0.8677	****	-0.9591	****	-0.6917	****	-1.1569	****	-1.0287	****
200	C _{cyclic} =C	-0.7306		-1.0157		-1.0434		-1.0337		-1.0385		-0.9418	
201	P=0	-0.6489	-1.7203 ****	-0.0055	-1.9083 ****	-0.0211	-1.6554 ****	0.6175	-0.5475 ****	-0.1279	-0.8717 ****	-0.0973	-1.3289 ****
202	N=N	0.3441 ****	****	-0.6377 ****	****	-0.1406 ****	****	-0.6545 ****	****	-0.6320 ****	****	-0.6844 ****	****
203	C=NH												
204	>C=S	0.4296	-1.0799	0.1655	-0.5831	0.0996	-0.8105	0.5208	-0.5155	-0.0525	0.0162	-0.0481	-0.3127
205 206	aC-CON aC=0	-0.2883 2.0541	-1.6096 ****	-0.9420 2.0441	-2.0087 ****	-0.7021 2.1876	-2.6680 ****	0.4358 2.6538	-3.0736 ****	-0.4751 2.4073	-2.7795 ****	-0.4727 2.2166	-1.9244 ****
200	aC=O aN-	-0.7235	-0.8058	-0.5085	-1.0327	-0.5252	-0.7093	-0.0804	0.2873	-0.0185	-0.0801	0.3597	-0.0003
207	-Na	-U.7233 ****	****	****	****	****	****	****	V.20/3 ****	****	****	****	****
209	-K	****	****	****	****	****	****	****	****	****	****	****	****
210	HCONH	0.6315	****	0.1483	****	0.5060	****	1.0373	****	0.1419	****	0.1964	****
211	СНОСН	****	****	****	****	****	****	****	****	****	****	****	****
212	C ₂ O	****	****	****	****	****	****	****	****	****	****	****	****
213	SiH ₃	****	****	****	****	****	****	****	****	****	****	****	****
214	SiH ₂ O	****	****	****	****	****	****	****	****	****	****	****	****
215	CH=C=CH	****	****	****	****	****	****	****	****	****	****	****	****
216	CH=C=C	****	****	****	****	****	****	****	****	****	****	****	****
217	OP(=S)0	0.9193	-1.0765	0.8755	-1.0305	-0.0055	-1.6725	1.4290	-1.1229	0.1428	-0.8306	-0.2776	-1.1215
218	R	****	****	****	****	****	****	****	****	****	****	****	****
219	CF _{2cyclic}	****	****	****	****	****	****	****	****	****	****	****	****
220	CF_{cyclic}	-1.1221	****	-1.5038	****	-1.3502	****	-2.3291	****	-0.9893	****	-1.0702	****

^a The symbols EUA_{C 1i}, EUA_{NC 1i}, ERA_{C 1i}, ERA_{NC 1i}, EFW_{C 1i}, EFW_{NC 1i}, ESW_{C 1i}, ESW_{NC 1i}, ENS_{C 1i}, ENS_{C 1i}, EAS_{C 1i}, and EAS_{NC 1i} represent the contributions (*C_i*) of the first-order groups for the corresponding properties.

Table S3. MG Method Based Property Models Analysed Using <u>Step-Wise Regression Method</u>: Second-Order Groups and their Contributions a for the Properties÷ $LC_{50}(FM)$, $LC_{50}(DM)$, LD_{50} , $LogW_s$, BCF, PEL(OSHA-TWA), and PCO

	Group	LC50(FM) _{2j}	LC50(DM) _{2j}	LD50 _{2j}	LogWs _{2j}	BCF _{2j}	PEL_{2j}	PCO_{2j}
1	(CH ₃) ₂ CH	-0.0764	-0.1057	-0.0308	-0.0961	0.1168	-0.0213	0.0154
2	(CH ₃) ₃ C	0.0412	0.0599	0.0840	-0.3055	-0.0811	0.0227	0.0134
3	CH(CH ₃)CH(CH ₃)	-0.1113	****	0.0468	-0.1821	1.0401	0.0043	0.0580
4	CH(CH ₃)C(CH ₃) ₂	****	****	-0.1376	0.4430	0.8297	0.0346	-0.0299
5	C(CH ₃) ₂ C(CH ₃) ₂	***	****	0.0640	-0.5905	****	-0.0239	0.0148
6	$CH_n = CH_m - CH_p = CH_k (k, m, n, p \text{ in } 02)$	-0.3839	0.4580	0.0901	-0.7096	-0.5140	0.2521	0.3386
7	CH_3 - CH_m = CH_n (m,n in 02)	0.2163	-1.5389	-0.0529	-0.0474	0.2127	0.3417	-0.0467
8	CH_2 - CH_m = CH_n (m,n in 02)	-0.2321	0.1522	-0.0234	-0.0205	0.0272	0.2745	-0.0203
9	CH_p - CH_m = CH_n (m,n in 02; p in 01)	0.2029	-0.3690	0.1804	0.1311	-0.1108	****	-0.0588
10	CHCHO or CCHO	0.1432	****	0.0030	-0.3170	****	****	-0.1355
11	CH3COCH2	-0.0733	0.2120	-0.0806	0.1427	****	-0.0934	-0.1333
12	CH ₃ COCH or CH ₃ COC	0.4132	****	0.2043	0.5001	0.0430	-0.1821	0.0025
13	CHCOOH or CCOOH	-0.6512	****	0.1233	0.3928	-0.2597	0.5903	0.0367
14	CH ₃ COOCH or CH ₃ COOC	-0.0312	****	0.0951	0.1888	****	-0.1284	-0.0162
15	CO-O-CO	****	****	-0.0807	-0.6322	0.0000	1.0520	****
16	СНОН	0.0554	1.0759	0.0219	0.4393	-0.2086	0.0954	0.0132
17	СОН	0.0625	****	0.0213	0.7215	-0.1750	-0.1548	0.3195
18	CH ₃ COCH _n OH (n in 02)	****	****	-0.0982	0.8644	****	****	-0.1783
19	NCCHOH or NCCOH	****	****	0.1495	0.6017	****	0.0000	****
20	OH-CH _n -COO (n in 02)	0.8775	****	-0.0409	0.2457	-0.4364	****	-0.2612
21	$CH_m(OH)CH_n(OH)$ (<i>m,n</i> in 02)	-1.2012	-1.1768	0.0066	-0.1728	-0.5661	0.2618	-0.0693
22	$CH_m(OH)CH_n(NH_p)$ (m,n,p in 02)	-0.1316	0.6018	-0.0205	0.2429	0.0000	0.3565	-0.0042
23	$CH_m(OH_2)CH_n(NH_2)$ (<i>m,n,p</i> in 02)	0.0265	0.0777	-0.4353	-0.7650	****	-0.4550	****
24	$CH_m(NH)CH_n(NH_2)$ (m,n in 12)	****	****	-0.1929	0.3688	0.0000	-0.3635	****
25	$H_2NCOCH_nCH_mCONH_2$ (m,n in 12)	****	****	****	-0.6827	****	****	****
26	$CH_m(NH_n)$ -COOH (m,n in 02)	0.4575	0.6214	-0.1690	-0.1789	****	****	****
27	$HOOC-CH_n-COOH$ (<i>n</i> in 12)	****	****	-0.1155	0.5780	****	****	****
28	HOOC-CH _n -COOH (<i>n</i> , <i>m</i> in 12)	****	****	0.0445	0.2286	1.8872	****	-0.3516
29	HO-CH _n -COOH (<i>n</i> in 12)	***	****	-0.0777	-0.3265	0.2712	****	0.1355
30	NH ₂ -CH _n -COOH (<i>n</i> III 12)	***	****	****	-0.6598	V.Z/1Z ****	****	V.1333 ****
31	CH ₃ -O-CH _n -COOH (n in 12)	***	****	****	0.7930	****	****	****
32	HS-CH-COOH	0.0000	****	0.6687	0.2806	****	-1.2326	****
33	HS-CH _n -COOH (<i>n</i> , <i>m</i> in 12)	V.UUUU ****	***	0.0364	0.8204	***	-1.2320 ****	****
33	113-611 _n -60m-6000 (11, 111 111 12)	* * * *	* * *	0.0304	0.0204	* * * *		****

34	$NC-CH_n-CH_m-CN$ (n, m in 12)	***	****	0.5699	0.1470	****	-0.4976	****
35	$OH-CH_n-CH_m-CN$ (n, m in 12)	***	****	0.2069	0.9963	****	****	****
36	$HS-CH_n-CH_m-SH$ ($n, m \text{ in } 12$)	***	****	-1.5941	****	****	****	****
37	$COO-CH_n-CH_m-OOC$ ($n, m \text{ in } 12$)	***	****	0.1041	-0.3202	****	****	-0.1422
38	OOC- CH_m - CH_m - $COO(n, m in 12)$	-0.1100	-0.1899	-0.0098	0.3351	0.0000	0.0000	0.3766
39	$NC-CH_n-COO(n \text{ in } 12)$	***	****	-0.2553	0.0320	****	****	****
40	$COCH_nCOO$ (n in 12)	***	****	0.0455	0.2919	****	****	****
41	CH_m -O- CH_n = CH_p (m,n,p in 03)	****	****	-0.3996	-0.0117	1.1102	****	****
42	$CH_m=CH_n-F$ (m,n in 02)	****	****	0.0100	-0.3430	****	-0.0351	****
43	$CH_m=CH_n-Br(m,n \text{ in } 02)$	***	-0.0478	-0.3156	0.3983	****	0.8884	****
44	$CH_m=CH_n-I$ (m,n in 02)	****	****	****	0.0121	****	****	****
45	$CH_m = CH_n - Cl (m,n \text{ in } 02)$	0.0205	0.0144	0.1063	0.1214	0.0502	-0.1321	-0.0613
46	$CH_m = CH_n - CN $ (m,n in 02)	-0.2490	0.4082	0.1708	1.0178	****	-0.1118	0.0000
47	$CH_n=CH_m-COO-CH_p$ (m,n,p in 03)	0.0570	0.4720	-0.0032	0.2879	****	-0.2021	0.0143
48	$CH_m = CH_n - CHO (m,n \text{ in } 02)$	1.3458	2.0090	0.2139	0.4115	****	0.1212	0.2420
49	$CH_m = CH_n - COOH (m,n \text{ in } 02)$	1.0013	****	-0.0370	0.0592	****	-0.5149	-0.2860
50	aC-CH $_n$ -X (n in 12) X: Halogen	-0.0077	****	-0.0723	-0.0254	-0.2510	0.2746	****
51	$aC-CH_n-NH_m$ (<i>n</i> in 12; <i>m</i> in 02))	-0.1092	****	-0.1196	0.5674	0.0255	****	****
52	aC-CH _n -O- $(n \text{ in } 12)$	0.3513	-0.1209	0.1138	0.5302	-0.0011	****	****
53	$aC-CH_n-OH$ (n in 12)	-0.1727	****	-0.0304	0.1802	-0.0459	****	-0.0430
54	$aC-CH_n-CN$ (n in 12)	1.4486	-0.1985	0.0300	0.5431	-0.7076	****	****
55	aC-CH _n -CHO (n in 12)	****	****	-0.2336	-0.2078	****	****	****
56	aC-CH _n -SH (n in 12)	***	****	0.2557	***	****	****	****
57	aC-CH _n -COOH (n in 12)	****	****	0.3508	0.1899	-0.5435	****	****
58	aC-CH _n -CO- (n in 12)	0.0000	****	0.0819	0.3811	-0.3243	****	****
59	aC-CH _n -S- $(n \text{ in } 12)$	****	****	-0.4356	0.1455	-0.0417	****	****
60	aC-CH _n -OOC-H (n in 12)	****	****	0.1375	****	****	****	****
61	$aC-CH_m-NO_2$ (n in 12)	****	****	****	****	****	****	****
62	$aC-CH_n-CONH_2$ (n in 12)	****	****	0.2234	0.4008	****	****	****
63	aC-CH _n -OOC (n in 12)	-0.2284	-0.6714	-0.1266	-0.7736	-0.0125	0.5009	****
64	aC-CH _n -COO (n in 12)	-0.8038	0.5838	0.2030	-0.1084	0.4011	****	****
65	aC-SO₂-OH	-0.0528	****	-0.0221	0.6120	0.0638	****	****
66	aC-CH(CH ₃) ₂	-0.1479	-0.0398	-0.2498	-0.3480	0.0743	0.3027	0.0372
67	aC-C(CH ₃) ₃	0.4288	****	0.0038	-0.0489	-0.0393	0.4519	0.0160
68	aC-CF ₃	-0.0138	-0.0943	-0.0622	0.0992	0.0751	****	0.0111
69	$(CH_n=C)(_{cyc})$ -CHO (n in 02)	***	****	-0.1006	-0.3013	****	-0.5824	****
70	$(CH_n=C)_{cyc}-COO-CH_m$ $(n,m \text{ in } 03)$	****	****	-0.0304	0.2300	-0.0373	****	****
71	$(CH_n=C)_{cyc}-CO-(n \text{ in } 02)$	-0.5436	****	0.0327	-0.2010	***	****	****
72	$(CH_n=C)_{cyc}-CH_3$ (<i>n</i> in 02)	-0.1629	0.2697	-0.0287	0.1151	-0.1004	-0.2472	-0.1472
73	$(CH_n=C)_{cyc}-CH_2$ (<i>n</i> in 02)	0.0686	-2.1549	0.0605	0.4049	***	-0.6411	****

74	$(CH_n=C)_{cyc}$ -CN (n in 02)	-0.6072	***	-0.6863	-0.2613	****	***	****
75	$(CH_n=C)_{cyc}$ -Cl (n in 02)	0.1507	0.0423	-0.0377	0.0344	0.0199	0.1901	****
76	CH _{cyc} -CH ₃	-0.0418	0.0679	0.0533	0.0404	-0.1411	-0.2157	-0.0279
77	CH _{cyc} -CH ₂	-0.5577	-1.2746	0.0237	0.1272	0.2565	-0.2110	-0.0028
78	CH _{cyc} -CH	0.7411	-2.6422	-0.0129	0.0975	-0.2238	****	0.0378
79	CH _{cyc} -C	-0.4529	****	-0.2425	-0.2294	0.4370	****	-0.1253
80	CH_{cyc} - CH = CH_n (n in 12)	0.3363	-2.3849	0.1087	-0.3632	-0.1528	1.2756	****
81	CH_{cyc} - $C=CH_n$ (n in 12)	-0.7578	2.1395	-0.1690	0.0967	-1.1805	****	0.6709
82	CH _{cyc} -Cl	-0.1520	-0.0695	0.1234	0.0072	-0.0429	-1.1409	****
83	CH _{cyc} -F	****	****	****	-0.0294	****	****	****
84	CH _{cyc} -OH	-0.1258	0.6398	0.0353	-0.1178	-0.3225	-0.3254	-0.0604
85	CH _{cyc} -NH ₂	***	****	-0.1432	0.1418	****	0.1139	****
86	CH_{cyc} -NH- $CH_n(n \text{ in } 03)$	0.2855	0.3464	-0.1079	0.4598	-0.0967	****	****
87	CH_{cyc} -N- $CH_n(n \text{ in } 03)$	0.7025	****	-0.1946	0.3802	0.4684	****	****
88	CH _{cyc} -SH	****	****	1.4912	****	****	0.4203	****
89	CH _{cyc} -CN	***	****	-0.3849	0.7628	****	****	****
90	CH _{cyc} -COOH	-0.2236	****	0.0332	-0.1894	0.0867	****	****
91	CH _{cyc} -CO	****	****	0.1850	0.1888	****	****	****
92	CH _{cyc} -NO ₂	****	****	0.5918	0.7474	****	****	****
93	CH _{cyc} -S-	-1.1224	****	0.0123	0.6629	****	****	****
94	CH _{cyc} -CHO	-0.0488	****	-0.1554	-0.1686	****	****	-0.0594
95	CH _{cyc} -O-	****	****	-0.0867	0.0702	****	1.5492	****
96	CH _{cyc} -OOCH	****	****	0.1650	****	****	****	****
97	CH _{cyc} -COO	-0.4375	3.9708	-0.1197	-0.1930	0.5332	****	****
98	CH _{cyc} -OOC	-0.9174	0.8222	-0.0947	0.2024	****	****	****
99	C _{cyc} -CH ₃	0.0618	-0.2693	-0.0245	-0.1054	0.0856	0.4295	0.0161
100	C _{cyc} -CH ₂	0.5211	0.8205	0.0520	0.2880	-0.1757	0.5001	-0.0554
101	C _{cyc} -OH	-0.4611	0.9501	0.2298	-0.1743	-0.9768	-0.8443	****
102	>N _{cvc} -CH ₃	0.4824	0.2009	0.0145	0.1060	-0.3611	****	-0.1030
103	>N _{cyc} -CH ₂	-0.1675	0.0000	0.0030	0.2220	0.1704	****	****
104	AROMRINGs ¹ s ²	0.1461	0.1005	0.0332	-0.0987	0.0801	-0.0995	-0.0705
105	AROMRINGs ¹ s ³	-0.0819	0.0190	0.0470	-0.2251	0.0114	-0.2389	-0.1364
106	AROMRINGs ¹ s ⁴	0.0545	0.1187	-0.0160	-0.1804	-0.0626	0.1977	-0.0255
107	AROMRINGs ¹ s ² s ³	-0.1163	0.1842	0.1096	-0.0196	0.1842	0.2225	-0.1012
108	AROMRINGs1s2s4	0.0807	-0.0351	-0.0055	-0.0269	-0.0430	-0.1142	0.0171
109	AROMRINGs ¹ s ³ s ⁵	-0.1749	-0.1048	0.0383	-0.3208	0.4586	0.2071	-0.1189
110	$AROMRINGs^1s^2s^3s^4$	0.2641	-0.2547	-0.1754	0.0873	-0.0073	****	0.0249
111	AROMRINGs ¹ s ² s ³ s ⁵	-0.1944	0.0897	-0.0836	0.0750	0.0998	-1.1173	0.1087
112	AROMRINGs1s2s4s5	0.1374	-0.1737	-0.0633	-0.1630	0.1481	****	0.0211
113	PYRIDINEs ²	-0.5596	***	0.3831	0.7714	-0.0366	***	****

114	PYRIDINEs ³	-0.1207	****	-0.0853	0.7486	-0.8944	****	****
115	PYRIDINEs ⁴	-0.3869	****	0.2497	0.3145	-0.2412	****	****
116	PYRIDINEs ² s ³	-0.8534	****	0.4131	0.3683	****	****	****
117	PYRIDINEs ² s ⁴	****	****	0.1771	0.5459	****	****	****
118	PYRIDINEs ² s ⁵	-0.2390	****	0.0415	0.1791	1.4201	****	****
119	PYRIDINEs ² S ⁶	0.0206	****	0.3342	-0.1606	****	****	****
120	PYRIDINEs3s4	****	****	0.2221	0.1017	****	****	****
121	PYRIDINEs3s5	****	****	-0.1887	-0.1816	****	****	****
122	PYRIDINEs ² s ³ s ⁶	****	****	0.1607	-0.2204	***	****	***
123	$(CH^n=CH^m)^{cyc}-COOH$	****	****	-0.8910	-0.4421	****	****	****
124	AROMRINGs ¹ s ² s ³ s ⁴ s ⁵	-0.1316	-0.4815	0.0886	0.3891	-0.0740	****	0.2418
125	aC-NHCOCH ₂ N	****	****	0.6234	1.2707	***	****	****
126	$(N=C)_{cyc}$ - CH_3	-0.6390	****	0.0287	0.4988	-0.4374	****	****
127	aC-CONH(CH ₂) ₂ N	****	****	0.3162	0.6654	****	****	****
128	aC-SO2NHn (n>=0;n<3)	****	****	-0.0116	-0.1908	-0.3573	****	****
129	$aC-SO_2NH_n$ ($n>=0$; $n<3$)	****	****	0.3337	0.3478	***	****	****
130	$aC-SO_2NH_n (n>=0;n<3)$	****	****	-0.1481	-0.1134	-0.1719	****	****

^a The symbols LC50(FM)_{2j}, LC50(DM)_{2j}LD50_{2j}, LogWs_{2j}, BCF_{2j}, PEL_{2j}, PCO_{2j} represent the contributions (*D_j*) of the second-order groups for the corresponding properties. Note that there are no second-order contributions for GWP, ODP and AP since these properties belong to chemicals whose structure is defined by first-order groups alone.

Table S3 (continued). MG Method Based Property Models Analysed Using <u>Step-Wise Regression Method</u>: Second-Order Groups and their Contributions a for the Properties÷ EUA_C, EUA_{NC}, ERA_C, ERA_{NC}, EFW_C, EFW_C, ESW_C, ESW_C, ENS_C, ENS_{NC}, EAS_C, and EAS_{NC}.

-	Group	EUA _{C 2j}	EUA _{NC 2j}	ERA _{C 2j}	ERA _{NC2j}	EFW _{C 2j}	EFW _{NC 2j}	ESW _{C 2j}	ESW _{NC 2j}	ENS _{C 2j}	ENS _{NC 2j}	EAS _{C 2j}	EAS _{NC 2j}	EUA _{C 2j}
1	(CH ₃) ₂ CH	0.0493	0.1243	-0.0350	0.0690	-0.0267	0.1142	0.1385	0.1442	-0.0370	0.1454	-0.0149	0.1514	0.0493
2	(CH ₃) ₃ C	-0.2156	-0.0108	0.0723	0.0970	-0.1280	-0.0997	-0.6370	-0.0211	-0.2256	0.0162	0.0317	-0.1962	-0.2156
3	CH(CH ₃)CH(CH ₃)	****	****	****	****	****	****	***	****	****	****	****	***	****
4	$CH(CH_3)C(CH_3)_2$	****	****	****	****	****	****	***	****	****	****	****	***	****
5	$C(CH_3)_2C(CH_3)_2$	****	****	****	****	****	****	****	****	****	****	****	***	****
6	$CH_n=CH_m-CH_p=CH_k$ (k,m,n,p in 02)	0.2736	-0.0427	-0.3420	-	-0.5695	-0.2080	-0.2673	-0.1188	-0.1908	-0.3873	-0.2523	-0.2213	0.2736
7	CH_3 - CH_m = CH_n (m,n in 02)	-0.1712	-0.0231	0.2339	0.0173	0.2614	0.0113	0.2153	-0.0860	0.2118	0.1161	0.4139	-0.0296	-0.1712
8	CH_2 - CH_m = CH_n (m,n in 02)	-0.3032	0.1616	-0.0889	0.7139	-0.3033	0.3887	-0.5355	0.3290	-0.2445	0.3041	-0.3880	0.2059	-0.3032
9	CH_p - CH_m = CH_n (<i>m,n</i> in 02; <i>p</i> in 01)	0.2543	-0.5451	-0.2249	-	0.1906	-0.6964	0.0219	-0.3310	-0.0087	-0.6388	-0.2203	-0.5026	0.2543
10	CHCHO or CCHO	****	****	****	****	****	****	****	****	****	****	****	****	****
11	CH₃COCH₂	0.3730	-0.1831	0.3565	0.0548	0.4955	-0.0975	0.8558	0.0463	0.0577	-0.0729	0.2147	-0.1488	0.3730
12	CH₃COCH or CH₃COC	****	****	****	****	****	****	****	****	****	****	****	****	****
13	CHCOOH or CCOOH	0.0349	-0.2373	-0.1692	-	-0.0496	-0.1837	0.0025	-0.4877	-0.0280	-0.1855	-0.2519	-0.1631	0.0349
14	CH ₃ COOCH or CH ₃ COOC	-0.0031	****	0.1004	****	-0.6116	****	-0.2886	****	-0.1639	****	-0.0906	****	-0.0031
15	CO-O-CO	****	****	****	****	****	****	****	****	****	****	****	****	****
16	СНОН	-0.0202	-0.2409	0.0717	-	-0.2283	-0.3003	-0.0856	-0.2054	0.0897	-0.1083	0.0650	-0.1746	-0.0202
17	СОН	0.2691	-0.3445	-0.3730	-	-0.1990	-0.3745	-0.1655	-1.0201	0.2900	-0.4718	0.1695	-0.1091	0.2691
18	CH_3COCH_nOH (<i>n</i> in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
19	NCCHOH or NCCOH	****	****	****	****	****	****	****	****	****	****	****	****	****
20	$OH-CH_n-COO(n \text{ in } 02)$	-0.1302	-0.0724	-0.9562	-	0.0508	-0.3016	-1.0696	-0.2605	-0.6475	-0.0184	-1.2065	0.1851	-0.1302
21	$CH_m(OH)CH_n(OH)$ (m,n in 02)	-0.6337	****	0.4786	0.0674	-2.0125	****	-0.0382	****	-0.3093	****	-0.2551	****	-0.6337
22	$CH_m(OH)CH_n(NH_p)$ (m,n,p in 02)	-0.6256	****	-0.9371	****	-0.7020	****	-0.8702	****	-0.9641	****	-1.0751	****	-0.6256
23	$CH_m(NH_2)CH_n(NH_2)$ (m,n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
24	$CH_m(NH)CH_n(NH_2)$ (m,n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
25	$H_2NCOCH_nCH_mCONH_2$ (<i>m,n</i> in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
26	$CH_m(NH_n)$ -COOH (<i>m,n</i> in 02)	0.2262	0.0000	0.3603	0.0000	0.3488	0.0000	0.0218	****	0.4185	0.0000	0.5089	0.0000	0.2262
27	$HOOC-CH_n-COOH$ (<i>n</i> in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
28	$HOOC-CH_n-CH_m-COOH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
29	HO-CH _n -COOH (<i>n</i> in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
30	NH_2 - CH_n - CH_m - $COOH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
31	CH_3 -O- CH_n -COOH (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
32	HS-CH-COOH	****	****	****	****	****	****	****	****	****	****	****	****	****

33	$HS-CH_n-CH_m-COOH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
34	$NC-CH_n-CH_m-CN$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
35	$OH-CH_n-CH_m-CN$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
36	$HS-CH_n-CH_m-SH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
37	$COO-CH_n-CH_m-OOC$ (n, m in 12)	0.4469	****	0.6427	****	0.6875	****	0.0983	****	0.4387	****	0.4819	****	0.4469
38	OOC- CH_m - CH_m - $COO(n, m in 12)$	-0.6981	0.4660	-0.7761	0.6166	-0.7811	0.8178	-0.0708	0.5411	0.3322	1.2502	-0.3033	1.3833	-0.6981
39	$NC-CH_n-COO(n \text{ in } 12)$	****	****	****	****	****	****	****	****	****	****	****	***	****
40	$COCH_nCOO(n \text{ in } 12)$	-1.8650	****	-1.7823	****	-2.4776	****	-4.2789	****	-0.2887	****	-1.0733	***	-1.8650
41	CH_m -O- CH_n = CH_p (m,n,p in 03)	****	****	****	****	****	****	****	****	****	****	****	***	****
42	$CH_m = CH_n - F(m, n \text{ in } 02)$	-0.0771	****	-0.0802	****	-0.0851	****	-0.0019	****	-0.0470	****	-0.0282	****	-0.0771
43	$CH_m=CH_n-Br(m,n \text{ in } 02)$	****	-0.1566	****	-	****	-0.3653	****	-0.3419	****	-0.2270	****	-0.0672	****
44	$CH_m=CH_n-I$ (m,n in 02)	****	****	****	****	****	****	****	****	****	****	****	***	****
45	$CH_m=CH_n-Cl\ (m,n\ in\ 02)$	0.1340	-0.0433	0.1338	0.0066	0.3215	-0.0546	0.1440	-0.1301	0.2013	-0.0126	0.2409	-0.0067	0.1340
46	$CH_m=CH_n-CN$ (m,n in 02)	-0.3279	-0.7947	-0.1976	-	-0.4389	-0.7243	-0.9403	-0.8521	-0.6087	-1.0236	-0.5363	-0.9052	-0.3279
47	$CH_n=CH_m-COO-CH_p$ (m,n,p in 03)	0.0069	0.0317	-0.2782	-	-0.2485	-0.2269	0.1015	0.0910	-0.1050	-0.0816	0.0177	0.0795	0.0069
48	$CH_m = CH_n - CHO (m,n \text{ in } 02)$	-0.6932	-1.5263	-0.0810	-	0.0021	-0.6885	0.3819	-2.2257	-0.3543	-1.2512	-0.5143	-1.1984	-0.6932
49	$CH_m = CH_n - COOH (m, n \text{ in } 02)$	-0.8306	****	-0.8969	****	-1.0459	****	-1.2008	****	-0.9549	****	-0.8379	****	-0.8306
50	aC-CH _n -X (n in 12) X: Halogen	-0.5178	****	-0.6314	****	-0.3923	****	-0.7383	****	-0.5454	****	-0.5294	***	-0.5178
51	aC-CH _n -NH _m (n in 12; m in 02))	0.4471	****	0.2560	****	0.1222	****	-0.0642	****	0.3025	****	0.5023	***	0.4471
52	aC-CH _n -O- $(n \text{ in } 12)$	0.6104	0.1555	0.4508	0.1158	0.3795	-0.2851	0.5760	-0.4067	0.3126	0.2177	0.4127	0.1494	0.6104
53	aC-CH $_n$ -OH (n in 12)	0.1408	-0.0105	0.4880	-	0.3236	0.0274	0.5686	0.1099	0.3018	-0.0632	0.3113	-0.1477	0.1408
54	aC-CH _n -CN (n in 12)	****	0.0051	****	0.1590	****	0.0594	****	-0.0081	****	0.2819	****	0.0526	****
55	aC-CH $_n$ -CHO (n in 12)	****	****	****	****	****	****	****	****	****	****	****	***	****
56	aC-CH _n -SH (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
57	aC-CH _n -COOH (n in 12)	****	****	****	****	****	****	****	****	****	****	****	***	****
58	aC-CH $_n$ -CO- (n in 12)	****	-0.0357	****	0.0104	****	0.2390	****	0.1591	****	0.0396	****	0.0493	****
59	aC-CH _n -S- (n in 12)	****	-0.2919	****	-	****	-0.1592	****	-0.2046	****	0.3179	****	0.3396	****
60	aC-CH _n -OOC-H (n in 12)	****	****	****	****	****	****	****	****	****	****	****	***	****
61	$aC-CH_m-NO_2$ (n in 12)	****	****	****	****	****	****	****	****	****	****	****	***	****
62	$aC-CH_n-CONH_2$ (n in 12)	****	****	****	****	****	****	****	****	****	****	****	***	****
63	aC-CH _n -OOC (n in 12)	0.4686	0.0303	0.4189	0.0462	0.3224	0.0302	0.5022	0.1718	0.3665	-0.2482	0.3405	-0.0679	0.4686
64	aC-CH _n -COO (n in 12)	0.3346	-0.0228	0.5036	0.1422	0.0694	-0.1243	0.3202	-0.2149	0.4888	-0.3434	0.4867	-0.4429	0.3346
65	aC-SO ₂ -OH	****	****	****	****	****	****	****	****	****	****	****	***	****
66	aC-CH(CH ₃) ₂	-1.3901	-0.0910	-1.8195	-	-1.4011	0.0001	-0.4869	0.2649	-1.1552	-0.5553	-0.9422	-0.0808	-1.3901
67	aC-C(CH ₃) ₃	0.2991	-0.0127	0.2530	0.2438	0.3429	0.0812	0.2798	1.0165	0.3542	0.5184	0.4483	-0.2791	0.2991
68	aC-CF ₃	0.1531	0.0424	0.3470	0.1010	0.2803	0.1118	-0.0413	0.1208	0.0848	0.0624	0.0273	-0.0074	0.1531
69	$(CH_n=C)(_{cyc})$ -CHO $(n \text{ in } 02)$	1.0675	0.3007	0.2864	0.4844	0.3154	-0.2639	0.2947	0.6183	0.6517	-0.1476	0.6216	-0.0205	1.0675
70	$(CH_n=C)_{cyc}$ -COO- CH_m (n,m in 03)	****	0.3055	****	0.2118	****	0.1074	****	0.1839	****	-0.4792	****	-0.4464	****
71	$(CH_n=C)_{cyc}-CO-(n \text{ in } 02)$	****	0.5239	****	0.3025	****	0.2088	****	0.0438	****	0.5817	****	0.4229	****
72	$(CH_n=C)_{cyc}-CH_3$ (<i>n</i> in 02)	-0.0655	0.0845	0.3278	0.2269	0.4787	0.2541	-0.0549	0.6388	0.2507	0.2678	0.3649	0.2391	-0.0655

73	$(CH_n=C)_{cyc}-CH_2$ (<i>n</i> in 02)	0.4720	-0.3818	0.0573	_	0.1077	-0.5961	0.4593	-0.6096	-0.4267	-0.2819	-0.2841	-0.3409	0.4720
74	(CHn=C)cyc-CN (n in 02)	****	0.1111	****	0.0100	****	-0.1014	****	-0.2254	****	0.0394	****	0.2240	****
75	$(CH_n=C)_{cyc}$ -Cl $(n \text{ in } 02)$	-0.0174	0.0085	-0.0040	0.0654	-0.2488	0.0744	-0.3374	-0.0197	-0.1947	0.0863	-0.1816	0.0594	-0.0174
76	CH _{cyc} -CH ₃	0.1617	-0.0418	-0.1039	-	-0.0965	-0.0070	-0.0103	-0.0280	-0.1309	0.1500	-0.0806	-0.1868	0.1617
77	CH _{cyc} -CH ₂	0.0635	0.2944	0.1360	0.3422	0.0175	0.3337	-0.0708	0.5201	0.1780	0.3558	0.1664	0.2557	0.0635
78	CH _{cyc} -CH	****	-0.2875	****	0.9491	****	-0.1082	****	1.4752	****	0.5631	****	0.0253	****
79	CH _{cyc} -C	****	****	****	****	****	****	****	****	****	****	****	****	****
80	CH_{cyc} - CH = CH_n (n in 12)	1.3088	0.2967	1.7672	0.9563	1.1725	0.4304	1.1241	0.5865	0.9590	0.6805	0.5345	0.6288	1.3088
81	CH_{cyc} -C= CH_n (n in 12)	0.2406	0.5031	****	0.3233	-1.3843	0.7125	-0.4182	1.0504	****	0.4853	-2.2284	0.4768	0.2406
82	CH _{cyc} -Cl	0.0257	-0.0812	-0.0001	-	0.0151	-0.1684	0.0731	0.0380	-0.0066	-0.1851	0.0001	-0.1387	0.0257
83	CH _{cyc} -F	****	****	****	****	****	****	****	****	****	****	****	****	****
84	CH _{cyc} -OH	0.0797	****	0.2227	****	0.5691	****	0.3085	****	0.6193	****	0.4963	****	0.0797
85	CH _{cyc} -NH ₂	****	-0.1407	****	0.5338	****	-0.1351	****	-0.3309	****	-0.6419	****	-0.4300	****
86	CH_{cyc} -NH- CH_n (n in 03)	****	-0.1128	****	-	****	-0.2112	****	-0.1903	****	-0.0236	****	-0.2425	****
87	CH_{cyc} -N- CH_n (n in 03)	-0.0580	****	-0.2114	****	-1.0213	****	-0.8909	****	-0.3087	****	-1.0499	****	-0.0580
88	CH _{cyc} -SH	****	****	****	****	****	****	****	****	****	****	****	****	****
89	CH _{cyc} -CN	****	****	****	****	****	****	****	****	****	****	****	****	****
90	CH _{cyc} -COOH	0.2481	****	0.3285	****	0.6706	****	1.2973	****	0.7755	****	0.6862	****	0.2481
91	CH _{cyc} -CO	0.8042	****	0.8784	****	1.6918	****	1.6952	****	1.6515	****	1.9332	****	0.8042
92	CH _{cyc} -NO ₂	****	****	****	****	****	****	****	****	****	****	****	****	****
93	CH _{cyc} -S-	****	0.4048	****	0.1410	****	0.4632	****	0.3856	****	0.3079	****	0.3541	****
93 94	CH _{cyc} -S- CH _{cyc} -CHO	****	0.4048 ****	****	0.1410 ****	****	0.4632 ****	****	0.3856 ****	****	0.3079 ****	****	0.3541 ****	****
94	CH _{cyc} -CHO	***	****	****		****	****	****	****	****	****	****	****	****
94 95	CH _{cyc} -CHO CH _{cyc} -O-	**** 0.6481	**** 0.0368	**** 0.6856	****	**** -0.3891	**** -0.0508	**** 0.0841	**** -0.5279	**** -0.0898	**** -0.2893	**** -0.0996	**** 0.0577	**** 0.6481
94 95 96	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH	**** 0.6481 ****	**** 0.0368 ****	**** 0.6856 ****	**** - ****	**** -0.3891 ****	**** -0.0508 ****	**** 0.0841 ****	**** -0.5279 ****	**** -0.0898 ****	**** -0.2893 ****	**** -0.0996 ****	**** 0.0577 ****	**** 0.6481 ****
94 95 96 97	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO	**** 0.6481 **** -1.4180	**** 0.0368 **** 0.2074	**** 0.6856 **** -0.9837	****	**** -0.3891 **** 0.3256	**** -0.0508 **** 0.5251	**** 0.0841 **** 0.6104	**** -0.5279 **** 0.1570	**** -0.0898 **** 0.5905	**** -0.2893 **** 0.2617	**** -0.0996 **** 0.7028	**** 0.0577 **** 0.0426	**** 0.6481 **** -1.4180
94 95 96 97 98	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -OOC C _{cyc} -CH ₃ C _{cyc} -CH ₂	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517	**** - **** - **** 0.0934	**** -0.3891 **** 0.3256 0.0684	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371	**** 0.0841 **** 0.6104 -0.5904	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990	**** -0.0898 **** 0.5905 -0.6940	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504	**** -0.0996 **** 0.7028 -0.6726	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094
94 95 96 97 98 99 100	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -OOC C _{cyc} -CH ₃	**** 0.6481 **** -1.4180 -0.5002 0.4925	**** 0.0368 **** 0.2074 **** 0.0098	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063	**** - **** - **** 0.0934	**** -0.3891 **** 0.3256 0.0684 0.2086	**** -0.0508 **** 0.5251 **** -0.0724	**** 0.0841 **** 0.6104 -0.5904 0.3966	**** -0.5279 **** 0.1570 **** 0.0352	**** -0.0898 **** 0.5905 -0.6940 0.1006	**** -0.2893 **** 0.2617 **** -0.1272	**** -0.0996 **** 0.7028 -0.6726 0.1656	**** 0.0577 **** 0.0426 **** -0.0368	**** 0.6481 **** -1.4180 -0.5002 0.4925
94 95 96 97 98 99 100 101	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -OH >N _{cyc} -CH ₃	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019	**** - **** 0.0934 - **** 0.2099	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066
94 95 96 97 98 99 100	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -OH	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 ****	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276	**** - **** - **** 0.0934 - ****	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 ****	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 ****	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038
94 95 96 97 98 99 100 101 102 103 104	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -OH3 C _{cyc} -CH2 C _{cyc} -OH >N _{cyc} -CH3 AROMRINGs ¹ s ²	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816	**** - **** 0.0934 - **** 0.2099	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356 0.1021	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769
94 95 96 97 98 99 100 101 102	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415	**** - **** 0.0934 - **** 0.2099 0.2840	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773
94 95 96 97 98 99 100 101 102 103 104 105 106	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -CH3 C _{cyc} -CH2 C _{cyc} -CH4 >N _{cyc} -CH3 >N _{cyc} -CH3 AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723 -0.1755 -0.0608	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415 -0.1789	**** - **** 0.0934 - **** 0.2099 0.2840 0.2097	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361 -0.0428 -0.1036	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386 -0.2394 0.0204	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783 -0.2547 -0.0250	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629 0.0392	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280 -0.4406 -0.1419	-0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356 0.1021 -0.1069 0.0602	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969 -0.1728 -0.1504	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780 -0.1209 0.1637	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844
94 95 96 97 98 99 100 101 102 103 104 105 106	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -CH3 C _{cyc} -CH2 C _{cyc} -CH3 >N _{cyc} -CH3 >N _{cyc} -CH3 AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³4 AROMRINGs¹s²53	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723 -0.1755 -0.0608 -0.2962	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415 -0.1789 -1.0224	**** - **** 0.0934 - **** 0.2099 0.2840 0.2097	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361 -0.0428 -0.1036 -1.3342	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386 -0.2394 0.0204 -0.6484	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783 -0.2547 -0.0250 -1.2374	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629 0.0392 -1.0101	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280 -0.4406 -0.1419 -1.3327	-0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356 0.1021 -0.1069 0.0602 -0.6523	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969 -0.1728 -0.1504 -1.2496	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780 -0.1209 0.1637 -0.4397	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -OOC C _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s²	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723 -0.1755 -0.0608 -0.2962 0.0797	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415 -0.1789 -1.0224 0.0487	**** - **** 0.0934 - **** 0.2099 0.2840 0.2097	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361 -0.0428 -0.1036 -1.3342 0.0410	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386 -0.2394 0.0204 -0.6484 -0.1312	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783 -0.2547 -0.0250 -1.2374 0.1380	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629 0.0392 -1.0101 -0.1701	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280 -0.4406 -0.1419 -1.3327 -0.0209	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356 0.1021 -0.1069 0.0602 -0.6523 -0.1722	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969 -0.1728 -0.1504 -1.2496 -0.0483	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780 -0.1209 0.1637 -0.4397 -0.1165	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³ AROMRINGs¹s² AROMRINGs¹s²s³	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620 0.9750	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723 -0.1755 -0.0608 -0.2962 0.0797 0.1039	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415 -0.1789 -1.0224 0.0487 0.5147	**** - **** 0.0934 - **** 0.2099 0.2840 0.2097	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361 -0.0428 -0.1036 -1.3342 0.0410 0.3431	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386 -0.2394 0.0204 -0.6484 -0.1312 0.0309	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783 -0.2547 -0.0250 -1.2374 0.1380 0.4799	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629 0.0392 -1.0101 -0.1701 -0.4711	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280 -0.4406 -0.1419 -1.3327 -0.0209 0.9596	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356 0.1021 -0.1069 0.0602 -0.6523 -0.1722 -0.0603	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969 -0.1728 -0.1504 -1.2496 -0.0483 0.9389	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780 -0.1209 0.1637 -0.4397 -0.1165 -0.0419	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620 0.9750
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	CHcyc-CHO CHcyc-O- CHcyc-OOCH CHcyc-COO CHcyc-COO CHcyc-CH3 Ccyc-CH2 Ccyc-CH3 >Ncyc-CH2 AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³ AROMRINGs¹s²s³ AROMRINGs¹s³s³	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620 0.9750 -0.3576	0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723 -0.1755 -0.0608 -0.2962 0.0797 0.1039 -0.1394	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415 -0.1789 -1.0224 0.0487 0.5147 -0.5347	**** - **** 0.0934 - **** 0.2099 0.2840 0.2097	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361 -0.0428 -0.1036 -1.3342 0.0410 0.3431 -0.6996	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386 -0.2394 0.0204 -0.6484 -0.1312 0.0309 -0.2504	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783 -0.2547 -0.0250 -1.2374 0.1380 0.4799 -0.2893	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629 0.0392 -1.0101 -0.1701 -0.4711 -1.2009	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280 -0.4406 -0.1419 -1.3327 -0.0209 0.9596 -0.4443		**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969 -0.1728 -0.1504 -1.2496 -0.0483 0.9389 -0.3641	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780 -0.1209 0.1637 -0.4397 -0.1165 -0.0419 -0.0909	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620 0.9750 -0.3576
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³ AROMRINGs¹s² AROMRINGs¹s²s³	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620 0.9750	**** 0.0368 **** 0.2074 **** 0.0098 -0.4090 **** 0.1103 0.3840 0.1723 -0.1755 -0.0608 -0.2962 0.0797 0.1039	**** 0.6856 **** -0.9837 -0.6494 0.3342 -0.1517 -0.8063 -0.2019 -0.6276 -0.1816 0.1415 -0.1789 -1.0224 0.0487 0.5147	**** - **** 0.0934 - **** 0.2099 0.2840 0.2097	**** -0.3891 **** 0.3256 0.0684 0.2086 -0.1147 -0.6692 -0.4868 -0.7202 -0.1361 -0.0428 -0.1036 -1.3342 0.0410 0.3431	**** -0.0508 **** 0.5251 **** -0.0724 -0.4371 **** 0.1756 0.4209 0.1386 -0.2394 0.0204 -0.6484 -0.1312 0.0309	**** 0.0841 **** 0.6104 -0.5904 0.3966 -0.0568 -0.6998 0.0853 -1.8555 -0.0783 -0.2547 -0.0250 -1.2374 0.1380 0.4799	**** -0.5279 **** 0.1570 **** 0.0352 -0.6990 **** 0.6472 0.4905 0.1272 -0.3629 0.0392 -1.0101 -0.1701 -0.4711	**** -0.0898 **** 0.5905 -0.6940 0.1006 -0.2259 -0.5360 0.0919 -0.5019 -0.1280 -0.4406 -0.1419 -1.3327 -0.0209 0.9596	**** -0.2893 **** 0.2617 **** -0.1272 -0.0504 **** 0.0726 0.3356 0.1021 -0.1069 0.0602 -0.6523 -0.1722 -0.0603	**** -0.0996 **** 0.7028 -0.6726 0.1656 -0.2193 -0.5070 -0.2492 -0.6378 -0.0969 -0.1728 -0.1504 -1.2496 -0.0483 0.9389	**** 0.0577 **** 0.0426 **** -0.0368 -0.0427 **** 0.1523 0.2710 0.1780 -0.1209 0.1637 -0.4397 -0.1165 -0.0419	**** 0.6481 **** -1.4180 -0.5002 0.4925 -0.1094 -0.7038 -1.2066 -0.7739 -0.1769 -0.1773 -0.0844 -0.8970 0.0620 0.9750

113	PYRIDINEs ²	-3.5683	****	-1.8976	****	-1.7913	****	-3.4187	****	-1.3125	****	-2.0497	****	-3.5683
114	PYRIDINEs ³	0.6433	****	0.4661	****	0.3197	****	0.6967	****	0.5743	****	0.4823	****	0.6433
115	PYRIDINEs ⁴	0.4128	****	0.3197	****	-0.1549	****	0.2061	****	0.1359	****	-0.1956	****	0.4128
116	PYRIDINEs ² s ³	****	****	****	****	****	****	****	****	****	****	****	****	****
117	PYRIDINEs2s4	0.5067	****	0.6051	****	0.5708	****	0.9500	****	0.4179	****	0.4536	****	0.5067
118	PYRIDINEs2s5	****	-0.2465	****	-	****	-0.0442	****	0.5791	****	0.0300	****	0.2084	****
119	PYRIDINEs2s6	****	****	****	****	****	****	****	****	****	****	****	****	****
120	PYRIDINEs3s4	****	****	****	****	****	****	****	****	****	****	****	****	****
121	PYRIDINEs3s5	****	****	****	****	****	****	****	****	****	****	****	****	****
122	PYRIDINEs ² s ³ s ⁶	****	****	****	****	****	****	****	****	****	****	****	****	****
123	$(CH^n=CH^m)^{cyc}$ -COOH	1.9335	****	1.3822	****	1.4197	****	3.0471	****	0.5406	****	1.0354	****	1.9335
124	AROMRINGs1s2s3s4s5	-1.4672	-0.2969	-1.5435	0.0898	-1.1716	0.4501	-1.2833	0.7438	-3.0130	0.3279	-2.1132	-0.1988	-1.4672
125	aC-NHCOCH ₂ N	****	****	****	****	****	****	****	****	****	****	****	****	****
126	$(N=C)_{cyc}$ - CH_3	1.4459	0.0987	0.6505	0.2277	0.8497	0.2606	0.8816	-0.3916	0.3579	0.4891	0.5249	0.5919	1.4459
127	aC-CONH(CH ₂) ₂ N	****	****	****	****	****	****	****	****	****	****	****	****	****
128	$aC-SO_2NH_n (n>=0;n<3)$	1.0075	-0.0458	0.8867	-	0.7118	0.0687	0.5428	0.1131	0.7967	0.0251	0.9353	-0.0841	1.0075
129	aC-SO ₂ NH _n (n >=0; n <3)	0.7076	****	-0.3532	****	-0.1085	****	-0.3788	****	-0.6173	****	-0.6392	****	0.7076
130	aC-SO2NHn (n>=0;n<3)	0.5896	****	0.7720	****	0.8423	****	0.5188	****	1.1647	****	1.2373	****	0.5896

^a The symbols EUA_{C2j} , EVA_{NC2j} , ERA_{NC2j} , EFW_{C2j} , EFW_{NC2j} , ESW_{C2j} , ESW_{NC2j} , ENS_{NC2j} , ENS_{NC2j} , EAS_{C2j} , and EAS_{NC2j} represent the contributions (D_j) of the second-order groups for the corresponding properties.

Table S4. MG Method Based Property Models Analysed Using <u>Step-Wise Regression Method</u>: Third-Order Groups and their Contributions a for the Properties÷ LC₅₀(FM), LC₅₀(DM), LD₅₀, LogW_s, BCF, PEL(OSHA-TWA), and PCO

	Group	LC50(FM)3k	LC50(DM)3k	$LD50_{3k}$	LogWs3k	BCF_{3k}	PEL_{3k}	PCO_{3k}
1	HOOC- $(CH_n)_m$ -COOH $(m>2, n \text{ in } 02)$	0.0498	****	-0.4908	0.1790	****	-0.4810	-0.0249
2	NH_n -(CH_n) _m -COOH (m >2, n in 02)	****	****	****	1.0484	****	****	****
3	NH_2 -(CH_n) _m -OH (m >2, n in 02)	****	****	-0.2787	****	****	****	****
1	OH- $(CH_n)_m$ -OH $(m>2, n \text{ in } 02)$	****	****	0.1759	1.3600	****	****	-0.1240
5	OH- $(CH_p)_k$ -O- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	****	****	****	****	****	****	****
5	OH- $(CH_p)_k$ -S- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	****	****	****	***	****	****	****
7	OH- $(CH_p)_k$ -NH _x - $(CH_n)_m$ -OH $(m,k>0; p,n,x \text{ in } 02)$	****	****	****	***	****	****	****
3	CH_p -O- $(CH_n)_m$ -OH $(m>2; n,p \text{ in } 02)$	****	****	****	***	****	****	****
)	NH_2 -(CH_n) _m - NH_2 (m >2; n in 02))	-0.6399	****	0.3552	***	****	0.5413	****
10	NH_k -(CH_n) _m - NH_2 (m >2; k in 01; n in 02)	****	****	****	***	****	****	****
11	SH- $(CH_n)_{m}$ -SH $(m>2; n \text{ in } 02)$	****	****	****	***	****	****	****
2	$NC-(CH_n)_m-CN (m>2)$	-0.7496	****	1.1305	1.0800	****	-0.1657	****
.3	COO- $(CH_n)_m$ -OOC $(m>2; n \text{ in } 02)$	****	****	****	***	****	****	****
4	aC-($CH_n=CH_m$) _{cyc} (fused rings) (n,m in 01)	-0.1522	-0.3984	0.1430	0.6020	-0.1148	-0.8684	0.5575
5	aC-aC (different rings)	0.1281	0.2825	0.0735	-0.2230	0.0330	0.0122	****
.6	aC-CH _{ncyc} (different rings) (n in 01)	-0.1468	0.0000	0.1622	0.5020	-0.1038	****	****
7	aC-CH _{ncyc} (fused rings) (n in 01)	-0.2569	-0.0249	0.0701	0.3690	-0.0008	0.5251	-0.0309
.8	aC- $(CH_n)_m$ -aC (different rings) ($m>1$; n in 02)	0.0710	****	-0.4276	-1.3000	-2.5311	****	****
9	aC- $(CH_n)_m$ - CH_{cyc} (different rings) $(m>0; n \text{ in } 02)$	0.9803	0.0000	-0.0149	-0.3336	****	****	****
:0	CH _{cyc} -CH _{cyc} (different rings)	***	****	-0.2107	0.6122	***	****	0.2449
1	CH_{cyc} - $(CH_n)_m$ - CH_{cyc} (different rings) (m >0; n in 02)	****	****	****	***	****	****	****
22	CH multiring	0.0499	-0.0154	-0.0344	-0.0247	0.2805	0.1166	0.0582
23	$C_{ m multiring}$	-0.0662	-0.0052	0.0023	0.0710	-0.3160	-0.2036	-0.0162
24	aC-CH _m -aC (different rings) (m in 02)	-0.2276	-0.4233	-0.0873	0.2310	0.0506	-0.9455	0.0509
5	aC-(CH_m = CH_n)-aC (different rings) (m,n in 02)	****	-0.5224	-0.3410	-0.8542	-0.0416	****	****
6	$(CH_m=C)_{cyc}$ - $CH=CH$ - $(C=CH_n)_{cyc}$ (different rings)	***	****	****	***	****	****	****
7	$(CH_m=C)_{cyc}-CH_p-(C=CH_n)_{cyc}$ (different rings)	***	****	****	***	****	****	****
8	aC-CO-aC (different rings)	-0.2159	****	0.1961	1.0600	-0.4738	****	****
9	aC-CH _m -CO-aC (different rings) (<i>m</i> in 02)	***	****	-0.3475	-0.5809	0.5000	****	****
0	aC-CO-(C=CH _n) _{cyc} (different rings) (n in 01)	***	****	-0.0519	-0.4667	****	****	****

31	aC-CO-CO-aC (different rings)	***	***	****	0.1407	****	***	****
32	aC-CO _{cyc} (fused rings)	0.2092	0.2980	-0.0138	0.0380	-0.0285	-1.1411	-0.1487
33	aC-CO- $(CH_n)_m$ -CO-aC (different rings) ($m>0$; n in 02)	****	****	****	****	****	****	****
34	aC-CO-CH _{ncyc} (different rings) (n in 01)	****	****	****	-0.6102	****	***	****
35	aC-CO-NH _n -aC (different rings) (n in 01)	-0.0607	****	-0.2718	-0.5870	-0.2114	***	****
36	aC-NH _n CONH _m -aC (different rings) $(n,m \text{ in } 01)$	1.4228	-0.0895	****	0.8040	-0.6021	****	****
37	aC-CO-N _{cyc} (different rings)	****	****	0.3225	-1.0070	****	****	****
38	aC-S _{cyc} (fused rings)	-0.8909	-0.1716	0.0828	0.1650	-0.0918	-0.5763	****
39	aC-S-aC (different rings)	-1.9636	****	-0.5044	0.4514	-1.7418	****	****
40	aC-PO $_n$ -aC (different rings) (n in 04)	****	****	****	****	****	****	****
41	aC-SO _n -aC (different rings) (n in 14)	****	0.1267	0.0683	-0.1410	****	****	****
42	aC-NH _{ncyc} (fused rings) (n in 01)	0.2702	0.9450	-0.0298	-0.1200	0.0486	0.5000	****
43	aC-NH-aC (different rings)	0.2900	****	-0.0049	-0.1120	0.2117	-0.5446	****
44	aC-(C=N) _{cyc} (different rings)	****	****	-0.1266	0.5247	-0.3031	****	****
45	aC- $(N=CH_n)_{cyc}$ (fused rings) (n in 01)	-0.4338	-0.5251	0.0640	-0.0249	-0.1578	****	****
46	aC-(CH _n =N) _{cyc} (fused rings) (n in 01)	****	****	-0.1276	0.4628	****	****	****
47	aC-O-CH _n -aC (different rings) (n in 02)	****	****	-0.2231	0.8493	****	****	****
48	aC-O-aC (different rings)	0.1437	0.0020	-0.0688	-0.3224	-0.0149	-0.1030	****
49	aC-CH _n -O-CH _m -aC (different rings) $(n,m \text{ in } 02)$	****	****	-0.7009	0.2160	****	****	****
50	aC-O _{cyc} (fused rings)	-0.4414	-0.5119	0.0329	-0.3410	-0.0203	****	****
51	AROM.FUSED[2]	0.0032	0.1720	-0.1119	-0.0962	0.0643	0.0763	-0.0183
52	AROM.FUSED[2]s ¹	0.1792	0.4007	0.2156	0.1030	0.2267	-0.1548	-0.0209
53	AROM.FUSED[2]s ²	0.2418	-0.1498	-0.0803	-0.0515	-0.0089	1.8721	0.0295
54	AROM.FUSED[2]s ² s ³	-0.2860	1.2197	0.3000	0.1132	0.2159	****	0.1743
55	AROM.FUSED[2]s ¹ s ⁴	-0.2961	****	-0.2363	-0.2116	-0.0322	****	****
56	AROM.FUSED[2]s ¹ s ²	****	****	0.1553	0.0217	-0.4516	****	****
57	AROM.FUSED[2]s ¹ s ³	****	****	0.3250	-0.0558	0.2075	****	****
58	AROM.FUSED[3]	0.0955	-0.3703	-0.1814	-0.2256	0.0443	0.1575	****
59	AROM.FUSED[4a]	****	****	-0.2323	-0.7000	-0.0350	-0.1471	****
60	AROM.FUSED[4a]s ¹	****	****	-0.4303	0.3143	-0.0103	****	****
61	AROM.FUSED[4a]s ¹ s ⁴	****	****	1.1705	0.3697	****	****	****
62	AROM.FUSED[4p]	1.5851	-0.0972	-0.1580	0.0143	-0.1692	-0.0713	****
63	AROM.FUSED[4p]s ³ s ⁴	****	****	0.2203	1.8369	****	****	****
64	PYRIDINE.FUSED[2]	-0.0274	-0.4928	0.0166	0.4989	-1.4055	****	****
65	PYRIDINE.FUSED[2-iso]	****	-0.3098	0.6246	1.3160	****	****	****
66	PYRIDINE.FUSED[4]	0.7501	-0.0203	0.1412	1.9800	-0.3701	-0.3792	****
67	aC-N-CH _{cyc} (different rings)	****	****	0.1538	-0.1524	****	****	****

68	N multiring	-0.0136	0.6590	-0.0030	0.1349	****	****	0.0258
69	N _{cyc} -(CH ₂) ₃ -N _{cyc} (different rings)	****	****	-0.0732	-0.1746	****	****	***
70	aC-COCH ₂ CH ₂ -aC (different rings)	****	****	-0.3699	-0.6448	****	****	***
71	aC-O-(CH ₂) ₂ -N _{cyc} (different rings)	****	****	-0.5047	***	****	****	***
72	aC-CH(OH)(CH ₂) ₂ -CH _{cyc} (different rings)	****	****	***	***	****	****	***
73	Ncyc-(CH ₂) ₂ -CH _{cyc} (different rings)	****	****	-0.1872	***	****	****	***
74	aC-CONHCH ₂ -CH _{cyc} (different rings)	****	****	0.5619	***	****	****	***

^a The symbols LC50(FM)_{3k}, LC50(DM)_{3k}, LD50_{3k}, LogWs_{3k}, BCF_{3k}, PEL_{3k}, PCO_{3k} represent the contributions (E_k) of the third-order groups for the corresponding properties. Note that there are no third-order contributions for GWP, ODP and AP since these properties belong to chemicals whose structure is defined by first-order groups alone.

Table S4 (continued). MG Method Based Property Models Analysed Using Step-Wise Regression Method: Third-Order Groups and their Contributions a for the Properties÷ EUA_C, EUA_{NC}, ERA_C, ERA_{NC}, EFW_C, EFW_{NC}, ESW_C, ESW_{NC}, ENS_C, ENS_{NC}, EAS_C, and EAS_{NC}.

	Group	EUA _{C 3k}	EUA _{NC3k}	ERA _{C 3k}	ERA _{NC3k}	EFW _{C 3k}	EFW _{NC}	ESW _{C 2j}	ESW _{NC}	ENS _{C 3k}	ENS _{NC 3k}	EAS _{C 3k}	EAS _{NC 3k}	EUA _{C 3k}
							3k		3k					
1	HOOC- $(CH_n)_m$ -COOH $(m>2, n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
2	NH_n -(CH_n) _m -COOH (m >2, n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
3	NH_2 -(CH_n) _m -OH (m >2, n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
4	OH- $(CH_n)_m$ -OH $(m>2, n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
5	OH- $(CH_p)_k$ -O- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
6	OH- $(CH_p)_k$ -S- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
7	OH- $(CH_p)_{k-}NH_x$ - $(CH_n)_m$ -OH $(m,k>0; p,n,x \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
8	CH_p -O- $(CH_n)_m$ -OH $(m>2; n,p \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
9	NH_2 -(CH_n) _m - NH_2 (m >2; n in 02))	****	****	****	****	****	****	****	****	****	****	****	****	****
10	NH_k -(CH_n) _m - NH_2 (m >2; k in 01; n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
11	SH- $(CH_n)_m$ -SH $(m>2; n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
12	$NC-(CH_n)_m-CN (m>2)$	****	****	****	****	****	****	****	****	****	****	****	****	****
13	$COO-(CH_n)_m-OOC (m>2; n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
14	aC-(CH _n =CH _m) _{cyc} (fused rings) (n,m in 01)	-0.1215	****	-0.1473	****	0.1250	****	-0.0685	****	0.2146	****	0.2365	****	-0.1215
15	aC-aC (different rings)	-0.2468	0.0671	-0.1842	-0.2102	-0.2456	-0.0737	-0.3819	-0.1675	-0.1974	-0.0488	-0.0378	-0.0141	-0.2468
16	aC-CH _{ncyc} (different rings) (n in 01)	0.2361	0.3257	0.1430	0.3934	0.3252	0.4016	0.2774	0.7521	-0.0755	0.1389	-0.1467	0.0749	0.2361
17	aC-CH _{ncyc} (fused rings) (n in 01)	0.1459	0.2401	-0.0771	0.5147	0.0586	0.3469	0.2672	0.2325	-0.1877	0.2791	-0.1218	0.3119	0.1459
18	aC-(CH _n) _m -aC (different rings) ($m>1$; n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
19	aC-(CH _n) _m -CH _{cyc} (different rings) (m >0; n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
20	CH _{cyc} -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
21	CH_{cyc} - $(CH_n)_m$ - CH_{cyc} (different rings) $(m>0; n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
22	CH multiring	0.0300	0.0278	0.0391	-0.0003	-0.0363	-0.0292	-0.0287	-0.0117	-0.0504	-0.0425	-0.0394	-0.0300	0.0300
23	C multiring	-0.0165	-0.0191	-0.0075	-0.0090	0.0119	0.0001	0.0147	-0.0020	0.0377	0.0147	0.0267	0.0038	-0.0165
24	aC-CH $_m$ -aC (different rings) (m in 02)	-0.3033	0.0545	-0.2308	0.0585	-0.1917	0.0840	-0.3588	0.0777	0.1200	0.1306	0.0679	0.1377	-0.3033
25	aC-(CH _m =CH _n)-aC (different rings) (m,n in 02)	-1.2865	****	-1.5110	****	-0.9390	****	-1.3848	****	-0.2259	****	-0.3749	****	-1.2865
26	$(CH_m=C)_{cyc}$ - $CH=CH-(C=CH_n)_{cyc}$ (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
27	$(CH_m=C)_{cyc}-CH_p-(C=CH_n)_{cyc}$ (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
28	aC-CO-aC (different rings)	0.3796	****	0.7024	****	0.7866	****	0.5009	****	0.7473	****	0.7154	****	0.3796
29	aC-CH $_m$ -CO-aC (different rings) (m in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****

30	aC-CO-(C=CH _n) _{cyc} (different rings) (n in 01)	****	****	****	****	****	****	****	****	****	****	****	****	****
31	aC-CO-CO-aC (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
32	aC-CO _{cyc} (fused rings)	-0.0933	0.0876	-0.0655	0.0969	-0.0074	0.1370	-0.1558	0.2045	-0.0724	-0.1393	-0.0848	-0.1407	-0.0933
33	aC-CO- $(CH_n)_m$ -CO-aC (different rings) $(m>0; n \text{ in})$	****	****	****	****	****	****	****	****	****	****	****	****	****
34	aC-CO-CH _{ncyc} (different rings) (n in 01)	****	****	****	****	****	****	****	****	****	****	****	****	****
35	aC-CO-NH _n -aC (different rings) (n in 01)	****	-0.1635	****	0.0182	****	-0.1253	****	-0.0293	****	-0.2030	****	-0.2010	****
36	aC-NH _n CONH _m -aC (different rings) $(n,m \text{ in } 01)$	0.0224	****	0.1302	****	0.0626	****	-0.1130	****	0.1627	****	0.1987	****	0.0224
37	aC-CO-N _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
38	aC-S _{cyc} (fused rings)	1.0646	0.5747	0.9674	1.0012	1.0749	0.8358	1.1511	0.4969	1.7345	0.1996	1.7415	0.4978	1.0646
39	aC-S-aC (different rings)	0.1689	****	0.3578	****	0.2071	****	0.0500	****	0.2837	****	0.3008	****	0.1689
40	aC-PO $_n$ -aC (different rings) (n in 04)	****	****	****	****	****	****	****	****	****	****	****	****	****
41	aC-SO _n -aC (different rings) (n in 14)	-0.6611	****	-0.3872	****	-0.2601	****	-0.1723	****	-0.2444	****	-0.4162	****	-0.6611
42	aC-NH _{ncyc} (fused rings) (n in 01)	0.2286	0.5134	0.0775	0.6853	0.1433	0.5197	0.3180	0.2492	0.3238	0.4479	0.2342	0.6158	0.2286
43	aC-NH-aC (different rings)	3.0372	0.4637	2.9764	0.9832	2.6222	0.2142	2.1095	0.2696	2.7532	0.3378	2.6061	0.2319	3.0372
44	aC-(C=N) _{cyc} (different rings)	0.3105	0.5157	0.0364	0.3922	-0.3900	0.4152	0.3847	0.0866	-1.1713	-0.3841	-0.9995	-0.0549	0.3105
45	aC-(N=CH _n) _{cyc} (fused rings) (n in 01)	-0.3841	-0.2992	-0.3342	-0.2709	-0.2907	-0.3074	0.1324	0.0130	-0.5998	-0.3192	-0.4553	-0.5872	-0.3841
46	aC-(CH _n =N) _{cyc} (fused rings) (n in 01)	****	****	****	****	****	****	****	****	****	****	****	****	****
47	aC-O-CH _n -aC (different rings) (n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
48	aC-O-aC (different rings)	0.6499	-0.0274	0.4143	-0.0110	0.4380	-0.0296	0.5488	-0.0890	1.1196	0.0980	0.9371	0.0870	0.6499
49	aC-CH _n -O-CH _m -aC (different rings) (n,m in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
50	aC-O _{cyc} (fused rings)	0.0383	-0.6411	0.0370	-0.8716	-0.1231	-0.8194	0.0243	-0.9153	-0.0054	-0.4711	-0.0885	-0.4723	0.0383
51	AROM.FUSED[2]	0.1136	-0.2310	0.2166	-0.4164	0.0549	-0.3894	0.1091	-0.3073	0.0170	-0.1885	0.0079	-0.1675	0.1136
52	AROM.FUSED[2]s ¹	0.1925	0.5089	0.0158	0.6586	-0.1485	0.8062	0.0589	0.6587	0.2571	0.3565	0.3012	0.5469	0.1925
53	AROM.FUSED[2]s ²	-0.2109	0.3013	-0.1850	0.6488	-0.0357	0.3817	-0.2511	0.4418	0.3028	0.1445	0.2705	-0.0524	-0.2109
54	AROM.FUSED[2]s ² s ³	-1.5896	1.2673	0.6844	1.8541	0.7961	1.6729	-1.6291	2.2637	-1.0883	0.7740	-0.9250	0.6817	-1.5896
55	AROM.FUSED[2]s ¹ s ⁴	-0.0973	****	0.0836	****	-0.2053	****	-0.0020	****	-0.0769	****	-0.0043	****	-0.0973
56	AROM.FUSED[2]s ¹ s ²	0.7666	-1.2625	-0.2823	-0.6895	-0.3718	-0.0288	0.8986	-1.2125	0.9963	2.6709	0.9649	1.8788	0.7666
57	AROM.FUSED[2]s ¹ s ³	-0.6426	****	-0.8108	****	-0.6896	****	-0.8285	****	-1.0441	****	-0.9791	****	-0.6426
58	AROM.FUSED[3]	-0.1308	0.1254	0.3385	0.1587	0.1683	-0.0901	-0.3007	-0.0059	0.2048	-0.1068	0.3250	-0.1080	-0.1308
59	AROM.FUSED[4a]	0.3064	****	0.7653	1.1669	0.5645	1.1140	0.5066	1.0208	0.1222	0.5681	0.6221	0.5363	0.3064
60	AROM.FUSED[4a]s ¹	2.1227	****	1.8670	****	1.8023	****	2.4139	****	1.6935	****	1.9882	****	2.1227
61	AROM.FUSED[4a]s1s4	-1.0810	****	-2.0746	****	-1.9895	****	-2.5320	****	-1.6361	****	-1.3919	****	-1.0810
62	AROM.FUSED[4p]	-0.0590	-0.1254	-0.2886	-0.4931	-0.0769	-0.0628	0.0270	-0.1591	-0.0097	0.0760	-0.1541	0.0488	-0.0590
63	AROM.FUSED[4p]s ³ s ⁴	0.2168	****	0.1719	****	-0.0581	****	0.5679	****	-0.1928	****	-0.0284	****	0.2168
64	PYRIDINE.FUSED[2]	-0.7523	****	-0.5874	****	-0.5573	****	0.2154	****	-0.4242	****	-0.2953	****	-0.7523
65	PYRIDINE.FUSED[2-iso]	****	****	****	****	****	****	****	****	****	****	****	****	****
66	PYRIDINE.FUSED[4]	****	****	****	****	****	****	****	****	****	****	****	****	****

67	aC-N-CH _{cyc} (different rings)	****	****	0.0000	****	0.0000	****	****	****	0.0000	****	0.0000	****	****
68	N multiring	-0.2136	-0.4632	-0.0115	-0.4748	-0.0907	-0.0129	-0.2649	0.0949	0.1129	-0.0060	0.1290	0.0151	-0.2136
69	N _{cyc} -(CH ₂) ₃ -N _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
70	aC-COCH ₂ CH ₂ -aC (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
71	aC-O-(CH ₂) ₂ -N _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
72	aC-CH(OH)(CH ₂) ₂ -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
73	Ncyc-(CH ₂) ₂ -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
74	aC-CONHCH ₂ -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****

^a The symbols EUA_{C 3k}, EUA_{NC 3k}, ERA_{C 3k}, ERA_{NC 3k}, EFW_{C 3k}, EFW_{NC 3k}, ESW_{C 3k}, ESW_{NC 3k}, ENS_{C 3k}, ENS_{NC 3k}, EAS_{C 3k}, and EAS_{NC 3k} represent the contributions (E_k) of the third-order groups for the corresponding properties.

Table S5. MG Method Based Property Models Analysed Using Simultaneous Regression Method: First-Order Groups and their Contributions a for the Properties÷ LC₅₀(FM), LC₅₀(DM), LD₅₀, LogW_s, BCF, PEL(OSHA-TWA), PCO, GWP, ODP, and AP.

	Group	LC50(FM) _{1i}	LC50(DM) _{1i}	$LD50_{1i}$	$LogWs_{1i}$	BCF _{1i}	PEL_{1i}	PCO_{1i}	GWP_{1i}	ODP_{1i}	AP_{1i}
1	CH ₃	0.0556	-0.3263	-0.0620	-5.1279	0.6703	0.7059	0.1421	0.3880	-0.9453	-0.1290
2	CH ₂	0.3058	0.1806	0.0206	-5.0803	0.0883	0.0742	0.0452	-1.0699	****	****
3	СН	0.2640	-0.3385	0.0834	-4.7909	-0.6251	-0.5252	-0.1351	****	****	****
4	С	-0.5591	-2.3767	0.1524	-4.9670	-1.2271	-1.1333	-0.2452	****	****	****
5	CH ₂ =CH	1.1915	-4.7284	0.1567	-9.5872	0.6777	2.4164	-0.3641	****	****	****
ó	CH=CH	0.3986	-1.6245	0.1181	-9.5886	****	1.3391	-0.7034	****	****	****
,	CH ₂ =C	0.7062	-0.9381	0.1993	-9.5121	0.3400	1.1805	-0.5276	****	****	****
3	CH=C	0.9899	0.0393	0.3274	-9.4355	-0.3654	0.8654	-0.8041	****	****	****
)	C=C	1.2892	-0.9820	0.2934	-9.5320	0.5447	1.2985	-0.5092	****	****	****
0	CH ₂ =C=CH	****	****	****	****	****	****	****	****	****	****
11	CH ₂ =C=C	****	****	****	****	****	****	****	****	****	****
12	C=C=C	****	****	****	****	****	****	****	****	****	****
13	CH≡C	0.9001	****	0.0737	-8.7940	****	3.0437	-0.2592	****	****	****
14	C≡C	1.5163	3.6012	0.3346	-8.7290	****	****	-0.9453	****	****	****
15	аСН	0.1574	-0.0680	0.0200	-4.5565	0.2711	0.3182	0.0263	****	****	****
16	aC fused with aromatic ring	-0.4620	-0.7792	0.0729	-4.7557	0.0144	0.2181	-0.0470	****	****	****
.7	aC fused with non-aromatic ring	0.0006	-0.7416	0.0358	-4.4965	-0.0080	0.0889	-0.0958	****	****	****
8	aC except as above	0.0893	-0.4944	0.0331	-4.4476	-0.2361	0.3662	0.8361	****	****	****
9	aN in aromatic ring	0.1432	-0.3506	0.0384	-4.4675	0.1866	2.1309	****	****	****	****
20	aC-CH₃	0.3434	0.3598	0.0616	-9.5780	0.3631	0.8824	-0.0776	****	****	****
21	aC-CH ₂	0.7309	0.1167	0.1132	-9.5168	-0.0324	-0.1488	-0.1815	****	****	****
22	aC-CH	0.6725	2.8366	0.5066	-9.3337	-0.9742	0.8149	-0.2730	****	****	****
23	aC-C	0.1056	1.9398	0.5653	-9.8828	-0.8256	-5.0862	-0.4485	****	****	****
24	aC-CH=CH ₂	0.7720	0.1539	0.0850	-14.1770	1.2395	0.9606	0.5094	****	****	****
:5	aC-CH=CH	-0.3767	****	0.1680	-14.3619	0.2045	****	1.0404	****	****	****
:6	aC-C=CH ₂	****	****	-0.7064	-14.4125	-0.2210	0.2660	0.1505	****	****	****
27	aC-C≡CH	****	****	****	-13.6327	****	****	****	****	****	****
28	aC-C≡C	****	****	-0.4446	-14.2762	****	****	****	****	****	****
29	ОН	-0.4918	-1.9704	-0.2449	-4.9955	0.1957	1.3297	0.0674	****	****	****
30	aC-OH	0.2408	0.1957	0.0580	-9.6506	-0.4151	1.5157	0.4048	****	-1.5842	-0.0769
31	СООН	-0.6851	-0.7502	0.0011	-14.6373	-1.3264	2.5364	0.1482	****	****	****
32	aC-COOH	-0.0709	-1.9953	0.0388	-19.3390	-1.0929	1.4314	****	****	****	****
3	CH₃CO	-0.0161	-2.5920	-0.0697	-14.3754	0.2364	0.8681	0.5458	****	****	****
34	CH ₂ CO	-0.5132	****	0.1381	-14.4832	-1.0508	0.9384	-0.0817	****	****	****
35	CHCO	****	****	0.4061	-14.9310	****	****	-0.0316	****	****	****
36	CCO	****	****	1.1095	-14.3234	****	-1.7554	****	****	****	****
37	aC-CO	0.4173	1.4830	0.1142	-14.0458	-0.9617	0.9302	****	****	****	****
88	CHO	0.3890	-2.3399	-0.1130	-9.0480	-0.4066	2.3638	-0.2229	****	****	****
19	aC-CHO	0.7570	0.7430	-0.0527	-14.3857	-1.2851	****	****	****	****	****
10	CH₃COO	0.4260	-1.3681	-0.1990	-19.6379	-0.0072	1.1646	0.4531	****	****	****

41	CH ₂ COO	0.2046	0.7330	-0.0418	-19.6496	0.0120	1.7849	0.1935	****	****	****
42	CHCOO	-0.4731	****	0.1131	-19.3341	****	****	0.1831	****	****	****
43	CCOO	-1.9971	****	0.2846	-19.4530	****	****	****	****	****	****
44	HCOO	****	****	-0.2234	-15.3161	****	1.6436	0.8105	****	****	****
45	aC-COO	0.3771	0.3883	-0.0421	-19.3085	-1.1622	0.9798	0.0416	****	****	****
46	aC-OOCH	****	****	-0.2859	****	****	****	****	****	****	****
47	aC-00C	1.1756	****	0.3537	-19.5422	-3.7123	1.6104	****	****	****	****
48	COO except as above	0.6212	6.6088	0.1822	-14.5866	-1.2944	0.1698	-0.2389	****	****	****
49	CH₃O	-0.3622	1.1271	-0.0219	-10.0648	0.2283	2.1170	0.1751	0.1245	****	****
50	CH ₂ O	-0.2490	0.1565	0.1148	-9.8886	-0.2561	0.9385	-0.1353	****	****	****
51	CH-O	-0.5300	****	0.4559	-9.9280	-0.1236	-0.6058	-0.2934	-1.8521	****	****
52	C-O	****	****	0.0697	-9.7047	-0.8483	****	****	****	****	****
53	aC-O	0.0233	0.7468	0.1589	-9.6786	-0.2179	0.8384	-0.5301	****	****	****
54	CH ₂ NH ₂	0.0884	1.8188	0.0659	-9.3586	0.3801	2.6815	-0.3332	****	****	****
55	CHNH ₂	0.0050	0.9501	0.4614	-9.7816	****	2.2834	-0.6060	****	****	****
56	CNH ₂	1.0340	****	0.5006	-8.8835	****	****	****	****	****	****
57	CH ₃ NH	-0.6909	0.1063	-0.0037	-9.4825	****	2.8993	-0.0143	****	****	****
58	CH ₂ NH	0.2411	0.1899	0.3476	-9.3334	-0.5586	1.5850	0.0159	****	****	****
59	CHNH	****	-0.1355	0.2110	-8.8354	****	1.4112	****	****	****	****
60	CH ₃ N	0.0656	-0.2190	0.3385	-9.5616	-0.3696	1.2989	-0.4572	****	****	****
61	CH ₂ N	-0.9455	-0.6699	0.4260	-9.3848	-1.4876	0.4199	-0.4197	****	****	****
62	aC-NH ₂	-0.0787	1.0092	0.1302	-9.8285	-0.4375	2.4018	****	****	****	****
63	aC-NH	0.0385	1.0054	0.2339	-9.6863	-0.6826	1.4233	****	****	****	****
64	aC-N	0.0719	1.2340	0.3112	-9.7588	-0.7716	0.1870	****	****	****	****
65	NH ₂ except as above	0.2122	0.3256	0.0820	-5.0409	-0.2637	2.0136	-0.4508	****	****	****
66	CH=N	2.7462	0.7708	0.1311	-9.7606	0.3204	****	****	****	****	****
67	C=N	1.5451	1.5013	0.2109	-9.1601	-1.3495	****	****	****	****	****
68	CH ₂ CN	0.2409	****	-0.0996	-13.5065	-0.0541	2.5521	****	****	****	****
69	CHCN	2.0033	****	0.9700	-13.6088	-0.5524	2.0880	****	****	****	****
70	CCN	1.0562	****	0.7209	-12.9959	****	0.9579	****	****	****	****
71	aC-CN	0.1265	0.3584	0.0653	-13.5175	-0.3325	****	****	****	****	****
72	CN except as above	-0.3055	0.6079	0.3035	-8.9767	1.8953	2.0420	0.5544	****	****	****
73	CH ₂ NCO	****	****	0.0478	****	****	3.1925	****	****	****	****
74	CHNCO	****	****	****	****	****	****	****	****	****	****
75	CNCO	****	****	****	****	****	****	****	****	****	****
76	aC-NCO	****	****	-0.1101	****	****	2.6914	0.0219	****	****	****
77	CH2NO ₂	****	****	0.0869	-20.1394	****	1.9469	1.0619	****	****	****
78	CHNO ₂	****	****	0.6395	-20.4173	-1.3892	1.5866	****	****	****	****
79	CNO ₂	1.1653	****	1.1733	-18.9795	****	-1.0086	****	****	****	****
80	aC-NO ₂	0.6761	0.1244	0.2759	-20.2293	-0.0575	2.0505	1.4104	****	****	****
81	NO ₂ except as above	1.0120	0.2969	-0.0791	-16.2802	****	1.7993	****	****	****	-0.0775
82	ONO	****	****	0.8755	****	****	****	****	****	****	****
83	ONO ₂	-0.0709	-0.0915	0.3217	-21.3506	****	1.9774	****	****	****	-0.0775
84	HCON(CH ₂) ₂	-0.2735	****	****	-22.4833	****	****	****	****	****	****
85	HCONHCH ₂	****	****	****	-19.0479	****	****	****	****	****	****
86	CONH ₂	-0.2099	3.7853	0.0938	-14.4869	****	2.9582	****	****	****	****
00	0011112	0.2077	3.7033	3.0730	11.1007		2.7502				

8	87	CONHCH ₃	1.1894	0.3027	0.9970	-19.3067	-0.9446	****	****	****	****	****
8	88	CONHCH ₂	1.0479	-0.2683	0.1235	-19.2945	-1.7323	****	****	****	****	****
8	89	CON(CH ₃) ₂	-0.7894	****	0.6593	-23.8705	2.1722	2.6902	****	****	****	****
Ç	90	CONCH ₃ CH ₂	****	****	****	-23.7820	****	****	****	****	****	****
9	91	CON(CH ₂) ₂	-0.5577	-0.3976	0.3369	-23.5732	-1.5293	****	****	****	****	****
	92	CONHCO	****	****	0.6221	-24.3563	****	****	****	****	****	****
	93	CONCO	1.4698	****	0.4604	-23.7997	****	****	****	****	****	****
	94	aC-CONH ₂	-0.5257	-1.5913	0.2189	-19.1698	****	****	****	****	****	****
	95	aC-NH(CO)H	0.0007	****	0.2914	-18.3036	****	****	****	****	****	****
	96	aC-N(CO)H	-0.0840	****	0.2079	****	****	****	****	****	****	****
	97	aC-CONH	1.3217	2.6195	0.1560	-18.7729	-1.5536	****	****	****	****	****
	98	aC-NHCO	-0.2182	-0.1832	0.0072	-18.9641	-1.2849	****	****	****	****	****
	99	aC-(N)CO	0.0403	0.3436	0.1155	-18.2987	-2.3892	****	****	****	****	****
	100	NHCONH	****	****	0.1766	-20.2163	-2.8684	****	****	****	****	****
	101	NH ₂ CONH	****	****	-0.0339	-20.0323	****	****	****	****	****	****
	102	NH ₂ CON	****	****	0.6960	-19.7493	****	****	****	****	****	****
	103	NHCON	-1.1943	****	0.6042	-19.0795	****	****	****	****	****	****
	104	NCON	****	-0.6828	0.4337	-17.3382	****	****	****	****	****	****
	105	aC-NHCONH ₂	****	****	0.0108	-24.1940	****	****	****	****	****	****
	106	aC-NHCONH	-1.7196	1.9217	0.1090	-25.0710	-1.1863	****	****	****	****	****
	107	NHCO except as above	0.5780	-1.3767	0.1661	-14.2912	0.4049	****	****	****	****	****
	108	CH ₂ Cl	0.6285	-0.4994	0.3771	-17.2028	0.3827	2.1156	0.3421	-0.2757	-1.4515	****
	109	CHCl	0.0499	0.5406	0.1587	-17.0769	0.2987	-0.6211	0.6224	****	-1.3742	****
	110	CCl	****	****	0.1362	-17.1631	****	****	****	****	****	****
	111	CHCl ₂	0.5537	0.0038	0.2677	-28.9652	0.4192	1.5563	1.2588	-0.0233	-1.7873	****
	112	CCl ₂	1.2087	****	-0.0255	-28.5311	1.0330	****	****	****	****	****
	113	CCl ₃	1.4243	0.8069	0.3228	-41.4755	1.0662	1.6771	2.7478	1.8173	-0.0399	-0.0132
	114	CH ₂ F	****	****	2.1471	-10.6675	****	****	1.8130	0.8584	****	****
	115	CHF	****	****	2.1471 ****	-9.3840	****	****	****	-0.6900	****	****
	116	CF	****	****	****	****	****	****	****	****	****	****
	117	CHF ₂	0.8937	****	0.3330	-17.3008	****	****	1.4605	1.6870	-0.5628	****
	118	CF ₂	0.1228	****	0.3330	-18.6620	0.6414	-0.5715	****	-0.0026	-0.2492	****
	119	CF ₃	0.5746	-0.4514	1.1768	-23.8614	0.5289	1.2195	0.7594	2.1289	0.0883	****
	120	CCl ₂ F	****	****	-0.2444	-35.8860	0.9305	0.3580	2.4605	2.1575	0.0131	0.1546
	121	HCCIF	****	****	-0.5171	-23.3119	****	-0.7500	1.9636	0.9439	-1.4911	****
	122	CCIF ₂	****	****	0.0285	-29.8871	0.6942	0.5700	2.4605	2.0786	-0.0409	****
	123	aC-Cl	0.6311	0.4746	0.0203	-17.0037	0.5836	1.0971	0.6906	****	-0.2832	-0.0290
	124	aC-F	0.3314	0.0741	0.2803	-10.8936	0.6116	****	0.3160	****	****	****
	125	aC-I	0.9468	****	0.2509	-47.8151	0.7213	****	****	****	****	****
	126	aC-Br	0.8007	0.7128	0.4868	-32.1342	0.7213	****	****	****	****	****
	127	-I except as above	0.9023	-0.2683	0.4364	-43.5393	****	2.9991	****	-2.1289	****	****
	128	-Br except as above	0.6833	0.2834	0.4352	-43.3333	0.6304	1.4794	0.9350	1.0645	0.4320	****
	129	_	0.2140	-0.3367	0.4332	-6.7874	0.0304	1.9703	0.5273	1.9617	-0.0074	****
	130	-F except as above	0.2140	0.0418	-0.0421	-0.7874	0.0237	2.3117	1.4774	1.2757	-0.0074	-0.0682
	130 131	-Cl except as above CHNOH	0.6580	0.0418 ****	0.2879	-12.3720	0.4939 ****	2.3117 ****	1.4//4	1.2/5/	-0.0056 ****	-U.U082 ****
	132	CNOH	-0.3905	***	0.2879	-15.3753 -14.8064	-1.2495	***	****	****	****	****
_	134	CNOH	-0.3903	• •	0.1104	-14.0004	-1.2473	-	*	•	•	

1.581												
1.00 1.00	133	aC-CHNOH	1.3584	****	0.9215	****	****	****	****	****	****	****
136												
138 CH:SH	135	OCHCH2OH	****		0.0735	-19.4893		-0.6850	-0.1526			
18	136	OCH2CHOH	0.0290	****	-0.0840	-19.6137	****	0.8671	-0.1808	****	****	****
Columbridge	137	-O-OH	****	****	-0.0096	-9.9157	****	****	0.3052	****	****	****
141 aCSH	138	CH ₂ SH	1.8331	2.4088	0.3595	-16.8160	-2.1222	3.4375	****	****	****	****
Act	139	CHSH	0.2695	****	0.5330	-17.4570	****	****	****	****	****	****
SH except as above	140	CSH	****	****	-0.1180	-16.5064	****	****	****	****	****	****
Chick Chic	141	aC-SH	****	****	0.7935	-16.4699	****	3.7519	****	****	****	****
144	142	-SH except as above	0.5489	****	-0.4044	-10.7037	****	2.6753	****	****	****	****
144	143		0.2836	2.1003	0.4241	-16.2229	0.9628	2.6895	****	****	****	****
145									****	****	****	****
146 CS								-1 2947	****	****	****	****
147 3c.S-									****	****	****	****
148 SO				-0.5150			-1.0166	****	****	****	****	****
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												****
150 SO ₃ (sulfite)										****	****	****
151 S03 (Sulfonate) 0.4513 **** 0.3305 -27.2267 **** ***												
152 SO; (Sulfate) 153 aC-SO 10.5034 **** 154 aC-SO2 10.4065 -0.8851 0.9966 -26.3450 -2.9960 **** 155 PH (phosphine) 156 P (Phospine) 157 PO; (Phospine) 158 PHO; (Phosphoate) 159 PO; (Phosponate) 159 PO; (Phosponate) 159 PO; (Phosponate) 159 PO; (Phosponate) 150 PO; (Phosponate) 150 PO; (Phosponate) 151 PO; (Phosponate) 152 SO; (Sulfate) 153 PHO; (Phosponate) 154 aC-SO2 155 PH (phosphine) 156 P (Phosphine) 157 PO; (Phosponate) 157 PO; (Phosponate) 158 PHO; (Phosponate) 159 PO; (Phosponate) 150 PO; (Phosponate) 150 PO; (Phosponate) 151 PO; (Phosponate) 152 PO; (Phosponate) 153 PHO; (Phosponate) 155 PHO; (Phosponate) 156 PO; (Phosponate) 157 PO; (Phosponate) 158 PHO; (Phosponate) 159 PO; (Phosponate) 150 PO; (Phospon												
153 aC-SO		,										
154 aC-SO ₂ 0.4065 -0.8851 0.0966 -26.3450 -2.0960 **** **** **** **** **** **** ****		,										
155 PH (phosphine) **** **** **** **** **** **** **** *												
156 P (Phospine)												
157 PO ₃ (Phospnite)												
158 PH0 ₃ (Phosponate) 0.3773 **** 0.0398 -25.8155 ***** **** **** **** **** **** ****												
159 P03 (Phosponate)												
160 PHOs(Phospate) 1.5332 **** -0.0158 -30.8958 -1.7167 **** **** **** **** **** **** ****												
161 PO ₄ (Phospate) 0.0473 2.3370 1.8277 -30.9346 -2.0276 **** **** **** **** **** **** **** 162 aC-PO ₄ 2.0153 4.5391 1.1477 -36.6047 -1.2336 0.1450 **** **** **** **** **** **** 163 aC-P **** **** **** 0.6623 **** **** **** **** **** **** ****												
162 aC-PQ4 2.0153 4.5391 1.1477 -36.6047 -1.2336 0.1450 **** **** **** **** **** **** **** 1.63 aC-P **** **** **** 0.6623 **** **** **** **** **** **** ****	160		1.5332	****		-30.8958	-1.7167					
163 aC-P	161	PO ₄ (Phospate)	0.0473	2.3370	1.8277	-30.9346	-2.0276	****				
164 CO ₃ (Carbonate)	162	aC-PO ₄			1.1477				****	****	****	****
165 C ₂ H ₃ O	163	aC-P	****	****	0.6623	****	****	****	****	****	****	****
166 C ₂ H ₂ O -1.4431 **** 0.0268 -14.0802 **** **** **** **** **** **** ****	164	CO ₃ (Carbonate)	****	****	0.4013	-20.0014	****	****	1.5293	****	****	****
167 C ₂ HO	165	C_2H_3O	0.8118	****	0.3448	-14.1859	****	2.0487	0.7572	****	****	****
168 CH ₂ (cyclic) 0.1038 -0.2352 0.0255 -4.8771 0.2427 0.2430 0.0436 **** *** **** **** 169 CH (cyclic) 0.3421 1.1919 0.3515 -5.0340 -0.2328 -0.1306 0.0555 **** *** **** 170 C (cyclic) -0.6996 0.6314 0.3590 -4.5355 -0.0624 -2.1325 0.0103 **** *** **** 171 CH=CH (cyclic) 0.2634 0.5840 0.0512 -9.1129 0.6403 0.9258 -0.1761 **** *** **** 172 CH=C (cyclic) 0.9929 -2.9859 0.2542 -9.0957 -1.0636 -1.0568 -0.6613 **** *** **** 173 C=C (cyclic) 1.4317 0.2367 0.3198 -9.3336 -0.2606 -1.2451 **** *** **** 174 CH ₂ =C (cyclic) 1.1079 2.1640 0.6046 -8.6263 0.1438 -2.4611 -0.6120 **** *** **** 175 NH (cyclic) -0.5856 0.3105 0.1081 -4.9664 -0.4746 3.6453 **** *** **** **** 176 N (cyclic) -0.5091 -3.7536 0.1248 -4.4756 0.1110 -0.1597 -0.1781 **** **** **** 177 CH=N (cyclic) 0.0220 0.7125 -0.0103 -9.3002 0.3716 **** **** **** **** **** **** **** *	166	C_2H_2O	-1.4431	****	0.0268	-14.0802	****	****	****	****	****	****
169 CH (cyclic) 0.3421 1.1919 0.3515 -5.0340 -0.2328 -0.1306 0.0555 **** *** **** **** 170 C (cyclic) -0.6996 0.6314 0.3590 -4.5355 -0.0624 -2.1325 0.0103 **** *** **** 171 CH=CH (cyclic) 0.2634 0.5840 0.0512 -9.1129 0.6403 0.9258 -0.1761 **** *** **** 172 CH=C (cyclic) 0.9929 -2.9859 0.2542 -9.0957 -1.0636 -1.0568 -0.6613 **** *** **** 173 C=C (cyclic) 1.4317 0.2367 0.3198 -9.3336 -0.2606 -1.2451 **** *** **** **** 174 CH ₂ =C (cyclic) 1.1079 2.1640 0.6046 -8.6263 0.1438 -2.4611 -0.6120 **** *** **** 175 NH (cyclic) -0.5856 0.3105 0.1081 -4.9664 -0.4746 3.6453 **** *** **** **** 176 N (cyclic) -0.5091 -3.7536 0.1248 -4.4756 0.1110 -0.1597 -0.1781 **** **** **** 177 CH=N (cyclic) 0.0220 0.7125 -0.0103 -9.3002 0.3716 **** **** **** **** **** **** **** *	167	C_2HO	****	****	0.2419	-15.2773	****	****	****	****	****	****
169 CH (cyclic) 0.3421 1.1919 0.3515 -5.0340 -0.2328 -0.1306 0.0555 **** **** **** 170 C (cyclic) -0.6996 0.6314 0.3590 -4.5355 -0.0624 -2.1325 0.0103 **** **** **** 171 CH=CH (cyclic) 0.2634 0.5840 0.0512 -9.1129 0.6403 0.9258 -0.1761 **** **** **** 172 CH=C (cyclic) 0.9929 -2.9859 0.2542 -9.0957 -1.0636 -1.0568 -0.6613 **** **** **** 173 C=C (cyclic) 1.4317 0.2367 0.3198 -9.3336 -0.2606 -1.2451 **** **** **** **** 174 CH ₂ =C (cyclic) 1.1079 2.1640 0.6046 -8.6263 0.1438 -2.4611 -0.6120 **** **** **** 175 NH (cyclic) -0.5856 0.3105 0.1081 -4.9664 -0.4746 3.6453 **** **** **** **** 176 N (cyclic) <td>168</td> <td>CH₂ (cyclic)</td> <td>0.1038</td> <td>-0.2352</td> <td>0.0255</td> <td>-4.8771</td> <td>0.2427</td> <td>0.2430</td> <td>0.0436</td> <td>****</td> <td>****</td> <td>****</td>	168	CH ₂ (cyclic)	0.1038	-0.2352	0.0255	-4.8771	0.2427	0.2430	0.0436	****	****	****
170 C (cyclic) -0.6996 0.6314 0.3590 -4.5355 -0.0624 -2.1325 0.0103 **** **** **** 171 CH=CH (cyclic) 0.2634 0.5840 0.0512 -9.1129 0.6403 0.9258 -0.1761 **** **** **** 172 CH=C (cyclic) 0.9929 -2.9859 0.2542 -9.0957 -1.0636 -1.0568 -0.6613 **** **** **** 173 C=C (cyclic) 1.4317 0.2367 0.3198 -9.3336 -0.2606 -1.2451 **** **** **** **** 174 CH ₂ =C (cyclic) 1.1079 2.1640 0.6046 -8.6263 0.1438 -2.4611 -0.6120 **** **** **** 175 NH (cyclic) -0.5856 0.3105 0.1081 -4.9664 -0.4746 3.6453 **** **** **** **** 176 N (cyclic) -0.5091 -3.7536 0.1248 -4.4756 0.1110 -0.1597 -0.1781 **** **** 177 CH=N (cyclic) 0.02	169		0.3421			-5.0340	-0.2328	-0.1306	0.0555	****	****	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										****	****	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										****	****	****
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										****	****	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										****	****	****
175 NH (cyclic) -0.5856 0.3105 0.1081 -4.9664 -0.4746 3.6453 **** **** **** **** 176 N (cyclic) -0.5091 -3.7536 0.1248 -4.4756 0.1110 -0.1597 -0.1781 **** **** **** 177 CH=N (cyclic) 0.0220 0.7125 -0.0103 -9.3002 0.3716 **** **** **** **** ****		7.7							-0.6120	****	****	****
176 N (cyclic) -0.5091 -3.7536 0.1248 -4.4756 0.1110 -0.1597 -0.1781 **** **** **** 177 CH=N (cyclic) 0.0220 0.7125 -0.0103 -9.3002 0.3716 **** **** **** **** ****										****	****	****
177 CH=N (cyclic) -0.0220 0.7125 -0.0103 -9.3002 0.3716 **** **** **** **** ****												
177 GH=W (Cyclic) 0.0220 0.7125 -0.0105 -7.5002 0.5710												
1/0 C-N (cyclic) 0.1/51 2.090/ 0.1/55 -9.304/ -0.0003 ····												
		C=N (cyclic)		26067	0.1725	0 2647	0 0602	****	****	****	****	****

179	O (cyclic)	-0.3445	-0.3108	0.0003	-5.0128	-0.7104	1.2330	0.1823	****	****	****
180	CO (cyclic)	-0.2591	-0.8055	0.0617	-9.7579	-0.1690	1.9059	0.1023	****	****	****
181	S (cyclic)	1.3798	-1.2604	0.0517	-11.0518	0.1784	-3.3757	V.3317 ****	****	****	****
182		1.3/90 ****	0.0804	0.0559		-0.5954	-3.3/3/ ****	****	****	****	****
	SO ₂ (cyclic)				-21.4596		****	****	****	****	****
183	>NH	0.0556	-0.4808	0.3294	-4.6200	-0.5666		****	****	****	****
184	-0-	-0.8862	1.7786	0.5619	-5.1116	-0.5432	-6.3984 ****	****	****	****	****
185	-S-	1.0294	2.4264	0.1568	-11.7368	-0.3619			****	****	****
186	>CO	1.3751	0.8472	0.0875	-9.6930	0.4503	0.5076	0.1421			
187	PO_2	***	****	0.1658	****	***	****	****	****	****	****
188	CH-N	****	2.3606	-0.1676	-9.1669	****	****	****	****	****	****
189	SiH0	****	****	****	****	****	****	****	****	****	****
190	SiO	****	****	-0.0142	-16.1963	-0.3192	-2.9881	****	****	****	****
191	SiH ₂	****	****	-0.2242	****	***	****	****	****	****	****
192	SiH	****	****	****	****	****	****	****	****	****	****
193	Si	****	****	0.3379	-11.4006	-1.4109	****	****	****	****	****
194	(CH ₃) ₃ N	****	****	****	****	****	****	****	****	****	****
195	N=N	0.7152	****	0.0892	-9.4458	****	****	****	****	****	****
196	C _{cyclic} =N-	1.1742	****	0.5802	-9.4880	-0.6167	****	****	****	****	****
197	C _{cyclic} =CH-	1.9779	1.0355	0.6675	-8.9669	-0.6699	0.9004	****	****	****	****
198	C _{cyclic} =NH	****	****	-0.0374	-9.9059	****	****	****	****	****	****
199	N=O	-0.0312	0.7543	0.3193	-9.8426	-0.2232	****	****	****	****	-0.0775
200	$C_{\text{cyclic}} = C$	1.2298	****	0.4824	-9.0043	-1.2043	****	0.0712	****	****	****
201	P=0	1.1226	-0.5256	0.8567	-16.1074	-1.4127	****	****	****	****	****
202	N=N	****	1.1355	0.3544	-10.8546	-0.2014	****	****	****	****	****
203	C=NH	-0.7564	****	-0.3121	-10.0237	-0.6413	****	****	****	****	****
204	>C=S	0.8375	-0.3582	0.2675	-15.7517	0.0854	****	****	****	****	****
205	aC-CON	0.3392	-2.9838	0.2853	-17.8813	-2.7177	****	****	****	****	****
206	aC=0	-0.0010	****	-0.1490	-10.0219	-0.4153	****	****	****	****	****
207	aN-	-0.3370	0.6885	0.2069	-4.2632	-1.1185	****	****	****	****	****
208	-Na	****	****	****	****	****	****	****	****	****	****
209	-K	****	****	****	****	***	****	****	****	****	****
210	HCONH	****	****	-0.1282	-14.4140	-1.0365	****	****	****	****	****
210	CHOCH	1.3384	0.5499	0.8732	-14.4140	-1.U3U3 ****	****	****	****	****	****
		1.3384	0.5499 ****	0.8732 ****	-14.0900 ****	***	****	****	****	****	****
212	C ₂ O	***	****	***	****	****	****	****	****	***	****
213	SiH ₃	****	****	***	****	****	****	****	****	***	****
214	SiH ₂ O	****	****	***		****	****	****	****	****	****
215	CH=C=CH				-13.3858						
216	CH=C=C	****	****	****	***	***	****	****	****	****	****
217	OP(=S)O	1.0213	3.8226	1.4105	-33.4664	0.0143	0.7109	****	****	****	****
218	R	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
219	CF _{2cyclic}	****	****	0.3368	-17.7706	****	****	****	1.0010	****	****
220	CF_{cyclic}	****	****	-0.1246	-11.4927	****	****	****	****	****	****

^a The symbols LC50(FM)_{1i}, LC50(DM)_{1i}, LD50_{1i}, LogWs_{1i}, BCF_{1i}, PEL_{1i}, PCO_{1i}, GWP_{1i}, ODP_{1i}, and AP_{1i} represent the contributions (*C_i*) of the first-order groups for the corresponding properties.

Table S5 (continued). MG Method Based Property Models Analysed Using Simultaneous Regression Method: First-Order Groups and their Contributions a for the Properties \div EUA_C, EUA_{NC}, ERA_C, ERA_C, EFW_C, EFW_C, ESW_C, ESW_C, ENS_C, ENS_C, and EAS_{NC}.

CH		Group	EUA _{C 1i}	EUA _{NC 1i}	ERA _{C 1i}	ERA _{NC 1i}	EFW _{C 1i}	EFW _{NC 1i}	ESW _{C 1i}	ESW _{NC 1i}	ENS _{C 1i}	ENS _{NC 1i}	EAS _{C 1i}	EAS _{NC 1i}
CH														
Second CH	1			-0.3889			0.7393		-0.3653			0.1850	0.6353	0.2561
C C C C C C C C C C	2				-0.1321	-0.0319	-0.1459	-0.0700	-0.1772			0.1648	0.0411	0.1062
5 CH=CH -0.3402 -1.3987 0.8962 -2.0681 0.9410 -1.6118 -0.2764 -1.1415 0.9785 -0.5469 1.085 0.0964 C CH=C -1.3145 -1.21775 1.0885 -0.5744 0.4864 1.0631 0.7675 0.2210 1.9890 -1.1219 2.0215 -0.003 C CH=C -3.30812 -1.8224 0.2127 -0.8211 -1.4325 0.2033 0.2332 -2.3768 0.4820 -0.3112 -1.5124 -1.1376 0.8643 1.5679 -1.1132 -4.2931 -1.3559 -2.020 11 CH=C=CH ***** ***** ***** ***** ***** ***** ***** ***** ****** ***** 12 C+C=C ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** 12 C+C=C ***** ***** ***** ***** ****** ****** ****** ******	3	CH			0.3152	0.5123		0.2100	1.0114		0.3251	-0.2407	-0.0273	-0.5895
6 CH-CH 1.3145 2.1775 1.0385 -0.5744 0.4864 -1.2323 0.2899 -0.6143 0.5527 -1.8356 0.6069 -0.734 8 CH-C -3.3081 -1.3294 -1.3257 0.8811 -0.4232 -1.1149 0.2755 0.2933 0.2432 -3.2576 0.1922 -1.749 10 CH _P -C-C -3.0673 -2.2768 1.4520 -0.3112 -1.5124 -1.1376 0.8643 1.5679 -1.1132 -4.2931 -1.3559 -2.021 11 CH _P -C-C -3.0673 -2.2768 1.4520 -0.3112 -1.5124 -1.1376 0.8643 -1.6679 -1.132 -4.2931 -1.3559 -2.0220 12 C-C-C -3.0774 -1.0152 -1.5124 -1.1368 -0.5162 -1.8383 -0.5146 -1.4962 0.1162 -0.659 -0.2172 -0.657 13 CHC -1.2723 -0.0152 -1.5184 -1.2018 -0.0244 -0.2940 -0.2162 -0.2172	4				0.2656	1.7157	-0.3090	-0.0359	1.9303	0.3055		-0.9176	-0.6505	-1.1619
CH=C -1.3393 -1.3567 1.6881 -0.3947 1.1356 -1.0613 0.7675 0.2213 -0.8320 -1.2219 2.0215 -0.003 S C=C -3.0673 -2.3768 1.4520 -0.3112 -1.5124 -1.1376 0.8643 1.5679 -1.1132 -4.2931 -1.3559 -2.020 C=C C=C -3.0673 -2.3768 1.4520 -0.3112 -1.5124 -1.1376 0.8643 1.5679 -1.1132 -4.2931 -1.3559 -2.020 11 CH=C=C	5	CH ₂ =CH	-0.3402	-1.3987	0.8962	-2.0681	0.9410		-0.2764	-1.1415	0.9785	-0.5469	1.1985	0.0661
8 CH=C -3.0812 -1.8284 0.2217 -0.8211 -0.4232 -1.1149 0.2755 0.2933 0.2432 -3.2576 0.1952 -1.7436 10 CH=C=CH ************************************	6	CH=CH	-1.3145	-2.1775	1.0385	-0.5744	0.4864	-1.2323	0.2899	-0.6143	0.5527	-1.8356	0.6069	-0.7348
Car	7	CH ₂ =C		-1.3567	1.6881	-0.3947		-1.0631	0.7675			-1.1219		-0.0034
10 CH₂-C-CH ***** ***** ***** *****														-1.7401
Care-C	9	C=C												-2.0206
C=C=C	10	$CH_2=C=CH$												
CHEC														
14 C≡C ***** **** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ***** ***** ***** *											****			
15 aCH ac														-0.6574
16 aC fused with aromatic ring -0.1343 0.3895 -0.5355 0.5155 -0.5066 0.5060 -0.4842 0.3773 -0.1470 0.5247 -0.3689 2.2524 17 ac fused with non-aromatic ring -0.7234 0.1826 -1.0425 0.6396 -0.9302 0.7453 -1.0106 0.5475 -0.8140 0.5110 -0.9460 1.9491 19 a Nin aromatic ring 0.0545 -0.5575 -0.1527 -0.8743 0.2922 -0.4505 0.0351 -0.5408 0.1579 -0.3233 0.0617 -0.2062 20 ac-CH3 -0.5009 0.9054 -0.9434 1.1561 -1.0858 0.4515 -0.6868 0.8390 -0.9077 0.2123 -0.7888 22 ac-CH4 -0.6200 0.0515 -1.2974 0.9275 -2.2675 -0.5408 -0.3939 -0.1009 -1.4835 -0.8868 -1.9514 -0.5494 0.0327 -0.8336 -1.4515 -1.1916 -0.2676 -0.4842 0.3277 0.0284 0.05412 -0.0868 -0.9576 -0.2459 0.03514 -0.0549 0.0327 0.028	14		****	****	****	****		****	****	****	****	****	****	****
17 aC fused with non-aromatic ring -0.7234 0.1826 -1.0425 0.6396 -0.9302 0.7453 -1.0106 0.5475 -0.8140 0.5110 -0.9460 1.9490 18 aC except as above -0.8413 -0.0646 -0.7811 0.6090 -1.2107 -0.02465 -0.0515 -0.5233 0.0515 -0.492 20 aC-CH3 -0.5357 -0.0847 0.1353 0.0871 -0.1590 0.1514 -0.5494 0.0327 -0.0244 0.6381 0.0242 0.7082 21 aC-CH2 -0.5009 0.9054 -0.9434 1.1561 -1.0858 0.4515 -0.6868 0.8390 -0.9057 0.2123 -0.7848 0.1962 22 aC-CH2 -0.6200 0.0515 -1.2974 0.9275 -2.2675 -0.5408 -0.3393 -0.1097 0.1223 -0.7848 0.1962 24 aC-CH=CH2 0.1127 0.0416 0.2302 0.5380 1.4500 1.4195 -0.1057 0.7205 0.6742 1.6855 1.0702 1.8902 25 aC-C=CH2 ****************************		аСН				-0.3183			-0.0798				0.3088	0.1538
18 aC except as above -0.8413 -0.0646 -0.7811 0.6090 -1.2107 -0.2465 -1.0751 -0.1323 -0.5215 0.0358 -0.5195 -0.492 19 aN in aromatic ring 0.0545 -0.5575 -0.1527 -0.8743 0.2922 -0.4505 0.0351 -0.5408 0.1579 -0.3233 0.0617 -0.206 21 aC-CH3 -0.5357 -0.0847 0.1353 0.0871 -0.1590 0.1514 -0.5494 0.0327 -0.0284 0.6381 0.0242 0.7085 21 aC-CH2 -0.5009 9.0954 -0.9434 1.1561 -1.0858 0.4515 -0.6688 0.8390 -0.9057 0.2123 -0.7848 0.1962 22 aC-CH -0.6200 0.0515 -1.2974 0.9275 -2.2675 -0.5468 -0.3399 -0.1009 -1.4835 -0.8336 -1.4515 -1.119 23 aC-C -3.3208 0.2718 -3.3939 1.5295 -6.1374 -0.5875 -3.4758 -0.0850 -5.2566 -1.3713 -5.3546 -1.819 25		· ·												2.2520
19 aN in aromatic ring 0.0545 -0.5575 -0.1527 -0.8743 0.2922 -0.4505 0.0351 -0.5408 0.1579 -0.3233 0.0617 -0.206 20 aC-CH3 -0.5357 -0.0847 0.1353 0.0871 -0.19590 0.1514 -0.5494 0.0327 -0.0284 0.6381 0.0242 0.7082 21 aC-CH2 -0.5009 0.9054 -0.9434 1.1561 -1.0858 0.4515 -0.6868 0.8390 -0.9095 0.2123 -0.7848 0.1962 22 aC-CH -0.6200 0.0515 -1.2974 0.9275 -2.2675 -0.5408 -0.3939 -0.1009 -1.4835 -0.8336 -1.4515 -1.119 23 aC-CH=CH2 -3.3208 0.2718 -3.9393 1.5295 -6.1374 -0.5875 -3.4758 -0.0850 -5.2596 -1.3713 -5.3546 -1.835 24 aC-CH=CH2 0.1127 0.0416 0.2302 1.5524 -1.0455 1.2025 -0.2276 <td< td=""><td></td><td>aC fused with non-aromatic ring</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.9490</td></td<>		aC fused with non-aromatic ring												1.9490
20 aC-CH3 -0.5357 -0.0847 0.1353 0.0871 -0.1590 0.1514 -0.5494 0.0327 -0.0284 0.6381 0.0242 0.7082 21 aC-CH2 -0.5009 0.9054 -0.9434 1.1561 -1.0858 0.4515 -0.6686 0.8390 -0.9057 0.2123 -0.7848 0.1962 22 aC-CH -0.6200 0.0515 -1.2974 0.9275 -2.2675 -0.5408 -0.3939 -0.1095 -1.4835 -0.8336 -1.4515 -1.119 23 aC-C -3.3208 0.2718 -3.9393 1.5295 -6.1374 -0.5875 -3.4758 -0.0850 -5.2596 -1.3713 -5.3546 -1.834 24 aC-CH=CH2 0.1127 0.0416 0.2302 0.5380 1.4500 1.4195 -0.1057 0.7205 0.6742 1.6855 1.0702 1.8902 25 aC-CH=CH 1.0394 0.2028 1.9524 -1.0455 1.2025 -0.2276 1.4654 -0.1484 <		aC except as above												-0.4922
21 aC-CH2 -0.5009 0.9054 -0.9434 1.1561 -1.0858 0.4515 -0.6688 0.8390 -0.9057 0.2123 -0.7848 0.1962 22 aC-CH -0.6200 0.0515 -1.2974 0.9275 -2.2675 -0.5408 -0.3939 -0.1009 -1.4835 -0.8336 -1.4515 -1.119 23 aC-C -3.3208 0.2718 -3.9393 1.5295 -6.1374 -0.5875 -3.4758 -0.0850 -5.2596 -1.3713 -5.3546 -1.834 4 aC-CH=CH2 0.1127 0.0416 0.2302 0.5380 1.4550 1.1495 -0.1057 0.7205 0.6742 1.6685 1.0702 1.8902 25 aC-CH=CH2 1.0394 0.2028 1.9524 -1.0455 1.2025 -0.2276 1.4654 -0.1484 1.6964 -0.7658 1.5229 -1.743 26 aC-CECH ***** ***** ****** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** *****		aN in aromatic ring				-0.8743		-0.4505	0.0351			-0.3233		-0.2065
22 aC-CH														0.7085
23 aC-C -3.3208 0.2718 -3.9393 1.5295 -6.1374 -0.5875 -3.4758 -0.0850 -5.2596 -1.3713 -5.3546 -1.834 24 aC-CH=CH ₂ 0.1127 0.0416 0.2302 0.5380 1.4500 1.4195 -0.1057 0.7205 0.6742 1.6855 1.0702 1.890 25 aC-CH=CH 1.0394 0.2028 1.9524 -1.0455 1.2025 -0.2276 1.4654 -0.1484 1.6964 -0.7658 1.5229 -1.743 26 aC-C=CH ₂ ***** ***** ***** ***** ***** ***** ***** <														0.1967
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									-0.3939				-1.4515	-1.1191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		aC-C		0.2718			-6.1374		-3.4758			-1.3713		-1.8340
26 aC-C=CH₂														1.8907
27 aC-C=CH 28 aC-C=C 29 OH 29 OH 30 aC-OH 30 aC-OH 30 aC-OH 30 aC-OH 30 aC-OH 31 COOH 31 COOH 32 aC-COOH 32 aC-COOH 33 CH ₃ CO 34 CH ₂ CO 35 CH ₃ CO 36 CH ₃ CO 36 CH ₃ CO 37 CH ₃ CO 38 CH														-1.7432
28 aC-C⊆C 28 y*** **** **** **** **** **** **** **														
29 OH 0.4194 0.5362 0.2433 -0.8277 0.8887 0.3100 0.2217 0.5225 0.3945 0.3581 0.6619 0.6345 0.3581 0.00H 0.5318 -0.1766 0.4224 -0.6903 0.5713 -0.4110 0.7130 0.3440 0.9767 0.4142 1.0735 0.3160 0.00H 0.9436 -0.3737 0.9872 -1.1003 1.5695 -0.0513 1.0489 0.7155 1.0456 0.8499 0.9371 0.2633 0.00H 0.9436 -0.1662 0.6256 -0.9179 1.1534 0.1616 1.2207 1.9706 1.3280 0.2411 1.2017 0.1223 0.00H 0.9095 1.3373 -0.6548 -0.1061 **** 1.2797 -0.5174 0.8365 -0.0497 2.0562 **** 2.1790 0.000 0.0005 1.3373 -0.6548 -0.1061 **** 1.2797 -0.5174 0.8365 -0.0497 2.0562 **** 2.1790 0.0000 0.0005 0.37621 **** -3.7891 **** -3.6144 **** 0.8647 **** -4.7374 **** -4.5274 **** 0.0000 0.0005														
30 aC-OH 0.5318 -0.1766 0.4224 -0.6903 0.5713 -0.4110 0.7130 0.3440 0.9767 0.4142 1.0735 0.3160 31 COOH 0.9436 -0.3737 0.9872 -1.1003 1.5695 -0.0513 1.0489 0.7155 1.0456 0.8499 0.9371 0.2633 32 aC-COOH -1.9180 -0.1662 0.6256 -0.9179 1.1534 0.1616 1.2207 1.9706 1.3280 0.2411 1.2017 0.1223 33 CH ₃ CO 0.0905 1.3373 -0.6548 -0.1061 ***** 1.2797 -0.5174 0.8365 -0.0497 2.0562 ***** 2.1799 34 CH ₂ CO -3.7621 ***** -3.7891 ***** -3.6144 ***** 0.8647 ***** -4.7374 ***** -4.5274 ***** 35 CHCO ***** -0.1163 ***** 0.1359 ***** -0.3423 ***** 0.2564 ***** -0.4092 ***** <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>****</td><td></td><td></td><td></td><td></td><td></td><td>****</td><td></td></t<>							****						****	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												0.3581		0.6345
32 aC-COOH -1.9180 -0.1662 0.6256 -0.9179 1.1534 0.1616 1.2207 1.9706 1.3280 0.2411 1.2017 0.1223 33 CH ₃ CO 0.0905 1.3373 -0.6548 -0.1061 **** 1.2797 -0.5174 0.8365 -0.0497 2.0562 **** 2.1799 34 CH ₂ CO -3.7621 **** -3.7891 **** -3.6144 **** 0.8647 **** -4.7374 **** -4.5274 **** 35 CHCO **** -0.1163 **** 0.1359 **** -0.3423 **** 0.2564 **** -0.4092 **** -1.003 36 CCO **** **** **** **** **** **** **** -1.003 37 aC-CO -3.6693 0.1230 -3.2999 -0.2251 -2.1671 -0.3041 -2.1170 0.0400 -3.3091 -0.0111 -3.0206 -0.440 38 CHO 0.7415 -1.0946 0.3433 -1.4468 0.7471 -0.8811 -0.3255						-0.6903								0.3160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-0.0513				0.8499		0.2633
34 CH ₂ CO -3.7621 **** -3.7891 **** -3.6144 **** 0.8647 **** -4.7374 **** -4.5274 **** 35 CHCO **** **** **** **** **** **** ****														0.1223
35 CHCO														2.1799
36 CCO **** **** **** **** **** **** ****				****				****		***		****		****
37 aC-CO -3.6693 0.1230 -3.2999 -0.2251 -2.1671 -0.3041 -2.1170 0.0400 -3.3091 -0.0111 -3.0206 -0.440 38 CHO 0.7415 -1.0946 0.3433 -1.4468 0.7471 -0.8811 -0.3255 -0.4580 0.4532 0.2603 0.5964 0.1867														-1.0036
38 CHO 0.7415 -1.0946 0.3433 -1.4468 0.7471 -0.8811 -0.3255 -0.4580 0.4532 0.2603 0.5964 0.1865			****				****	****	****	***		****		
				0.1230		-0.2251				0.0400		-0.0111		-0.4405
39 aC-CHO 1.5855 -0.1253 1.1053 -0.3669 1.1466 -0.2715 1.0434 -0.1487 0.8989 0.6655 0.9465 0.3748	38	СНО	0.7415	-1.0946	0.3433	-1.4468	0.7471	-0.8811	-0.3255	-0.4580		0.2603	0.5964	0.1867
	39	aC-CHO	1.5855	-0.1253	1.1053	-0.3669	1.1466	-0.2715	1.0434	-0.1487	0.8989	0.6655	0.9465	0.3748

40	CH ₃ COO	0.4512	0.9230	0.4035	0.0309	0.6553	1.1335	0.1280	0.2915	0.4063	1.7726	0.5420	1.4246
41	CH ₂ COO	1.1595	1.2031	0.1357	0.7204	0.4287	1.4075	1.5236	2.3643	-0.9216	1.2035	-0.0509	1.0455
42	CHCOO	****	0.3293	****	1.0144	****	2.4473	****	2.5891	****	0.6452	****	0.1441
43	CC00	0.1221	****	-0.2906	****	-0.8719	****	0.3265	****	-0.5178	****	-0.8982	****
44	HCOO	****	****	****	****	****	****	****	****	****	****	****	****
45	aC-COO	-0.4819	0.4459	-0.4124	0.4075	-0.4451	0.5003	-0.1062	1.3013	-0.2463	0.4928	-0.4509	-0.0204
46	aC-OOCH	****	****	****	****	****	****	****	****	****	****	****	****
47	aC-OOC	****	0.5722	2.5567	0.2878	-0.7154	0.5013	6.7362	1.0671	1.0188	0.2805	1.1582	-0.0771
48	COO except as above	0.2977	-1.5617	-0.3523	-1.4325	-0.1730	-1.8607	-0.1199	-0.8076	-0.1119	-0.3508	-0.0340	-0.0515
49	CH ₃ O	0.6256	0.0811	-0.2026	-0.9191	0.6929	-0.0290	-0.7151	-0.2724	0.3522	0.3233	0.5985	0.5144
50	CH ₂ O	0.0748	0.1975	0.4215	-0.2890	0.1084	0.1516	-1.0241	0.1937	0.2143	-0.6273	0.1613	-0.3999
51	CH-O	****	-0.0821	****	-0.4530	****	-0.6497	****	0.5274	****	-1.2816	****	-1.7349
52	C-O	-5.2568	****	0.9916	****	-0.5381	****	-3.1651	****	-1.4749	****	-2.4229	****
53	aC-0	-0.0802	-0.2859	-0.0713	-0.0853	-0.4911	-0.2147	0.2796	0.6630	-0.3339	-0.9133	-0.2773	-0.8960
54	CH ₂ NH ₂	2.6349	****	2.1445	****	2.7445	****	2.2313	****	2.2150	****	2.5740	****
55	CHNH ₂	-0.6207	****	-0.4900	****	-0.4117	****	-0.1089	****	-0.9221	****	-0.6954	****
56	CNH ₂	****	****	****	****	****	****	****	****	****	****	****	****
57	CH ₃ NH	0.6012	3.5226	1.1697	0.8357	0.5009	3.0770	0.0504	3.3927	0.5130	4.1468	0.6086	2.6084
58	CH ₂ NH	-0.0418	1.1184	0.2209	1.8720	-0.2442	****	0.2238	-0.4997	0.0384	****	0.0000	****
59	CHNH	****	-1.6773	****	-1.5280	****		****	-0.4997	****	-3.0506	****	-3.2766
			0.9099		-0.1924		-1.6357		1.2439		-3.0306 -0.2579		
60	CH₃N	-0.6436 0.4475	0.9099 -2.0098	-0.8553 0.0993	-0.1924 -2.4756	-0.8106 -0.3946	0.3857	-0.6728	1.2439 -2.9607	-0.6269 -0.2504	-0.2579 -2.2740	-0.5892 -0.3272	0.0841 -5.6684
61	CH ₂ N						-2.7768	0.6252					
62	aC-NH ₂	0.4078	-0.0630	0.3147	-0.3145	0.2777	-0.2788	0.1703	-0.0925	0.3313	-0.0620	0.5484	0.0665
63	aC-NH	-0.4107	0.4817	-0.7748	0.3599	-1.1879	0.0024	-0.3339	0.7840	-0.8853	-0.2743	-0.8825	-0.4021
64	aC-N	-0.4531	1.8888	-0.3214	2.3247	-1.6764	1.1305	-0.0422	1.7549	-1.2858	-0.0682	-1.5082	-0.5018
65	NH ₂ except as above	-0.3084	-0.6762	-0.5831	-1.2756	-0.0303	-1.2682	-0.4261	0.0098	-0.1112	0.1261	-0.0458	0.3308
66	CH=N	-0.9032	-0.8004	0.3303	-0.9608	-0.0639	-0.9532	-0.5617	-1.0261	0.2969	-0.0600	0.3659	-0.4586
67	C=N	0.4874	0.7296	0.0018	1.3884	-0.1105	0.1401	0.2676	0.2538	0.8550	0.9988	0.7018	0.1943
68	CH ₂ CN	****	****	****	****	****	****	****	****	****	****	****	****
69	CHCN	****	****	****	****	****	****	****	****	****	****	****	****
70	CCN	-0.6082	****	-0.8192	****	-1.0567	****	0.2996	****	-1.4462	****	-0.9915	****
71	aC-CN	1.0739	-0.1684	0.9127	-0.4935	1.2596	-0.0803	1.2767	-0.0518	1.2816	0.0372	1.2918	0.2045
72	CN except as above	0.8164	-0.2555	-0.6385	-1.4802	0.7394	-0.2068	0.3631	-0.5179	0.9006	0.1745	0.9294	0.7612
73	CH ₂ NCO	****	****	****	****	****	****	****	****	****	****	****	****
74	CHNCO	****	****	****	****	****	****	****	****	****	****	****	****
75	CNCO	****	****	****	****	****	****	****	****	****	****	****	****
76	aC-NCO	1.1330	-2.1259	0.4514	-2.3525	0.5267	-2.0876	-0.4091	-2.3986	1.1762	-1.2588	1.1214	-1.4601
77	CH2NO ₂	****	****	****	****	****	****	****	****	****	****	****	****
78	CHNO ₂	-0.7932	-1.2349	-2.0288	-2.3937	-1.2622	-1.0859	-1.9514	-1.5630	-1.6619	-1.1247	-1.2586	-1.1625
79	CNO ₂	-0.9724	****	1.4716	****	-0.2284	****	-2.2112	****	1.3183	****	0.7714	****
80	aC-NO ₂	0.1245	-0.7880	-0.5036	-1.1595	-0.0264	-0.6468	-0.4483	-0.4066	0.1379	-0.1310	0.3479	-0.1339
81	NO ₂ except as above	-0.0683	0.8138	-1.1988	-0.2626	-0.1981	0.8788	-0.5692	0.2233	-0.7637	2.1380	-0.4482	2.0678
82	ONO	0.0475	****	-0.7753	****	0.0152	****	-1.8329	****	-0.3701	****	0.0539	****
83	ONO ₂	0.4673	****	-0.0272	****	0.4472	****	-0.1621	****	0.2459	****	0.4794	****
84	HCON(CH ₂) ₂	****	****	****	****	****	****	****	****	****	****	****	****
85	HCONHCH ₂	****	****	****	****	****	****	****	****	****	****	****	****
55													

86	CONH ₂	0.6701	-0.6830	0.4481	-0.6628	1.4781	-0.7170	1.9978	-0.3006	1.2097	0.1667	1.3995	0.6316
87	CONH ₂ CONHCH ₃	-0.3275	-0.0630	-1.4288	-2.0736	-0.1886	-0.7170	-0.6454	-1.2248	-1.0779	-0.3723	-0.8224	-0.7812
88	CONHCH ₂	1.9906	1.8243	0.9711	0.8861	0.7879	2.0946	2.5279	1.7462	1.6381	2.5388	1.6578	2.4492
89	CON(CH ₃) ₂	1.3855	-0.1214	-0.5104	-1.2591	-0.2235	-0.7867	0.1119	-0.5949	-0.9044	0.2034	-0.1317	0.1891
90	CONCH ₃ CH ₂	1.3033 ****	-U.1214 ****	-0.5104 ****	-1.2391 ****	-U.ZZ33 ****	-U./OU/ ****	0.1119 ****	-U.3949 ****	-0.9044 ****	0.2034 ****	-U.1317 ****	0.1091 ****
90		-0.9625		-1.5819	0.2178	-2.1596	-0.3609	0.1099	0.4682		-0.7156	-1.3442	-1.2618
91 92	CON(CH ₂) ₂	-0.9625 ****	0.2621 ****	-1.5819 ****	0.21/8 ****	-2.1596 ****	-0.3609 ****	0.1099 ****	0.4082 ****	-1.5442 ****	-U./150 ****	-1.3442 ****	-1.2018 ****
92 93	CONHCO CONCO	***	-0.3656	****	-0.0544	****	-0.2574	****	1.3425	***	-0.6528	****	-0.6126
			-U.3030 ****		-0.0544 ****		-U.23/4 ****	0.5586	1.3423 ****	0.6842	-U.0320 ****	1.0114	-U.0120 ****
94 05	aC-CONH ₂	1.3190	***	0.4221 ****	***	1.2138 ****	****	0.5586 ****	****	0.0842 ****	****	1.0114	****
95 96	aC-NH(CO)H	****	***	****	***	****	****	****	****	****	****	****	****
	aC-N(CO)H												
97 98	aC-CONH aC-NHCO	-3.6015 0.3259	1.3725 0.3311	-2.4897 0.0376	1.0603 0.8914	-1.3548 -0.2426	1.2428 0.7337	-0.8792 0.9831	1.3704 1.1069	-2.5327 -0.3504	0.7981	-1.7480 -0.0668	0.7555 0.5521
99	aC-NHCO aC-(N)CO	-0.8438	0.8111	-0.9527	1.2103	-0.2426 -2.1512	0.7337		2.7438	-0.3304 -0.9767	0.6114 -0.2882	-0.9029	-0.4164
100		0.9715	v.0109 ****	0.8013	1.21U3 ****	1.0687	0.0037 ****	0.1744	2./430 ****	0.6872	-U.4004 ****	0.7296	-0.4104 ****
	NHCONH	1.1915	***	-0.0835	****		****	1.6118 0.9456	****	0.6872	****	0.7296	****
101 102	NH2CONH NH2CON	0.3622	****	-0.0835 -1.0023	****	0.8273 -0.3280	****	0.9456	****	0.5512 -0.2842	****	-0.3256	****
102	NHCON	1.9570	0.5198	0.1885	1.0282	0.7393	1.0205	1.8051	3.8658	0.8960	-1.7350	0.5601	-1.4133
	NCON	1.937U ****	0.3190 ****	V.1005	1.UZOZ ****	0.7393 ****	1.UZU3 ****	1.0051	3.0030 ****	0.0900 ****	-1./33U ****	0.5001	-1.4133 ****
104 105		***	***	****	***	****	****	****	****	***	****	****	****
	aC-NHCONH	***						****	0.3930				-0.1363
106 107	aC-NHCONH	-0.1165	0.8147 -0.6416	1.6760 -0.4101	1.1664 -0.1778	0.6501 -0.1483	0.4940 -0.5051	0.7002	-0.3826	1.4306 -0.1430	-0.1933 -0.7959	1.6286 -0.0158	-0.1363 -0.3768
107	NHCO except as above		-0.6416		-0.1776 -1.5409								
108	CH2Cl CHCl	-0.3133 0.7229	0.2038	-0.3902 -0.3138	-1.5409 -0.2775	-0.0012 0.4587	-0.8957 -0.4287	-0.7134 -1.0845	-1.7334 -0.5868	-0.0092 0.1700	-0.3747 -0.1056	0.0485 0.3100	-0.0864
109	CCI	0.7229 ****	0.2038 ****	-U.3138 ****	-U.Z//5 ****	0.4587 ****	-U.4287 ****	-1.0845 ****	-U.5868 ****	0.1700 ****	-0.1056 ****	0.3100 ****	0.1483 ****
110	CHCl ₂	0.4190	-0.9871	-0.1853	-2.4110	0.6353	-1.0667	-1.0422	-1.6383	0.3711	-0.3263	0.4982	-0.2269
111	CCl ₂	0.4150 ****	-0.4318	****	-0.5196	****	-0.6916	-1.U422 ****	-0.5364	0.3/11 ****	-0.3263	0.4702 ****	-0.2253
113	CCl ₃	0.3605	-1.2506	-0.4669	-0.3190	0.2786	-0.0910	-1.8568	-2.2684	-0.1843	-0.4337	0.0910	-0.2233
113	CH ₂ F	1.7119	0.3666	1.0533	-0.8101	1.8094	0.7354	0.6295	0.0059	1.4211	0.4477	1.6553	0.6039
115	CHF	1./117 ****	****	****	-0.0101 ****	****	0.7334 ****	****	****	1.4211 ****	U.4477 ****	****	****
116	CF	****	****	****	****	****	****	****	****	****	****	****	****
117	CHF ₂	****	0.0703	****	-0.4804	****	0.1719	****	-1.1833	****	1.9698	****	1.6025
118	CF ₂	****	****	****	****	****	****	****	****	****	****	****	****
119	CF ₃	0.9473	0.8895	0.1773	-0.3682	1.0720	0.3204	-1.3467	-1.0247	0.5889	1.5174	0.8026	1.7167
120	CCl ₂ F	****	-1.4099	****	-2.1593	****	-1.7969	****	-3.1682	****	-1.4242	****	-1.1754
121	HCCIF	****	1.7393	****	0.7917	****	1.3080	****	-0.1021	****	1.6004	****	1.9043
122	CClF ₂	****	0.7293	****	-0.9851	****	0.8903	****	0.0847	****	1.4088	****	1.5158
123	aC-Cl	-0.0445	-0.2890	-0.3069	-0.7079	-0.1654	-0.4874	-0.8314	-0.8213	-0.1399	-0.1050	-0.0633	-0.0999
124	aC-F	-0.9985	-0.2195	-1.2055	-0.4714	-0.7630	-0.2717	-1.4596	0.0464	-0.6826	0.0476	-1.2152	0.2171
125	aC-I	****	****	****	****	****	****	****	****	****	****	****	****
126	aC-Br	0.2093	-0.2519	0.0753	-0.6226	0.3176	-0.2506	-0.0476	-0.4843	0.4777	-0.0766	0.2864	-0.1032
127	-I except as above	****	****	****	****	****	****	****	****	****	****	****	****
128	-Br except as above	-0.1961	-0.3216	-0.1708	-1.2917	0.0232	-0.3045	-0.9789	-1.1443	-0.2296	0.0657	-0.0047	0.3657
129	-F except as above	0.6207	-0.7864	-0.5794	-2.2689	0.6589	-0.5031	-1.9094	-0.9024	-0.1512	0.0691	0.2341	0.1207
130	-Cl except as above	-1.9393	-0.1480	-0.7165	-2.0875	-0.3256	-0.0976	-1.4034	-1.2269	0.0434	0.3658	-0.4433	0.5279
131	CHNOH	****	****	****	****	****	****	****	****	****	****	****	****
101	J												

132	CNOH	0.1658	****	-1.0768 ****	****	-0.6315 ****	****	0.2332 ****	****	-0.3801	****	-0.0535	****
133	аС-СНООН	****								****		****	
134	OCH ₂ CH ₂ OH	2.3891	-0.0244	1.7788	-1.2602	2.1537	-0.4130	2.4413	0.9540	1.6546	0.2117	1.8160	0.3751
135	OCHCH ₂ OH	****	****	****	****	****	****	****	****	****	****	****	****
136	OCH ₂ CHOH	****	2.4833	****	0.8375	****	2.0173	****	4.0842	****	1.7767	****	1.9349
137	-O-OH	****	****	****	****	****	****	****	****	****	****	****	****
138	CH ₂ SH	-0.6250	****	-1.9924	****	-1.1190	****	-0.9189	****	-0.0570	****	0.1574	****
139	CHSH	****	****	****	****	****	****	****	***	****	****	****	****
140	CSH	****	****	****	****	****	****	****	****	****	****	****	****
141	aC-SH	-1.2297	****	-3.7114	****	-2.1847	****	-0.4976	****	-1.8963	****	-1.8779	****
142	-SH except as above	****	****	****	****	****	****	****	****	****	****	****	****
143	CH ₃ S	6.3958	-0.1547	0.9366	-0.3871	1.3187	1.0294	1.6307	-0.3173	1.1446	-0.4689	1.1055	-0.2242
144	CH ₂ S	-0.3057	-0.0492	-1.0545	-0.3098	-1.3645	-0.2406	-0.6499	-0.3212	-1.0185	-0.2384	-1.0862	-0.3142
145	CHS	****	-1.3648	****	-1.1438	****	-2.1457	****	-3.5270	****	-3.4275	****	-3.2466
146	CS	7.6552	-0.9007	3.4256	3.9642	2.6418	-1.3869	3.8903	-0.5260	1.0593	-2.3698	2.8471	-2.3476
147	aC-S-	****	0.2217	-1.0230	0.1749	****	-0.0818	-1.3298	0.1865	****	-0.2047	-1.0183	-0.2664
148	SO	1.7021	4.3538	0.9399	2.4815	0.3344	4.3129	0.3485	4.3583	-0.3864	3.2094	-0.0328	0.2414
149	SO2	****	-0.3824	****	-0.0907	****	0.0637	****	0.4310	****	1.5538	****	1.1670
150	SO₃ (sulfite)	-0.0827	****	-0.3225	-1.3680	-1.0811	-0.6689	-1.5796	0.8753	-0.7085	****	-0.4129	0.3305
151	SO ₃ (Sulfonate)	-0.2533	****	-1.7071	****	-0.9481	****	0.5266	****	-1.0911	****	-0.7997	****
152	SO ₄ (Sulfate)	****	****	****	****	****	****	****	****	****	****	****	****
153	aC-SO	****	-0.6036	****	-0.7755	****	-0.7480	****	0.6670	****	-1.0006	****	-0.8386
154	aC-SO ₂	-2.3992	-0.2423	-2.8465	-0.3578	-2.9877	-1.4779	-1.6383	-1.5973	-3.2071	-0.1751	-3.0574	-0.8298
155	PH (phosphine)	****	****	****	****	****	****	****	****	****	****	****	****
156	P (Phospine)	****	-1.0674	****	-0.5893	****	-2.1490	****	-1.7547	****	-0.9683	****	-0.7173
157	PO ₃ (Phospite)	****	****	****	****	****	****	****	****	****	****	****	****
158	PHO₃ (Phosponate)	0.8052	****	-0.3669	****	-0.0439	****	1.2624	****	-0.1360	****	0.1555	****
159	PO ₃ (Phosponate)	1.3267	0.0298	0.7963	-0.0321	-0.4619	0.1061	2.3937	2.0215	0.2316	-0.8312	0.2283	-0.2818
160	PHO ₄ (Phospate)	****	****	****	****	****	****	****	****	****	****	****	****
161	PO ₄ (Phospate)	1.6283	-0.5208	-0.2120	0.0581	0.3359	-0.6785	2.0237	1.0577	0.5070	-0.5538	0.2061	-1.0503
162	aC-PO ₄	****	****	****	****	****	****	****	****	****	****	****	****
163	aC-P	****	****	****	****	****	****	****	****	****	****	****	****
164	CO ₃ (Carbonate)	****	****	****	****	****	****	****	****	****	****	****	****
165	C_2H_3O	-0.3133	-5.1385	-1.2673	-4.7155	1.1448	-4.7775	-0.1153	-7.7255	0.0260	-3.6274	0.9980	-4.0098
166	C_2H_2O	****	-1.0203	****	4.2383	****	-1.7704	****	2.1725	****	-1.8586	****	-4.8444
167	C_2HO	****	****	****	****	****	****	****	****	****	****	****	****
168	CH ₂ (cyclic)	0.0478	0.0383	0.1037	-0.2351	0.0218	-0.0591	-0.1159	-0.1360	0.2430	0.2778	0.2042	0.2686
169	CH (cyclic)	-0.5705	-1.3636	-0.9411	-0.1917	-0.3534	-1.7395	0.2311	-3.3705	-0.6251	-0.5402	-0.1148	-2.6460
170	C (cyclic)	3.9613	1.0459	1.1634	4.6781	0.4554	0.8751	1.6771	2.9940	-0.9880	0.1288	0.4143	-2.4011
171	CH=CH (cyclic)	-0.2006	-0.3717	-0.1551	-0.8137	-0.3694	-0.4172	-1.1639	-0.7469	0.0672	0.7392	0.0478	0.6207
172	CH=C (cyclic)	0.0562	0.0417	0.2281	-0.4702	-0.4847	-0.2261	-0.1890	-0.5499	0.4875	-0.5866	0.2344	-0.9710
173	C=C (cyclic)	-0.8232	-3.6378	-1.2786	-0.8741	-2.1582	-3.0260	-0.9217	-3.1614	-2.1348	-4.2929	-1.7673	-2.0572
174	CH ₂ =C (cyclic)	-0.3177	****	0.8420	****	-0.3089	****	-1.0253	****	1.8053	****	1.4118	****
175	NH (cyclic)	0.2068	-0.6063	-0.2440	-1.2240	0.3465	-0.7304	-0.0197	-0.3171	0.2312	-0.6572	0.2839	-0.4248
176	N (cyclic)	0.7465	-0.9135	-0.1568	-0.0631	0.5222	-1.0567	0.5583	-0.0837	-0.0920	-2.0578	0.0099	-1.9278
177	CH=N (cyclic)	0.5309	0.0584	1.4538	-0.5310	0.6452	0.4018	-0.7708	-0.1928	-0.1078	1.0813	0.1624	1.5244

178 179 180 181 182 183 184 185 186	C=N (cyclic) O (cyclic) CO (cyclic) S (cyclic) SO ₂ (cyclic) >NH -OS- >CO PO ₂	-0.1023 -0.6160 -0.1467 -0.0113 0.7597 -0.3552 2.1320 0.3962 ****	-0.5296 -1.3405 0.7802 -0.4065 -0.1628 -0.1971 -1.0893 -0.3454 -0.7055 ****	-0.0508 -0.4177 0.0273 -0.3833 -0.2927 -0.3453 -0.7573 0.8282 ****	-0.9244 -1.5397 0.3561 -0.2744 -1.0910 0.2549 -1.8584 0.0048 -0.5992	-0.2505 0.4395 0.0079 0.3451 1.4921 -0.1154 -0.3473 -1.0937 -2.3290	-0.4985 -1.2790 0.8369 -0.2271 -0.9201 -0.8038 -1.2017 -0.6376 -0.2531	-0.3228 -0.1866 0.6613 0.4112 1.4024 -0.2881 -3.3651 0.3392 -0.3051 ****	-0.4970 -1.6388 1.1518 -0.2562 -0.9510 -2.1316 1.1068 -0.6979 -0.5422 ****	-0.0218 -0.5459 0.0450 -0.1345 4.2417 -0.1419 -1.5205 0.5789 ****	0.2954 -1.2752 0.9198 0.1483 -1.0633 -1.3337 -0.8072 -0.2663 -0.2774 ****	-0.0959 -0.2245 0.0179 0.0751 4.3097 -0.1565 -1.3733 0.2048 -2.3418	0.3652 -0.8744 0.8191 0.3262 -0.8285 -0.9680 0.1945 -0.1624 -0.4289 ****
188	CH-N	-0.7970	0.4190	-0.7895	-0.0521	****	-1.0914	****	0.6603	-1.6551	-1.2596	****	-1.9068
189	SiHO	****	****	****	****	****	****	****	****	****	****	****	****
190	SiO SiO	****	****	****	****	****	****	****	****	****	****	****	****
191	SiH ₂	****	****	****	****	****	****	****	****	****	****	****	****
192	SiH	***	****	****	****	****	****	****	****	****	****	****	****
193	Si	***	****	****	****	****	****	****	****	****	****	****	****
194	(CH₃)₃N	****	****	****	****	****	****	****	****	****	****	****	****
195	N=N	****	-0.6798	****	-1.3422	****	-0.7632	****	-2.2405	****	-0.4732	****	0.7231
196	$C_{\text{cyclic}}=N$ -	0.3309	-0.3663	-0.5439	-1.4243	0.1428	0.5389	-0.0601	0.0130	0.6748	0.7104	0.3442	0.9730
197	C _{cyclic} =CH-	-1.0346	****	-0.2734	****	0.3924	****	0.7763	****	-0.4543	****	-0.9067	****
198	$C_{cyclic}=NH$	****	****	****	****	****	****	****	****	****	****	****	****
199	N=O	-1.8430	****	-1.2750	****	-1.2403	****	-1.3171	****	-1.4893	****	-1.1820	****
200	$C_{\text{cyclic}}=C$	-1.4671	****	-0.8366	****	-0.0991	****	-0.2696	****	0.2699	****	-0.5165	****
201	P=0	-5.6926	-1.8136	-0.5494	-0.9626	-1.0689	-1.7597	-0.2499	-0.7070	-0.9191	-1.2194	-0.9084	-1.9008
202	N=N	0.5131	****	-0.9381	****	-0.3220	****	-0.1820	****	-0.8614	****	-0.9633	****
203	C=NH	****	****	****	****	****	****	****	****	****	****	****	****
204	>C=S	0.4140	-0.4898	0.1229	-0.0780	-0.0878	-0.2683	0.2252	-0.1931	-0.2965	0.7406	-0.1104	0.2244
205	aC-CON	0.7937	-3.7639	-0.8587	0.1618	-1.0781	-4.1159	1.3443	****	-0.6874	-5.3844	-0.8192	-5.1798
206	aC=O	0.6202	****	1.2167	****	1.3160	****	2.2897	****	1.3151	****	1.6017	****
207	aN-	-0.9102	-1.3674	-0.4206	-1.1407	-0.7226	-1.4421	0.1246	-0.6597	-0.2579	-0.9406	0.0202	-2.6866
208	-Na	****	****	****	****	****	****	****	****	****	****	****	****
209	-K	****	****	****	****	****	****	****	****	****	****	****	****
210	HCONH	0.7064	****	0.1018	****	0.8454	****	0.5271	****	0.4107	****	0.5743	****
211	СНОСН	****	****	****	****	****	****	****	****	****	****	****	****
212	C_2O	****	****	****	****	****	****	****	****	****	****	****	****
213	SiH ₃	****	****	****	****	****	****	****	****	****	****	****	****
214	SiH ₂ O	****	****	****	****	****	****	****	****	****	****	****	****
215	CH=C=CH	****	****	****	****	****	****	****	****	****	****	****	****
216	CH=C=C	****	****	****	****	****	****	****	****	****	****	****	****
217	OP(=S)0	0.8795	-0.3584	1.6200	0.0413	0.1379	-1.0782	4.2446	-0.3807	-0.0978	-0.9345	-0.2608	-1.2441
218	R	****	****	****	****	****	****	****	****	****	****	****	****
219	CF _{2cyclic}	****	****	****	****	****	****	****	****	****	****	****	****
220	CF_{cyclic}	-1.1229	****	-1.9644	****	-3.4286	****	-3.5188	****	-3.8755	****	-3.4357	****

^a The symbols EUA_{C 1i}, EUA_{NC 1i}, ERA_{C 1i}, ERA_{NC 1i}, EFW_{C 1i}, EFW_{NC 1i}, ESW_{C 1i}, ESW_{NC 1i}, ENS_{C 1i}, ENS_{C 1i}, EAS_{C 1i}, and EAS_{NC 1i} represent the contributions (*C_i*) of the first-order groups for the corresponding properties.

Table S6. MG Method Based Property Models Analysed Using Simultaneous Regression Method: Second-Order Groups and their Contributions a for the Properties: $LC_{50}(FM)$, $LC_{50}(DM)$, LD_{50} , $LogW_s$, BCF, PEL(OSHA-TWA), and PCO

	Group	LC50(FM) _{2j}	$LC50(DM)_{2j}$	$LD50_{2j}$	LogWs _{2j}	BCF_{2j}	PEL_{2j}	PCO1 _{2j}
1	(CH ₃) ₂ CH	-0.0418	0.2712	-0.0144	-0.2681	0.3714	-0.0027	0.0313
2	(CH ₃) ₃ C	0.3137	4.1440	0.1404	-0.1698	0.1995	0.0414	0.1580
3	CH(CH ₃)CH(CH ₃)	-0.0995	****	-0.0161	-0.3705	1.2525	-0.0350	0.0765
4	CH(CH ₃)C(CH ₃) ₂	***	****	-0.0632	0.3614	1.1101	-0.0102	0.0354
5	$C(CH_3)_2C(CH_3)_2$	****	****	-0.0830	-0.3041	****	-0.0684	0.1280
6	$CH_n=CH_m-CH_p=CH_k$ (k,m,n,p in 02)	-0.1772	0.8857	0.0942	-0.5589	-1.2538	-0.5349	0.5521
7	CH_3 - CH_m = CH_n (m,n in 02)	0.0749	-3.5587	-0.1077	-0.0577	0.5100	-0.1718	-0.0364
8	CH_2 - CH_m = CH_n (m,n in 02)	-0.2902	2.4471	-0.0401	0.0703	0.0765	0.2436	0.0642
9	CH_p - CH_m = CH_n (m,n in 02; p in 01)	0.0477	-0.5971	0.1941	0.0841	-0.0935	****	0.0636
10	CHCHO or CCHO	0.3970	****	0.0140	-0.5415	****	****	-0.0825
11	CH ₃ COCH ₂	0.0279	1.0878	0.0083	0.4242	****	0.4724	-0.4764
12	CH ₃ COCH or CH ₃ COC	0.5626	****	0.3218	0.6789	-0.3859	0.3350	-0.2513
13	CHCOOH or CCOOH	-0.2421	****	0.1954	0.2890	0.1200	0.4992	-0.1341
14	CH ₃ COOCH or CH ₃ COOC	0.0097	****	0.1502	0.0716	****	-0.0526	-0.0621
15	CO-O-CO	****	****	0.0176	-0.6806	0.0000	1.6800	-10000.0000
16	СНОН	-0.0975	3.9109	0.1155	0.2588	-0.2924	0.1197	0.0487
17	СОН	0.0935	****	0.2278	0.8332	-0.4952	-0.2124	0.4127
18	CH_3COCH_nOH (n in 02)	****	****	0.0054	0.9579	****	****	-0.5912
19	NCCHOH or NCCOH	****	****	0.2700	0.5755	****	0.0000	-10000.0000
20	$OH-CH_n-COO\ (n \text{ in } 02)$	1.3209	****	0.0627	0.1891	1.1097	****	-0.4055
21	$CH_m(OH)CH_n(OH)$ (m,n in 02)	-1.3676	0.0361	0.1196	-0.4326	-0.7323	0.2582	-0.0929
22	$CH_m(OH)CH_n(NH_p)$ (m,n,p in 02)	-0.4231	1.2993	-0.0387	0.1678	0.0000	0.0860	-0.0417
23	$CH_m(NH_2)CH_n(NH_2)$ (<i>m,n</i> in 02)	-0.1456	-3.8727	-0.5152	-0.8213	****	-1.9649	****
24	$CH_m(NH)CH_n(NH_2)$ (<i>m,n</i> in 12)	****	****	-0.3115	0.3349	0.0000	-1.3100	-10000.0000
25	$H_2NCOCH_nCH_mCONH_2$ (<i>m,n</i> in 12)	****	****	****	-0.7592	****	****	****
26	$CH_m(NH_n)$ -COOH (m,n in 02)	1.2919	5.1623	-0.1667	-0.4295	****	****	****
27	$HOOC-CH_n-COOH$ (n in 12)	****	****	-0.0211	0.4420	****	****	****
28	$HOOC-CH_n-CH_m-COOH$ (n, m in 12)	****	****	0.1245	0.1019	3.0655	****	-0.4783
29	HO-CH _n -COOH (n in 12)	***	***	-0.0243	-0.4726	0.8399	****	-0.0784
30	NH_2 - CH_n - $COOH$ (n, m in 12)	***	***	****	-0.7592	****	****	****
31	CH ₃ -O-CH _n -COOH (n in 12)	***	****	****	0.8111	****	****	****
32	HS-CH-COOH	0.0000	***	0.7610	0.8831	-10000.0000	-1.6100	-10000.0000
33	$HS-CH_n-CH_m-COOH$ ($n, m \text{ in } 12$)	***	***	0.0428	1.5568	****	****	****
34	$NC-CH_n-CH_m-CN$ (n, m in 12)	***	****	0.7607	0.5459	****	-1.5017	****

35	$OH-CH_n-CH_m-CN$ (n, m in 12)	****	****	0.3340	1.0784	****	****	****
36	$HS-CH_n-CH_m-SH$ ($n, m \text{ in } 12$)	****	****	-2.7796	****	****	****	****
37	$COO-CH_n-CH_m-OOC$ (<i>n, m</i> in 12)	****	****	0.1410	-0.4872	****	****	-0.2074
38	OOC- CH_m - CH_m - $COO(n, m in 12)$	-0.2344	-16.0297	-0.0563	0.3977	0.0000	0.0000	0.5500
39	$NC-CH_n-COO(n \text{ in } 12)$	***	****	-0.3421	-0.2022	****	****	****
40	$COCH_nCOO$ (n in 12)	****	****	-0.0528	0.2418	****	****	****
41	CH_m -O- CH_n = CH_p (m,n,p in 03)	****	****	-0.4559	0.2041	1.6032	****	****
42	$CH_m=CH_n-F$ (m,n in 02)	****	****	-0.1574	0.0268	****	-1.2982	****
43	$CH_m=CH_n-Br$ $(m,n$ in $02)$	***	0.0974	-0.3767	0.4918	****	0.7909	****
44	$CH_m = CH_n - I (m,n \text{ in } 02)$	****	****	****	0.0987	****	****	****
45	$CH_m=CH_n-Cl$ (m,n in 02)	-0.2955	0.2971	0.1633	0.2219	-0.0569	-1.7406	-0.9410
46	$CH_m=CH_n-CN$ (m,n in 02)	0.2974	4.3101	0.2436	0.9999	****	0.1129	0.0000
47	$CH_n=CH_m-COO-CH_p$ (m,n,p in 03)	-0.1220	-0.0227	-0.1420	0.0383	****	0.0206	0.0788
48	$CH_m=CH_n-CHO\ (m,n\ in\ 02)$	1.8419	9.3811	0.1660	0.2322	****	0.0772	0.3566
49	$CH_m = CH_n - COOH(m,n \text{ in } 02)$	1.5593	****	-0.0256	-0.0141	****	-1.0172	-0.3647
50	aC-CH _n -X (n in 12) X: Halogen	-0.1264	****	-0.0660	0.1818	-0.5132	0.6493	****
51	$aC-CH_n-NH_m$ (<i>n</i> in 12; <i>m</i> in 02))	-0.5979	****	-0.2187	0.7638	-0.1295	****	****
52	aC-CH _n -O- (n in 12)	0.2287	-2.8691	0.0546	0.4210	0.1076	****	****
53	aC-CH _n -OH (n in 12)	0.0090	****	-0.0002	0.2106	-0.3066	****	-0.1689
54	$aC-CH_n-CN$ (<i>n</i> in 12)	2.2929	-2.2058	0.0990	0.5638	0.1066	****	****
55	aC-CH _n -CHO (n in 12)	****	****	-0.3084	0.4866	****	****	****
56	aC-CH _n -SH (n in 12)	****	****	0.6393	****	****	****	****
57	aC-CH _n -COOH (n in 12)	***	****	0.3223	0.2576	-0.6363	****	****
58	aC-CH _n -CO- (n in 12)	0.0000	****	0.1190	0.3883	-0.3370	-10000.0000	-10000.0000
59	aC-CH _n -S- (n in 12)	****	****	-0.5222	0.1038	1.1115	****	****
60	aC-CH _n -OOC-H (n in 12)	****	****	0.2836	****	****	****	****
61	$aC-CH_m-NO_2$ (n in 12)	****	****	****	****	****	****	****
62	$aC-CH_n-CONH_2$ (n in 12)	****	****	0.1814	0.5403	****	****	****
63	aC-CH _n -OOC (n in 12)	-0.4720	-0.4810	-0.1659	-0.7164	-0.3023	0.7772	****
64	aC-CH _n -COO (n in 12)	-0.6542	-6.1400	0.0539	-0.1301	0.0458	****	****
65	aC-SO ₂ -OH	-0.5382	****	-0.1870	1.0300	1.5586	****	****
66	aC-CH(CH ₃) ₂	0.0851	-1.2681	-0.3378	-0.2936	0.1272	-1.1271	0.0187
67	aC-C(CH ₃) ₃	0.9465	****	-0.1434	0.7323	-0.0775	5.6444	0.0907
68	aC-CF₃	0.1166	0.3533	-0.7788	1.9593	1.6118	****	-0.2101
69	$(CH_n=C)(cyc)$ -CHO (n in 02)	****	****	-0.1031	-0.5395	****	0.2158	****
70	$(CH_n=C)_{cyc}$ -COO-CH _m $(n,m \text{ in } 03)$	****	****	-0.2405	-0.0249	0.7906	****	****
71	$(CH_n=C)_{cyc}-CO-(n \text{ in } 02)$	-0.6127	****	0.1205	-0.2214	****	****	****
72	$(CH_n=C)_{cyc}$ - CH_3 (n in 02)	-0.3382	5.1943	-0.1284	0.1409	-0.2985	-2.5355	-0.2129
73	$(CH_n=C)_{cyc}-CH_2$ (n in 02)	-0.8382	-2.2216	-0.0219	0.4412	****	0.1846	****
74	$(CH_n=C)_{cyc}$ -CN (n in 02)	-0.0901	****	-0.6381	-0.3809	****	***	****

75	$(CH_n=C)_{cyc}-Cl (n \text{ in } 02)$	-0.2396	0.4435	0.0291	0.1416	-0.3723	-0.7029	****
76	CH _{cyc} -CH ₃	0.0321	0.7237	-0.2120	0.1410	0.1321	-0.3707	-0.0854
77	CH _{cyc} -CH ₂	-0.5631	1.4904	-0.2032	0.3006	0.7223	-1.1768	-0.0314
78	CH _{cyc} -CH	0.6735	-0.5530	-0.2439	0.3390	-0.0178	****	0.0269
79	CH _{cyc} -C	-0.6977	****	-0.4669	0.0614	1.3638	****	-0.0579
80	CH_{cyc} - CH = CH_n (n in 12)	0.0547	-3.3258	-0.0845	-0.0140	0.4312	1.4915	****
81	CH_{cyc} - $C=CH_n$ (n in 12)	-0.6174	2.9140	-0.4441	0.5030	-2.8314	****	0.8562
82	CH _{cyc} -Cl	-0.3183	-0.9800	-0.0649	0.2801	0.2869	-1.2358	****
83	CH _{cyc} -F	****	****	****	0.5092	***	****	****
84	CH _{cyc} -OH	-0.2028	1.0683	-0.1594	-0.0298	-0.2648	0.0492	-0.1266
85	CH _{cyc} -NH ₂	****	****	-0.4730	0.1626	***	0.2963	****
86	CH_{cyc} -NH- CH_n (n in 03)	0.1644	-0.7336	-0.3636	0.6737	0.0436	****	****
87	CH_{cyc} -N- $CH_n(n \text{ in } 03)$	1.2144	****	-0.4944	0.6127	0.8210	****	****
88	CH _{cyc} -SH	***	****	1.6279	****	***	0.9254	****
89	CH _{cyc} -CN	***	****	-0.5241	0.9679	***	****	****
90	CH _{cyc} -COOH	0.3786	****	-0.3532	0.0041	0.9628	****	****
91	CH _{cyc} -CO	***	****	-0.0387	0.4932	***	****	****
92	CH _{cyc} -NO ₂	***	****	0.4482	0.9901	***	****	****
93	CH _{cyc} -S-	-1.6152	****	-0.2856	0.8968	***	****	****
94	CH _{cyc} -CHO	0.5061	****	-0.3566	-0.0628	***	****	-0.0370
95	CH _{cyc} -O-	***	****	-0.4260	0.2118	***	2.1204	****
96	CH _{cyc} -OOCH	***	****	0.0509	****	***	****	****
97	CH _{cyc} -COO	-0.7603	-1.1127	-0.4650	-0.0666	0.2877	****	****
98	CH _{cyc} -OOC	-0.4578	-2.0921	-0.3600	0.2191	***	****	****
99	C _{cyc} -CH ₃	0.5272	-0.6499	-0.1205	-0.0642	-0.0631	2.4390	-0.0002
100	C _{cyc} -CH ₂	1.2910	-0.7346	-0.0003	0.4062	-0.5229	1.0713	-0.0319
101	C _{cyc} -OH	-0.2373	-1.9432	0.2718	-0.3541	-1.6360	-1.1715	****
102	>N _{cyc} -CH ₃	0.5632	6.9066	0.0506	0.4460	-1.2764	****	-0.2283
103	>N _{cyc} -CH ₂	-0.3114	1.9548	0.0864	0.5720	-0.5023	****	****
104	AROMRINGs ¹ s ²	0.2621	0.2164	0.0716	-0.1196	0.1105	-0.4639	-0.2439
105	AROMRINGs ¹ s ³	-0.1180	0.1443	0.0941	-0.2204	0.0452	-0.5725	-0.2979
106	AROMRINGs ¹ s ⁴	0.2146	0.3769	0.0225	-0.1809	-0.0630	0.0847	-0.1949
107	AROMRINGs ¹ s ² s ³	-0.0720	0.3149	0.1488	0.0218	0.3649	-0.6955	-0.2645
108	AROMRINGs ¹ s ² s ⁴	0.2048	0.0338	0.0290	-0.0516	0.1049	-0.9649	-0.1603
109	AROMRINGs1s3s5	-0.0500	-0.1186	0.0747	-0.3272	0.4939	-0.7364	-0.2885
110	$AROMRINGs^1s^2s^3s^4$	0.4147	-0.4579	-0.1170	0.1183	0.0951	****	-0.1422
111	AROMRINGs ¹ s ² s ³ s ⁵	-0.0011	-0.0506	-0.0488	0.0218	0.2253	-3.3441	-0.0812
112	AROMRINGs ¹ s ² s ⁴ s ⁵	0.3494	-0.5777	0.0164	-0.2460	0.5129	***	-0.1437
113	PYRIDINEs ²	-0.9133	****	0.4753	0.9191	-0.1885	****	****
114	PYRIDINEs ³	-0.4916	****	-0.0360	0.9089	-1.0214	****	****

115	PYRIDINEs ⁴	-0.7575	****	0.2708	0.4137	-0.6056	****	****
116	PYRIDINEs ² s ³	-1.1257	****	0.5297	0.4975	****	****	****
117	PYRIDINEs ² s ⁴	****	****	0.2268	0.2720	****	****	****
118	PYRIDINEs ² s ⁵	-0.6158	0.2969	0.0882	0.2547	1.5410	****	***
119	PYRIDINEs ² s ⁶	-0.2151	****	0.3627	-0.0288	****	****	***
120	PYRIDINEs3s4	****	****	0.2749	0.1079	****	****	****
121	PYRIDINEs3s5	****	****	-0.2183	-0.1755	****	****	****
122	PYRIDINEs ² s ³ s ⁶	****	****	-0.5987	-0.2032	****	****	****
123	$(CH^n=CH^m)^{cyc}-COOH$	****	****	-0.9943	-0.5168	****	****	****
124	AROMRINGs ¹ s ² s ³ s ⁴ s ⁵	-0.0481	-0.6732	0.1845	0.3517	0.1277	****	0.0474
125	aC-NHCOCH2N	****	****	0.6326	1.1063	****	****	****
126	$(N=C)_{cyc}$ - CH_3	-0.5150	****	0.0283	0.6955	-2.0489	****	****
127	aC-CONH(CH ₂) ₂ N	****	****	0.2557	0.7687	****	****	****
128	$aC-SO_2NH_n (n>=0;n<3)$	****	****	-0.1618	0.2409	0.7943	****	****
129	$aC-SO_2NH_n (n>=0;n<3)$	****	****	0.2385	0.8555	****	****	****
130	$aC-SO_2NH_n$ ($n>=0$; $n<3$)	***	****	-0.3188	0.2319	1.6555	****	****

^a The symbols LC50(FM)_{2j}, LC50(DM)_{2j}LD50_{2j}, LogWs_{2j}, BCF_{2j}, PEL_{2j}, PCO_{2j} represent the contributions (*D_j*) of the second-order groups for the corresponding properties. Note that there are no second-order contributions for GWP, ODP and AP since these properties belong to chemicals whose structure is defined by first-order groups alone.

Table S6 (continued). MG Method Based Property Models Analysed Using Simultaneous Regression Method: Second-Order Groups and their Contributions a for the Properties÷ EUA_C, EUA_{NC}, ERA_C, ERA_{NC}, EFW_C, EFW_{NC}, ESW_C, ESW_{NC}, ENS_C, ENS_{NC}, EAS_C, and EAS_{NC}.

	Group	EUA _{C 2j}	EUA _{NC 2j}	ERA _{C 2j}	ERA _{NC2j}	EFW _{C 2j}	EFW _{NC 2j}	ESW _{C 2j}	ESW _{NC 2j}	ENS _{C 2j}	ENS _{NC 2j}	EAS _{C 2j}	EAS _{NC 2j}	EUA _{C 2j}
1	(CH ₃) ₂ CH	0.4454	0.7777 0.7628	0.0850 -0.3870	0.9533 0.2392	-0.0271 -0.2564	0.6037 0.6369	0.3571 -1.2769	1.0021 1.2133	-0.1402 -0.8796	0.9090 1.1569	0.2321 0.1557	1.0531 0.4723	0.4454
2	(CH ₃) ₃ C	-1.0261 ****	0.7628 ****	-U.38/U ****	0.2392 ****	-0.2564 ****	0.0309 ****	-1.2/09 ****	1.2133 ****	-0.8796 ****	1.1569 ****	0.155/ ****	0.4723 ****	-1.0261 ****
3	CH(CH ₃)CH(CH ₃)	****	****	***	****	****	****	***	***	***	****	****	****	****
4	CH(CH ₃)C(CH ₃) ₂	****	****	***	****	****	****	***	****	***	****	****	****	****
5	C(CH ₃) ₂ C(CH ₃) ₂													
6	$CH_n=CH_m-CH_p=CH_k$ (k,m,n,p in 02)	1.7943	2.7047	-0.9739	0.2460	-0.9041	1.5568	-0.7469	1.3600	-0.2300	2.2724	-0.4340	0.4036	1.7943
7	CH_3 - CH_m = CH_n (m,n in 02)	0.8992	1.1266	-0.0583	0.2893	-0.1388	0.5668	0.0073	0.1956	-0.1366	1.3767	-0.0679	0.5363	0.8992
8	CH_2 - CH_m = CH_n (m,n in 02)	0.6538	0.2386	-0.3203	1.2598	-0.4937	0.5536	-0.9016	-0.0152	-0.3931	0.7228	-0.6658	0.1489	0.6538
9	CH_p - CH_m = CH_n (m,n in 02; p in 01)	-0.1003	-1.0487 ****	-1.2161 ****	****	-0.9001 ****	-1.3775	-1.0900 ****	-1.1375 ****	-1.0261 ****	-1.2026 ****	-1.3403 ****	-1.3735 ****	-0.1003
10	CHCHO or CCHO	****					****							****
11	CH ₃ COCH ₂	****	-0.7929	****	0.0988	0.2147	-0.4836	****	-0.2261 ****	****	-0.4645 ****	0.0150	-0.6226	****
12	CH₃COCH or CH₃COC	****	****	****	****	****	****	****		****		****	****	****
13	CHCOOH or CCOOH	-0.3208	0.0291	-1.4573	-	-1.4573	-0.3280	-1.5177	-0.5655	-1.2028	-0.7276	-0.8287	-0.2615	-0.3208
14	CH ₃ COOCH or CH ₃ COOC	-0.9094	****	-0.1570	****	-0.3162	****	-1.2374	****	-1.1378	****	-0.5791	****	-0.9094
15	CO-O-CO	***	****	****	****	****	****	****	****	****	****	****	****	****
16	СНОН	-0.5119	-0.8836	-0.6160	0.1893	-1.0520	-0.8619	-0.6700	-0.9111	-0.4799	-0.2670	-0.5091	-0.3797	-0.5119
17	СОН	-0.3245	-2.3976	-1.5910	-	-1.7123	-1.5682	-1.1338	-1.8517	-1.0148	-1.1666	-1.2208	-1.0103	-0.3245
18	CH_3COCH_nOH (<i>n</i> in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
19	NCCHOH or NCCOH	****	****	****	****	****	****	****	****	****	****	****	****	****
20	$OH-CH_n-COO(n \text{ in } 02)$	-0.2640	-2.5789	-1.3986	-	-4.3790	-4.1296	-1.7941	-4.8709	-3.8361	1.2855	-2.3116	1.1969	-0.2640
21	$CH_m(OH)CH_n(OH)$ (m,n in 02)	-2.6993	****	****	-	****	****	****	****	****	****	****	****	-2.6993
22	$CH_m(OH)CH_n(NH_p)$ (m,n,p in 02)	-1.6155	****	-1.8221	****	-2.0086	****	-2.5453	****	-2.2315	****	-2.2681	****	-1.6155
23	$CH_m(NH_2)CH_n(NH_2)$ (m,n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
24	$CH_m(NH)CH_n(NH_2)$ (m,n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
25	$H_2NCOCH_nCH_mCONH_2$ (m,n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
26	$CH_m(NH_n)$ -COOH (m,n in 02)	-0.1495	****	-0.3633	****	-0.4518	0.7218	-0.6857	****	-0.1520	0.3571	0.1525	1.3200	-0.1495
27	$HOOC-CH_n-COOH$ (<i>n</i> in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
28	HOOC-CH _n -CH _m -COOH (n , m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
29	$HO-CH_n-COOH$ (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
30	NH_2 - CH_n - $COOH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
31	CH_3 -O- CH_n -COOH (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
32	HS-CH-COOH	****	****	****	****	****	****	****	****	****	****	****	****	****

33	$HS-CH_n-CH_m-COOH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
34	$NC-CH_n-CH_m-CN$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
35	$OH-CH_n-CH_m-CN$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
36	$HS-CH_n-CH_m-SH$ (n, m in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
37	$COO-CH_n-CH_m-OOC$ (n, m in 12)	0.4211	****	1.1314	****	1.2644	****	-0.3272	****	1.5168	****	0.9057	****	0.4211
38	$OOC-CH_m-CH_m-COO(n, m \text{ in } 12)$	-1.5241	3.6672	-0.9983	3.6117	-0.6690	4.6673	-1.0778	5.4329	1.4117	4.1810	0.0326	3.9405	-1.5241
39	NC-CH _n -COO (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
40	COCH _n COO (n in 12)	-2.5340	****	-2.0342	****	-2.6213	****	-4.7273	****	0.0760	****	-1.0854	****	-2.5340
41	CH_m -O- CH_n = CH_p (m,n,p in 03)	****	****	****	****	****	****	****	****	****	****	****	****	****
42	$CH_m=CH_n-F(m,n \text{ in } 02)$	0.3786	****	0.1935	****	-0.0139	****	1.4655	****	0.6120	****	0.3624	****	0.3786
43	$CH_m=CH_n-Br\ (m,n \text{ in } 02)$	****	0.6806	****	0.5414	****	0.2753	****	0.0771	****	0.9150	****	0.3664	****
44	$CH_m=CH_n-I (m,n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
45	$CH_m=CH_n-Cl\ (m,n\ in\ 02)$	2.8096	0.4492	0.1697	1.2437	0.9242	0.0103	0.5423	0.0245	0.3108	0.6621	0.9509	-0.0168	2.8096
46	$CH_m=CH_n-CN (m,n \text{ in } 02)$	-0.2510	-0.7132	-0.6328	-	-1.2833	-0.4240	-2.0346	-1.5374	-1.6324	-0.4531	-1.7620	-1.4200	-0.2510
47	$CH_n=CH_m-COO-CH_p$ (m,n,p in 03)	0.4041	1.7879	-0.9669	0.9356	-0.5581	1.7600	0.4096	1.5587	-0.5862	1.3524	-0.4495	0.7187	0.4041
48	$CH_m=CH_n-CHO (m,n \text{ in } 02)$	-0.2428	-1.7213	-1.0203	-	-0.8167	-0.6646	0.0942	-3.1005	-0.9783	-1.7167	-1.0652	-1.9796	-0.2428
49	$CH_m=CH_n-COOH$ (m,n in 02)	-1.0794	****	-2.7056	****	-2.6653	****	-2.8203	****	-2.2235	****	-1.9522	****	-1.0794
50	aC-CH _n -X (n in 12) X: Halogen	2.3361	****	0.8709	****	1.3713	****	0.9893	****	0.6633	****	1.2260	****	2.3361
51	aC-CH _n -NH _m (n in 12; m in 02))	1.0687	****	0.6693	****	0.6495	****	0.5118	****	0.9552	****	0.9981	****	1.0687
52	aC-CH _n -O- (n in 12)	6.0723	0.8650	0.7509	0.8463	2.0927	0.8340	8.1599	0.5995	3.2998	1.1806	2.5796	1.3480	6.0723
53	aC-CH _n -OH (n in 12)	0.7158	-1.0641	1.2554	-	1.2648	-1.0102	1.4622	-0.7395	1.1325	-1.3372	1.0486	-1.3613	0.7158
54	aC-CH $_n$ -CN (n in 12)	****	0.6234	****	0.7483	****	0.5938	****	0.8119	****	0.1023	****	-0.5529	****
55	aC-CH _n -CHO (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
56	aC-CH _n -SH (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
57	aC-CH _n -COOH (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
58	aC-CH _n -CO- $(n \text{ in } 12)$	****	-0.4253	****	-	****	0.0434	****	0.2368	****	-0.7374	****	-0.4952	****
59	aC-CH _n -S- $(n \text{ in } 12)$	****	-0.4363	****	-	****	0.1549	****	0.2885	****	1.0150	****	0.9068	****
60	aC-CH _n -OOC-H (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
61	aC-CH _m -NO ₂ (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
62	$aC-CH_n-CONH_2$ (n in 12)	****	****	****	****	****	****	****	****	****	****	****	****	****
63	aC-CH _n -OOC (n in 12)	2.1857	-0.8637	1.5944	-	1.7073	-0.2397	2.2699	-0.3791	1.8470	-0.4877	1.5479	-0.5280	2.1857
64	aC-CH _n -COO (n in 12)	0.6946	2.4109	1.1951	1.7731	3.0189	3.2424	1.4124	3.0979	2.4991	0.0813	1.5682	-0.2439	0.6946
65	aC-SO ₂ -OH	****	****	****	****	****	****	****	****	****	****	****	****	****
66	aC-CH(CH ₃) ₂	-0.6750	0.3543	-1.5063	-	-0.9091	0.7285	0.6240	1.5970	-0.6537	-0.2616	-0.4466	0.4541	-0.6750
67	aC-C(CH ₃) ₃	3.0869	1.3842	2.6282	****	3.8946	****	3.3901	****	3.7734	3.3323	3.7719	****	3.0869
68	aC-CF ₃	2.7512	1.2533	5.7320	4.7670	4.2528	1.3657	8.4099	1.9079	5.3555	1.0867	4.3307	1.3526	2.7512
69	$(CH_n=C)(cyc)$ -CHO (n in 02)	2.1717	1.2393	0.8882	1.6531	0.8121	0.8593	1.6104	2.0521	1.2094	0.5196	1.0755	0.8454	2.1717
70	$(CH_n=C)_{cyc}-COO-CH_m$ (n,m in 03)	****	6.2390	****	2.1891	****	4.7572	****	5.4373	****	2.2894	****	-0.4511	****
71	$(CH_n=C)_{cyc}-CO-(n \text{ in } 02)$	****	3.6588	****	1.5130	****	1.7279	****	2.6167	****	1.7446	****	0.2172	****
72	$(CH_n=C)_{cyc}-CH_3 (n \text{ in } 02)$	0.0144	1.6249	0.2798	0.8405	0.6716	1.7910	-0.2938	2.6849	-0.1270	2.3612	0.1740	1.0475	0.0144

73	$(CH_n=C)_{cyc}-CH_2$ (<i>n</i> in 02)	0.8733	-0.4514	0.1148	0.5525	0.0473	-0.3333	0.5312	-0.0406	-0.5548	1.1360	-0.4881	0.8778	0.8733
73 74	(CHn=C)cyc-CN (n in 02)	****	2.8009	****	1.0755	****	1.6933	****	1.5060	****	2.8493	****	0.0293	****
75	$(CH_n=C)_{cyc}$ -Cl $(n \text{ in } 02)$	2.4853	0.8650	1.3227	1.0251	1.5691	0.5254	1.5760	1.1605	1.3515	1.0003	1.6352	0.3695	2.4853
76	CH _{cyc} -CH ₃	1.3286	3.5106	0.6868	1.6797	-0.4296	3.1837	-0.2258	5.4130	0.1520	2.6395	-0.3265	3.2632	1.3286
77	CH _{cyc} -CH ₂	0.8847	3.8741	1.1317	2.1603	-0.3996	3.4800	-0.4124	6.1122	0.0876	3.1659	-0.5379	3.5261	0.8847
78	CH _{cyc} -CH	****	-0.9238	****	2.3200	****	0.7457	****	6.1796	****	0.7722	****	2.8086	****
79	CH _{cyc} -C	****	****	****	****	****	****	****	****	****	****	****	****	****
80	CH_{cyc} - CH = CH_n (n in 12)	2.3806	1.0425	1.8181	2.9808	0.9041	1.1953	0.2788	3.5141	1.3798	1.1572	0.2457	3.8725	2.3806
81	CH_{cyc} -C= CH_n (n in 12)	1.1720	2.4730	****	2.6495	-1.7594	2.6481	-0.9170	3.5831	****	0.6485	-2.9697	0.2060	1.1720
82	CH _{cyc} -Cl	2.3759	0.9708	1.2937	1.3585	0.5164	1.1560	0.5041	3.6834	0.4250	-0.1607	0.4479	1.8211	2.3759
83	CH _{cyc} -F	****	****	****	****	****	****	****	****	****	****	****	****	****
84	CH _{cyc} -OH	-1.3384	****	1.3004	****	2.3858	****	-0.9943	****	2.7345	****	0.7397	****	-1.3384
85	CH _{cyc} -NH ₂	****	1.6149	****	1.4558	****	2.6148	****	3.5476	****	0.1803	****	2.2142	****
86	CH_{cyc} -NH- CH_n (n in 03)	****	0.8163	****	-	****	1.3080	****	3.3778	****	0.6604	****	2.4904	****
87	CH_{cyc} -N- CH_n (n in 03)	****	****	****	****	****	****	****	****	1.1339	****	****	****	****
88	CH _{cyc} -SH	****	****	****	****	****	****	****	****	****	****	****	****	****
89	CH _{cyc} -CN	****	****	****	****	****	****	****	****	****	****	****	****	****
90	CH _{cyc} -COOH	-0.1192	****	-0.0258	****	-0.8363	****	-0.2251	****	0.1528	****	-0.3452	****	-0.1192
91	CH _{cyc} -CO	-2.0389	****	-0.4304	****	0.8105	****	0.8953	****	0.5810	****	-0.5264	****	-2.0389
92	CH _{cyc} -NO ₂	****	****	****	****	****	****	****	****	****	****	****	****	****
93	CH _{cyc} -S-	****	3.3988	****	2.0753	****	4.0643	****	6.2953	****	1.4916	****	3.3534	****
93 94	CH _{cyc} -S- CH _{cyc} -CHO	****	3.3988 ****	****	2.0753 ****	****	4.0643 ****	****	6.2953 ****	****	1.4916 ****	****	3.3534 ****	****
94	CH _{cyc} -CHO	****	****	****	****	****	****	****	****	****	****	****	****	****
94 95	CH _{cyc} -CHO CH _{cyc} -O-	**** -2.2400	**** 1.6824	**** -0.1341	**** 1.9541	**** -0.6127	**** 2.8569	**** -1.1417	**** 3.6426	**** -0.9768	**** -0.4946	**** -1.8716	**** 2.9381	**** -2.2400
94 95 96	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH	**** -2.2400 ****	**** 1.6824 ****	**** -0.1341 ****	**** 1.9541 ****	**** -0.6127 ****	**** 2.8569 ****	**** -1.1417 ****	**** 3.6426 ****	**** -0.9768 ****	**** -0.4946 ****	**** -1.8716 ****	**** 2.9381 ****	**** -2.2400 ****
94 95 96 97	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO	**** -2.2400 **** 1.1500	**** 1.6824 **** 5.8631	**** -0.1341 **** 2.5531	**** 1.9541 ****	**** -0.6127 **** 1.0973	**** 2.8569 **** 7.4198	**** -1.1417 **** 3.3882	**** 3.6426 **** 7.2877	**** -0.9768 **** 3.2162	**** -0.4946 **** 3.5543	**** -1.8716 **** 3.4197	**** 2.9381 **** 2.2421	**** -2.2400 **** 1.1500
94 95 96 97 98	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -OOC C _{cyc} -CH ₃ C _{cyc} -CH ₂	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721	**** 1.9541 **** - **** -	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739	**** -1.8716 **** 3.4197 -2.7917	**** 2.9381 **** 2.2421 **** 1.2917 0.5956	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932
94 95 96 97 98 99 100	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -OOC C _{cyc} -CH ₃	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529	**** 1.6824 **** 5.8631 **** -0.7606	**** -0.1341 **** 2.5531 -1.7657 -0.4669	**** 1.9541 **** - ****	**** -0.6127 **** 1.0973 0.5728 -0.3483	**** 2.8569 **** 7.4198 **** -0.7903	**** -1.1417 **** 3.3882 -2.1338 -0.0784	**** 3.6426 **** 7.2877 **** -1.1166	**** -0.9768 **** 3.2162 -1.5802 0.3823	**** -0.4946 **** 3.5543 **** -0.8171	**** -1.8716 **** 3.4197 -2.7917 -0.2401	**** 2.9381 **** 2.2421 **** 1.2917	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529
94 95 96 97 98 99 100 101	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -OH >N _{cyc} -CH ₃	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600	**** 1.9541 **** - **** - **** 1.0941	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689	2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236
94 95 96 97 98 99 100	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -OH	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 ****	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517	**** 1.9541 **** - **** - ****	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 ****	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 ****	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 ****	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077
94 95 96 97 98 99 100 101 102 103 104	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -CH3 C _{cyc} -CH2 C _{cyc} -CH >N _{cyc} -CH3 >N _{cyc} -CH ₂ AROMRINGs ¹ s ²	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671	**** 1.9541 **** - **** - **** 1.0941 0.3304 0.2911	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932
94 95 96 97 98 99 100 101 102	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -CH3 C _{cyc} -CH2 C _{cyc} -OH >N _{cyc} -CH3	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833	**** 1.9541 **** - **** - **** 1.0941 0.3304	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755	2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386
94 95 96 97 98 99 100 101 102 103 104 105 106	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -CH3 C _{cyc} -CH2 C _{cyc} -CH >N _{cyc} -CH3 >N _{cyc} -CH3 AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709 -0.2628 -0.2471	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833 -0.5227	**** 1.9541 **** - **** - **** 1.0941 0.3304 0.2911	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028 0.1137 -0.2714	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375 0.0439	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123 -0.3048 0.2671	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663 0.0037	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034 -0.4912 -0.5270	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076 -0.4973 -0.1168	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684 -0.2536 -0.6095	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056 0.1734	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368
94 95 96 97 98 99 100 101 102 103 104 105 106	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709 -0.2628 -0.2471 -0.8951	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833 -0.5227 -1.4756	**** 1.9541 **** - **** 1.0941 0.3304 0.2911	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028 0.1137 -0.2714 -1.5103	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375 0.0439 -1.2564	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123 -0.3048 0.2671 -1.0988	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663 0.0037 -1.9660	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034 -0.4912 -0.5270 -1.7515	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076 -0.4973 -0.1168 -1.0944	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684 -0.2536 -0.6095 -1.9131	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056 0.1734 -1.2851	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709 -0.2628 -0.2471 -0.8951 0.1433	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833 -0.5227 -1.4756 -0.2493	**** 1.9541 **** - **** 1.0941 0.3304 0.2911 -	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028 0.1137 -0.2714 -1.5103 -0.0359	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375 0.0439 -1.2564 -0.4147	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123 -0.3048 0.2671 -1.0988 0.5094	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663 0.0037 -1.9660 -0.8571	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034 -0.4912 -0.5270 -1.7515 -0.3209	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076 -0.4973 -0.1168 -1.0944 -0.6798	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684 -0.2536 -0.6095 -1.9131 -0.6706	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056 0.1734 -1.2851 -0.5102	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³ AROMRINGs¹s² AROMRINGs¹s²s³	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638 0.9570	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709 -0.2628 -0.2471 -0.8951 0.1433 1.0957	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833 -0.5227 -1.4756 -0.2493 -0.1781	**** 1.9541 **** - **** 1.0941 0.3304 0.2911	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028 0.1137 -0.2714 -1.5103 -0.0359 -0.0445	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375 0.0439 -1.2564 -0.4147 1.1302	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123 -0.3048 0.2671 -1.0988 0.5094 0.7663	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663 0.0037 -1.9660 -0.8571 -1.6879	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034 -0.4912 -0.5270 -1.7515 -0.3209 0.2129	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076 -0.4973 -0.1168 -1.0944 -0.6798 1.4766	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684 -0.2536 -0.6095 -1.9131 -0.6706 -0.2338	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056 0.1734 -1.2851 -0.5102 1.4124	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638 0.9570
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	CHcyc-CHO CHcyc-O- CHcyc-OOCH CHcyc-COO CHcyc-COO CHcyc-CH3 Ccyc-CH2 Ccyc-CH3 >Ncyc-CH2 AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s²s³ AROMRINGs¹s³5	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638 0.9570 -0.4034	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709 -0.2628 -0.2471 -0.8951 0.1433 1.0957 0.1981	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833 -0.5227 -1.4756 -0.2493 -0.1781 -0.6652	**** 1.9541 **** **** - **** 1.0941 0.3304 0.2911 0.4054	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028 0.1137 -0.2714 -1.5103 -0.0359 -0.0445 -0.7230	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375 0.0439 -1.2564 -0.4147 1.1302 -0.1871	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123 -0.3048 0.2671 -1.0988 0.5094 0.7663 -0.0139	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663 0.0037 -1.9660 -0.8571 -1.6879 -1.7111	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034 -0.4912 -0.5270 -1.7515 -0.3209 0.2129 -0.7600	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076 -0.4973 -0.1168 -1.0944 -0.6798 1.4766 0.2076	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684 -0.2536 -0.6095 -1.9131 -0.6706 -0.2338 -1.0221	2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056 0.1734 -1.2851 -0.5102 1.4124 0.1758	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638 0.9570 -0.4034
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	CH _{cyc} -CHO CH _{cyc} -O- CH _{cyc} -OOCH CH _{cyc} -COO CH _{cyc} -COO CH _{cyc} -CH ₃ C _{cyc} -CH ₂ C _{cyc} -CH ₃ >N _{cyc} -CH ₃ >N _{cyc} -CH ₂ AROMRINGs¹s² AROMRINGs¹s² AROMRINGs¹s³ AROMRINGs¹s³ AROMRINGs¹s² AROMRINGs¹s²s³	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638 0.9570	**** 1.6824 **** 5.8631 **** -0.7606 -1.6180 **** 1.2241 0.4390 0.3709 -0.2628 -0.2471 -0.8951 0.1433 1.0957	**** -0.1341 **** 2.5531 -1.7657 -0.4669 -1.4721 -2.6517 -0.6600 -1.6670 -0.7671 0.2833 -0.5227 -1.4756 -0.2493 -0.1781	**** 1.9541 **** - **** 1.0941 0.3304 0.2911	**** -0.6127 **** 1.0973 0.5728 -0.3483 -1.1779 -2.0853 -1.6712 -2.0988 -0.5028 0.1137 -0.2714 -1.5103 -0.0359 -0.0445	**** 2.8569 **** 7.4198 **** -0.7903 -1.6672 **** 1.8657 0.3703 0.2541 -0.7375 0.0439 -1.2564 -0.4147 1.1302	**** -1.1417 **** 3.3882 -2.1338 -0.0784 -1.1572 -2.1961 -0.3848 -5.2922 0.0123 -0.3048 0.2671 -1.0988 0.5094 0.7663	**** 3.6426 **** 7.2877 **** -1.1166 -3.6152 **** 2.4545 0.7772 0.0459 -0.8663 0.0037 -1.9660 -0.8571 -1.6879	**** -0.9768 **** 3.2162 -1.5802 0.3823 -0.5213 -1.3210 -0.5769 -1.0751 -0.5034 -0.4912 -0.5270 -1.7515 -0.3209 0.2129	**** -0.4946 **** 3.5543 **** -0.8171 -0.5739 **** 1.1601 0.4878 0.0076 -0.4973 -0.1168 -1.0944 -0.6798 1.4766	**** -1.8716 **** 3.4197 -2.7917 -0.2401 -1.0688 -2.4397 -1.1689 -1.1755 -0.6684 -0.2536 -0.6095 -1.9131 -0.6706 -0.2338	**** 2.9381 **** 2.2421 **** 1.2917 0.5956 **** 3.0465 -0.0732 0.3018 -0.6056 0.1734 -1.2851 -0.5102 1.4124	**** -2.2400 **** 1.1500 -2.6029 -1.2509 -2.1932 -4.1529 -2.6236 -2.3077 -0.2932 -0.0386 0.2368 -0.8549 0.2638 0.9570

113	PYRIDINEs ²	-3.9107	****	-1.3864	****	-1.3452	****	-5.7261	****	-0.5775	****	-1.1313	****	-3.9107
114	PYRIDINEs ³	3.9544	****	2.0083	****	1.0925	****	2.1646	****	1.8698	****	1.7514	****	3.9544
115	PYRIDINEs ⁴	3.7069	****	1.5478	****	0.3720	****	1.3554	****	1.2727	****	0.7867	****	3.7069
116	PYRIDINEs ² s ³	****	****	****	****	****	****	****	****	****	****	****	****	****
117	PYRIDINEs2s4	1.2066	****	0.9353	****	1.1112	****	2.3016	****	1.0532	****	0.9182	****	1.2066
118	PYRIDINEs2s5	****	-0.7277	****	-	****	0.3373	****	1.9774	****	0.4128	****	0.5314	****
119	PYRIDINEs ² s ⁶	****	****	****	****	****	****	****	****	****	****	****	****	****
120	PYRIDINEs3s4	****	****	****	****	****	****	****	****	****	****	****	****	****
121	PYRIDINEs3s5	****	****	****	****	****	****	****	****	****	****	****	****	****
122	PYRIDINEs ² s ³ s ⁶	****	****	****	****	****	****	****	****	****	****	****	****	****
123	$(CH^n=CH^m)^{cyc}-COOH$	1.6652	****	0.5202	****	0.8885	****	4.8555	****	-1.0278	****	-0.2002	****	1.6652
124	AROMRINGs ¹ s ² s ³ s ⁴ s ⁵	-1.8147	-1.2355	-2.6357	-	-1.7893	0.0961	-2.1346	-0.4804	-5.3012	-0.1426	-3.6115	-0.8818	-1.8147
125	aC-NHCOCH ₂ N	****	****	****	****	****	****	****	****	****	****	****	****	****
126	$(N=C)_{cyc}$ - CH_3	1.7027	-2.5588	0.5750	3.4910	1.1188	-1.0985	1.9860	-1.5018	0.4178	-0.1138	0.9384	2.1689	1.7027
127	aC-CONH(CH ₂) ₂ N	****	****	****	****	****	****	****	****	****	****	****	****	****
128	$aC-SO_2NH_n (n>=0;n<3)$	4.6466	0.6155	4.1474	0.4567	4.4159	1.6027	3.7676	3.0591	4.6311	0.6682	4.6749	0.5460	4.6466
129	aC-SO ₂ NH _n ($n>=0$; $n<3$)	4.4830	****	1.8210	****	1.7980	****	1.4651	****	1.3212	****	1.4017	****	4.4830
130	aC-SO2NHn (n>=0;n<3)	4.9480	****	4.1501	****	4.8739	****	3.8738	****	4.8151	****	4.9756	****	4.9480

^a The symbols $EUA_{C\,2j}$, $EVA_{NC\,2j}$, $ERA_{NC\,2j}$, $EFW_{C\,2j}$, $EFW_{NC\,2j}$, $ESW_{C\,2j}$, $ESW_{NC\,2j}$, $ENS_{C\,2j}$, $ENS_{NC\,2j}$, $EAS_{C\,2j}$, and $EAS_{NC\,2j}$ represent the contributions (D_j) of the second-order groups for the corresponding properties.

Table S7. MG Method Based Property Models Analysed Using Simultaneous Regression Method: Third-Order Groups and their Contributions a for the Properties÷ $LC_{50}(FM)$, $LC_{50}(DM)$, LD_{50} , $LogW_s$, BCF, PEL(OSHA-TWA), and PCO

	Group	LC50(FM) _{3k}	LC50(DM) _{3k}	$LD50_{3k}$	LogWs _{3k}	BCF _{3k}	PEL_{3k}	PCO _{3k}
1	HOOC- $(CH_n)_m$ -COOH $(m>2, n \text{ in } 02)$	0.9173	****	-0.4207	0.2040	****	-0.9038	-0.3757
2	NH_n -(CH_n) _m -COOH (m >2, n in 02)	***	****	****	1.0560	****	****	****
3	NH_2 -(CH_n) _m -OH (m >2, n in 02)	***	****	-0.2468	****	****	****	****
4	OH- $(CH_n)_m$ -OH $(m>2, n \text{ in } 02)$	***	****	0.2831	1.3300	****	****	-0.1802
5	OH- $(CH_p)_k$ -O- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	***	****	****	****	****	****	****
6	OH- $(CH_p)_k$ -S- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	***	****	****	****	****	****	****
7	OH- $(CH_p)_k$ -NH _x - $(CH_n)_m$ -OH $(m,k>0; p,n,x \text{ in } 02)$	***	****	****	****	****	****	****
3	CH_p -O-(CH_n) _m -OH (m >2; n , p in 02)	***	****	****	****	****	****	****
9	NH_2 -(CH_n) _m - NH_2 (m >2; n in 02))	-0.8275	****	0.3173	****	****	-0.9748	****
10	NH_k -(CH_n) _m - NH_2 (m >2; k in 01; n in 02)	***	****	****	****	****	****	****
11	SH- $(CH_n)_m$ -SH $(m>2; n \text{ in } 02)$	****	****	****	****	****	****	****
12	$NC-(CH_n)_m-CN (m>2)$	-1.3554	****	1.3010	1.3500	****	-1.1729	****
13	$COO-(CH_n)_m-OOC\ (m>2; n \text{ in } 02)$	****	****	****	****	****	****	****
14	aC- $(CH_n=CH_m)_{cyc}$ (fused rings) $(n,m \text{ in } 01)$	0.1769	0.1711	0.2622	0.5630	0.2127	-0.6066	0.5918
15	aC-aC (different rings)	0.5827	2.5396	0.1456	-0.6550	0.3719	-0.0226	****
16	aC-CH _{ncyc} (different rings) (n in 01)	0.1573	-0.7346	0.0603	0.5110	0.2323	****	****
L7	aC-CH _{ncyc} (fused rings) (n in 01)	0.1206	1.1726	0.1955	0.3110	0.0839	0.8204	0.0211
18	aC-(CH _n) _m -aC (different rings) ($m>1$; n in 02)	-0.4732	****	-0.4598	-1.1200	-3.6829	****	****
19	aC- $(CH_n)_m$ -CH _{cyc} (different rings) ($m>0$; n in 02)	1.5711	1.0355	-0.0306	-0.3286	****	****	****
20	CH _{cyc} -CH _{cyc} (different rings)	***	****	-0.7228	0.7183	****	****	0.2372
21	CH_{cyc} - $(CH_n)_m$ - CH_{cyc} (different rings) (m >0; n in 02)	***	****	****	****	****	****	****
22	CH multiring	0.1112	-1.1600	-0.2905	0.2640	0.7080	0.4625	0.0488
23	$C_{ m multiring}$	0.4663	-0.3169	-0.0516	0.2870	-0.5604	-0.8159	-0.0500
24	aC-CH $_m$ -aC (different rings) (m in 02)	-0.2180	-0.5207	-0.1477	0.3680	0.3005	-2.2183	0.0870
25	aC-(CH _m =CH _n)-aC (different rings) (m,n in 02)	***	-1.4543	-0.2549	-1.1124	0.0332	****	****
26	$(CH_m=C)_{cyc}$ - $CH=CH-(C=CH_n)_{cyc}$ (different rings)	***	****	****	****	****	****	****
27	$(CH_m=C)_{cyc}$ - CH_p - $(C=CH_n)_{cyc}$ (different rings)	***	****	****	****	****	****	****
28	aC-CO-aC (different rings)	-0.2216	****	0.3273	0.9580	-0.4462	****	****
29	aC-CH $_m$ -CO-aC (different rings) (m in 02)	***	****	-0.3630	-0.7354	0.5276	****	****

30	1	aC-CO-(C=CH _n) _{cvc} (different rings) (n in 01)	****	****	-0.0893	-0.6605	****	****	****
31		aC-CO-CO-aC (different rings)	****	****	****	-0.0946	****	***	****
32		aC-CO _{cyc} (fused rings)	0.6771	1.0063	0.0602	0.0311	0.2109	-1.4914	-0.2966
33		aC-CO-(CH _n) _m -CO-aC (different rings) $(m>0; n \text{ in } 02)$	****	****	****	****	****	****	****
34		aC-CO-CH _{ncyc} (different rings) (n in 01)	****	****	****	-0.5784	****	***	****
35		aC-CO-NH _n -aC (different rings) (n in 01)	0.0254	****	-0.3798	-0.8170	-0.2883	***	****
36		aC-NH _m -CONH _m -aC (different rings) $(n,m \text{ in } 01)$	2.2685	1.1010	****	0.6880	-0.7634	***	****
37		aC-CO-N _{cyc} (different rings)	****	****	0.6053	-0.8920	****	***	****
38		aC-S _{cyc} (fused rings)	-1.3941	0.6642	0.1930	0.0047	0.2622	-0.4700	****
39		aC-S-aC (different rings)	-2.3824	****	-0.6622	0.0690	-2.1514	****	****
4(aC-PO _n -aC (different rings) $(n \text{ in } 04)$	-2.3024 ****	****	-U.0022 ****	****	-2.1314 ****	***	****
			****				***	***	****
41		aC-SO _n -aC (different rings) (n in 14)		1.2103	-0.0401	0.0305			****
42		aC-NH _{ncyc} (fused rings) (n in 01)	0.5676	0.7420 ****	0.1005	-0.1850	0.3119	0.6063	****
43		aC-NH-aC (different rings)	0.6705 ****	***	-0.0227	-0.4270	0.6307	-0.7435 ****	****
44		aC-(C=N) _{cyc} (different rings)			-0.1243	0.5607	-1.1970	****	****
45		aC- $(N=CH_n)_{cyc}$ (fused rings) (n in 01)	-0.3559 ****	-0.4921 ****	0.2448	-0.0985	-0.3981 ****	****	****
46		aC-(CH _n =N) _{cyc} (fused rings) (n in 01)	****	***	-0.0772	0.3102		****	
47		aC-O-CH _n -aC (different rings) (n in 02)			-0.2144	1.0144	****		****
48		aC-O-aC (different rings)	0.3988	1.2922	-0.0525	-0.7136	-0.0772	-0.0011	****
49		aC-CH _n -O-CH _m -aC (different rings) (n,m in 02)	****	****	-0.8111	0.2160	****	***	****
50		aC-O _{cyc} (fused rings)	0.1768	-0.3242	0.1886	-0.6070	0.3585	****	****
51		AROM.FUSED[2]	0.3214	1.4255	-0.1320	-0.0759	-0.1167	0.5784	-0.0172
52		AROM.FUSED[2]s ¹	0.8251	1.4112	0.2442	0.0980	0.3046	-0.5039	-0.0424
53		AROM.FUSED[2]s ²	1.0648	1.5552	-0.1073	-0.0711	-0.0191	2.0554	0.0075
54		AROM.FUSED[2]s ² s ³	0.5430	6.5271	0.3370	0.1059	0.2984	****	0.1336
55	5	AROM.FUSED[2]s ¹ s ⁴	0.0865	****	-0.2060	-0.2716	0.1158	***	****
56	5	AROM.FUSED[2]s ¹ s ²	****	****	0.1782	-0.0567	-1.1589	***	****
57	7	AROM.FUSED[2]s ¹ s ³	****	****	0.4300	-0.0732	0.3121	****	****
58	3	AROM.FUSED[3]	1.0422	0.7528	-0.1893	-0.1255	-0.0916	0.7487	****
59	9	AROM.FUSED[4a]	****	****	-0.3160	-0.6696	-0.0827	0.0083	****
60)	AROM.FUSED[4a]s ¹	****	****	-0.5015	0.2968	0.0928	****	****
61	1	AROM.FUSED[4a]s ¹ s ⁴	****	****	1.1864	0.3025	****	****	****
62	2	AROM.FUSED[4p]	2.2573	2.2734	-0.2774	0.0500	-0.2365	0.0083	****
63	3	AROM.FUSED[4p]s ³ s ⁴	****	****	0.2710	2.1472	****	****	****
64	4	PYRIDINE.FUSED[2]	0.2293	0.8970	0.0213	0.5540	-1.5994	****	****

65	PYRIDINE.FUSED[2-iso]	***	1.0799	0.6366	1.3326	****	****	****
66	PYRIDINE.FUSED[4]	1.4995	2.5289	0.1623	2.0700	-0.5698	-1.0718	****
67	aC-N-CH _{cyc} (different rings)	***	****	0.3013	-0.1996	****	****	***
68	N multiring	-0.0623	6.7397	0.0393	0.4788	****	****	0.1011
69	N_{cyc} -(CH ₂) ₃ - N_{cyc} (different rings)	***	****	-0.1340	-0.3802	****	****	***
70	aC-COCH ₂ CH ₂ -aC (different rings)	***	****	-0.2681	-0.5406	****	****	***
71	aC-O-(CH ₂) ₂ -N _{cyc} (different rings)	***	****	-0.6543	****	****	****	***
72	aC-CH(OH)(CH ₂) ₂ -CH _{cyc} (different rings)	***	****	****	****	****	****	***
73	Ncyc-(CH ₂) ₂ -CH _{cyc} (different rings)	***	****	-0.3193	****	****	****	***
74	aC-CONHCH ₂ -CH _{cyc} (different rings)	***	****	0.4260	****	****	****	***

^a The symbols LC50(FM)_{3k}, LC50(DM)_{3k}, LD50_{3k}, LogWs_{3k}, BCF_{3k}, PEL_{3k}, PCO_{3k} represent the contributions (E_k) of the third-order groups for the corresponding properties. Note that there are no third-order contributions for GWP, ODP and AP since these properties belong to chemicals whose structure is defined by first-order groups alone.

Table S7 (continued). MG Method Based Property Models Analysed Using Simultaneous Regression Method: Third-Order Groups and their Contributions a for the Properties÷ EUA_C, EUA_{NC}, ERA_C, ERA_{NC}, EFW_C, EFW_{NC}, ESW_C, ESW_{NC}, ENS_C, ENS_{NC}, EAS_C, and EAS_{NC}.

-	Group	EUA _{C 3k}	EUA _{NC3k}	ERA _{C 3k}	ERA _{NC3k}	EFW _{C 3k}	EFW _{NC}	ESW _{C 2j}	ESW _{NC}	ENS _{C 3k}	ENS _{NC 3k}	EAS _{C 3k}	EAS _{NC 3k}	EUA _{C 3k}
							3k		3k					
1	HOOC- $(CH_n)_m$ -COOH $(m>2, n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
2	NH_n -(CH_n) _m -COOH (m >2, n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
3	NH_2 -(CH_n) _m -OH (m >2, n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
4	$OH-(CH_n)_m-OH (m>2, n \text{ in } 02)$	****	****	****	****	****	****	***	****	****	****	****	****	****
5	OH- $(CH_p)_k$ -O- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
6	OH- $(CH_p)_k$ -S- $(CH_n)_m$ -OH $(m,k>0; p,n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
7	OH- $(CH_p)_k$ -NH _x - $(CH_n)_m$ -OH $(m,k>0; p,n,x \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
8	CH_p -O- $(CH_n)_m$ -OH $(m>2; n,p \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
9	NH_2 -(CH_n) _m - NH_2 (m >2; n in 02))	****	****	****	****	****	****	****	****	****	****	****	****	****
10	NH_k -(CH_n) _m - NH_2 (m >2; k in 01; n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
11	SH- $(CH_n)_m$ -SH $(m>2; n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
12	$NC-(CH_n)_m-CN (m>2)$	****	****	****	****	****	****	****	****	****	****	****	****	****
13	$COO-(CH_n)_m-OOC\ (m>2; n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
14	aC-($CH_n=CH_m$) _{cyc} (fused rings) (n,m in 01)	1.1453	****	0.3743	****	0.7155	****	1.1082	****	1.1576	****	1.1447	****	1.1453
15	aC-aC (different rings)	-0.3745	0.3502	0.0337	-0.6127	-0.2123	-0.5070	-0.2114	-0.5153	-0.1751	-0.1023	0.2783	0.4820	-0.3745
16	aC-CH _{ncyc} (different rings) (n in 01)	-1.6763	1.2288	-0.5860	0.2367	-0.3896	1.8325	-0.5974	2.1670	-0.3506	-0.1667	-1.0244	2.0064	-1.6763
17	aC-CH _{ncyc} (fused rings) (n in 01)	0.5989	0.2239	0.4792	0.1614	0.7203	-0.0600	0.8116	-0.3012	0.4990	0.1098	0.4442	0.4050	0.5989
18	aC- $(CH_n)_m$ -aC (different rings) $(m>1; n \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
19	aC-(CH _n) _m -CH _{cyc} (different rings) (m >0; n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
20	CH _{cyc} -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
21	CH_{cyc} - $(CH_n)_m$ - CH_{cyc} (different rings) (m >0; n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
22	CH multiring	0.2918	1.4253	0.5641	0.1846	-0.2737	1.5142	-0.8597	3.2326	0.3179	0.5498	-0.2432	2.5758	0.2918
23	C multiring	-2.3245	-1.6313	-0.8597	-3.5534	-0.4698	-1.5278	-0.8958	-2.7675	0.8845	-1.0496	-0.0873	1.9041	-2.3245
24	aC-CH _m -aC (different rings) (m in 02)	-0.2959	0.9218	0.3732	0.4699	0.3818	1.1639	0.0487	1.1364	1.0739	1.2047	0.9533	1.3399	-0.2959
25	aC-(CH_m = CH_n)-aC (different rings) (m,n in 02)	-1.1581	****	-3.5109	****	-1.3118	****	-2.4897	****	-0.6754	****	-0.7573	****	-1.1581
26	$(CH_m=C)_{cyc}$ - $CH=CH$ - $(C=CH_n)_{cyc}$ (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
27	$(CH_m=C)_{cyc}-CH_p-(C=CH_n)_{cyc}$ (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
28	aC-CO-aC (different rings)	2.9341	****	****	****	****	****	2.3524	****	2.2595	****	****	****	2.9341
29	aC-CH _m -CO-aC (different rings) (m in 02)	****	****	1.8412	****	1.6105	****	****	****	****	****	2.1609	****	****

30	aC-CO-(C=CH _n) _{cyc} (different rings) (n in 01)	****	****	****	****	****	****	****	****	****	****	****	****	****
31	aC-CO-CO-aC (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
32	aC-CO _{cyc} (fused rings)	0.5575	0.2980	0.4436	-0.2414	0.5009	-0.0452	0.1402	0.2220	0.4805	0.2377	0.4643	0.4622	0.5575
33	aC-CO-(CH _n) _m -CO-aC (different rings) ($m>0$; n in	****	****	****	****	****	****	****	****	****	****	****	****	****
34	aC-CO-CH _{ncyc} (different rings) (n in 01)	****	****	****	****	****	****	****	****	****	****	****	****	****
35	aC-CO-NH _n -aC (different rings) (n in 01)	****	****	****	****	****	****	****	0.9066	****	****	****	****	****
36	aC-NH _n CONH _m -aC (different rings) (n,m in 01)	0.8217	****	****	****	****	****	1.5104	****	****	****	****	****	0.8217
37	aC-CO-N _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
38	aC-S _{cyc} (fused rings)	0.6815	0.6537	1.0950	0.3350	0.8548	1.2864	0.3803	-0.0805	2.1013	-0.4347	1.9715	-0.0939	0.6815
39	aC-S-aC (different rings)	-1.5222	****	****	****	-1.4878	****	****	****	-0.8046	****	****	****	-1.5222
40	aC-PO _n -aC (different rings) (n in 04)	****	****	****	****	****	****	****	****	****	****	****	****	****
41	aC-SO _n -aC (different rings) (n in 14)	1.2240	****	1.8319	****	2.2857	****	1.8029	****	2.3910	****	2.0459	****	1.2240
42	aC-NH _{ncyc} (fused rings) (n in 01)	1.4988	0.4368	1.3033	0.4905	0.9940	0.3361	1.5455	-0.6428	1.6993	0.6135	1.4767	0.6416	1.4988
43	aC-NH-aC (different rings)	4.2975	0.6868	3.7434	1.0236	3.7193	0.5016	3.0226	0.2959	3.5508	0.4208	3.2482	0.6133	4.2975
44	aC-(C=N) _{cyc} (different rings)	1.0499	0.4529	****	-1.7816	-2.6381	0.6892	****	-1.3698	-4.0912	-0.3454	****	0.3300	1.0499
45	aC- $(N=CH_n)_{cyc}$ (fused rings) (n in 01)	-0.8892	0.9142	-0.4406	0.9818	0.2535	-0.2085	1.6274	1.4884	-0.0745	-0.0211	0.1517	-0.1760	-0.8892
46	aC-(CH _n =N) _{cyc} (fused rings) (n in 01)	****	****	-0.6373	****	****	****	1.5519	****	****	****	-2.1856	****	****
47	aC-O-CH _n -aC (different rings) (n in 02)	****	****	****	****	****	****	****	****	****	****	****	****	****
48	aC-O-aC (different rings)	0.2963	0.0230	0.0970	0.5422	0.0342	-0.0853	-0.1136	-0.8360	0.2707	1.6559	0.6668	1.6485	0.2963
49	aC-CH _n -O-CH _m -aC (different rings) $(n,m \text{ in } 02)$	****	****	****	****	****	****	****	****	****	****	****	****	****
50	aC-O _{cyc} (fused rings)	0.9721	0.8889	1.2643	-0.6400	0.3761	0.1663	0.7579	0.5447	0.9779	0.6311	0.7324	-1.8948	0.9721
51	AROM.FUSED[2]	-0.0316	-0.5677	0.5201	-0.6876	0.1126	-1.1200	0.1693	-0.6070	-0.0125	-0.7338	0.0912	-4.2858	-0.0316
52	AROM.FUSED[2]s ¹	0.0476	0.8444	-0.0543	1.2897	-0.2536	0.9398	0.2944	0.6790	0.0195	0.6832	0.0904	1.2549	0.0476
53	AROM.FUSED[2]s ²	0.3853	-0.1511	-0.4057	0.3161	-0.1155	-0.3720	0.1988	-0.4414	0.3824	-0.4358	0.2054	-0.7488	0.3853
54	AROM.FUSED[2]s ² s ³	-3.2511	-1.5652	0.1564	1.6397	-0.6531	-1.2387	-2.7482	-0.9316	-2.5448	0.0525	-2.2312	-0.0208	-3.2511
55	AROM.FUSED[2]s ¹ s ⁴	0.0712	****	0.4869	****	0.1806	****	0.7572	****	0.3580	****	0.2650	****	0.0712
56	AROM.FUSED[2]s ¹ s ²	0.6821	-3.9117	-0.5138	-2.6314	-0.2806	-2.8689	1.3343	-5.4893	1.0399	-0.2754	0.7327	-4.8866	0.6821
57	AROM.FUSED[2]s ¹ s ³	-1.3732	****	-1.1393	****	-0.6221	****	-0.8382	****	-1.5324	****	-1.8774	****	-1.3732
58	AROM.FUSED[3]	-0.2936	-0.5401	0.5174	-0.5452	0.1298	-1.2250	-0.1360	-1.0354	-0.0145	-0.7079	0.5637	-4.3457	-0.2936
59	AROM.FUSED[4a]	0.1157	****	0.4646	1.0427	0.1454	0.5616	0.8427	0.1918	-0.4812	0.0101	0.2781	0.0172	0.1157
60	AROM.FUSED[4a]s ¹	1.0468	****	1.8126	****	1.6412	****	1.9925	****	1.0138	****	1.4593	****	1.0468
61	AROM.FUSED[4a]s ¹ s ⁴	-0.7641	****	-2.4896	****	-2.0882	****	-1.8129	****	-2.0344	****	-1.8514	****	-0.7641
62	AROM.FUSED[4p]	-0.5768	-0.4101	-0.4202	-0.6491	-0.0859	-0.5568	0.2636	-0.4714	-0.5330	-0.4819	-0.6143	-2.2533	-0.5768
63	AROM.FUSED[4p]s ³ s ⁴	3.7567	****	0.1636	****	-6.4758	****	7.5539	****	-4.8061	****	-2.2659	****	3.7567
64	PYRIDINE.FUSED[2]	-0.7884	****	-0.5325	****	-0.6751	****	0.4602	****	-0.6388	****	-0.2095	****	-0.7884
65	PYRIDINE.FUSED[2-iso]	****	****	****	****	****	****	****	****	****	****	****	****	****
66	PYRIDINE.FUSED[4]	****	****	****	****	****	****	****	****	****	****	****	****	****

67	aC-N-CH _{cyc} (different rings)	3.4700	****	1.2220	****	-0.1785	****	-2.0455	****	****	****	0.8371	****	3.4700
68	N multiring	0.0626	0.0942	0.2739	-0.9523	-0.5110	0.8827	-0.0914	0.4870	-0.0101	1.4318	0.2564	1.5434	0.0626
69	N _{cyc} -(CH ₂) ₃ -N _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
70	aC-COCH ₂ CH ₂ -aC (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
71	aC-O-(CH ₂) ₂ -N _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
72	aC-CH(OH)(CH ₂) ₂ -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
73	Ncyc-(CH ₂) ₂ -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****
74	aC-CONHCH ₂ -CH _{cyc} (different rings)	****	****	****	****	****	****	****	****	****	****	****	****	****

^a The symbols EUA_{C 3k}, EUA_{NC 3k}, ERA_{C 3k}, ERA_{NC 3k}, EFW_{C 3k}, EFW_{NC 3k}, ESW_{C 3k}, ESW_{NC 3k}, ENS_{C 3k}, ENS_{NC 3k}, EAS_{C 3k}, and EAS_{NC 3k} represent the contributions (E_k) of the third-order groups for the corresponding properties.

Table S8. CI Method Based Property Models: Atom Contributions and Model Constants for the Properties÷ $LC_{50}(FM)$, $LC_{50}(DM)$, LD_{50} , $LogW_s$, BCF, PEL(OSHA-TWA), PCO, GWP, ODP, and AP.

Parameter	LC ₅₀ (FM)	LC ₅₀ (DM)	LD ₅₀	LogWs	BCF	PEL	PCO	GWP	ODP	AP
a(H)	-0.14756	-0.18656	-0.01047	-0.18973	-0.01672	-0.12954	0.079188	1.67752	-3.37822	0.086429
a(Cl)	0.080051	-0.11963	0.152121	-12.3996	0.089494	0.428893	0.749693	3.423638	-11.9804	0.23872
a(Br)	0.183264	0.044889	0.572806	-27.3702	-0.21653	0.550528	1.136445	4.522534	-19.2469	****
a(F)	-0.06844	0.205501	0.197228	-6.47571	0.117109	-0.22263	0.620819	2.521654	-5.02663	0.296694
a(I)	0.30059	2.003523	0.30088	-42.9538	-0.31876	1.033486	***	1.781068	****	***
a(N)	-0.01828	-0.02395	0.139871	-4.71295	-0.35926	0.645083	0.09317	***	****	0.097458
a(0)	-0.08007	-0.21041	0.004962	-5.13567	-0.36447	0.224864	0.126631	0.424024	-3.62951	0.044628
a(P)	-0.20932	2.16253	1.181	-10.462	0.723115	-0.97773	***	***	****	***
a(S)	0.07225	0.247054	0.241384	-11.058	0.054859	1.524772	-0.24978	***	****	****
a(C)	0.285658	0.246449	0.052218	-4.42181	0.083797	0.325169	-0.03181	-3.05993	-1.59188	-0.10248
a(Si)	***	***	-0.02767	-11.0138	0.562317	1.052495	***	***	****	***
b	0.035109	0.253883	0.018103	-0.09321	0.283525	-0.42181	-0.10486	-0.01877	8.967731	-0.01884
c	0.184584	0.024195	-0.02677	-0.10952	-0.2022	0.241452	0.005087	-1.52848	0.22623	-0.12489
d	0	0	0	0	0.892444	2.998465	-0.25708	-0.52073	3.298083	-0.27126

Table S8 (continued). CI Method Based Property Models: Atom Contributions and Model Constants for the Properties÷ EUA_C , EUA_{NC} , ERA_C , ERA_{NC} , EFW_C , EFW_{NC} , ESW_C , ESW_{NC} , ENS_C , ENS_{NC} , EAS_C , and EAS_{NC} .

Parameter	EUA _C	EUA _{NC}	ERA _C	ERA _{NC}	EFW _C	EFW _{NC}	ESW _C	ESW _{NC}	ENS _C	ENS _{NC}	EAS _C	EAS _{NC}
a(H)	-0.0035	-0.0056	-0.0215	0.0073	-0.0337	-0.0046	0.0682	0.0429	-0.0527	-0.0333	-0.0407	-0.0142
a(Cl)	-0.3184	-0.3843	-0.5551	-0.5190	-0.4765	-0.3676	-0.3006	-0.5570	-0.3129	-0.3199	-0.3358	-0.2783
a(Br)	-0.0954	-0.2498	-0.6338	-0.3712	-0.4577	-0.0662	0.1593	-0.1070	-0.2447	-0.0237	-0.1894	-0.0239
a(F)	0.0843	-0.1457	-0.1594	-0.1494	-0.0821	-0.1904	-0.1000	-0.1074	-0.0716	-0.1681	-0.0844	-0.1567
a(I)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
a(N)	-0.1865	-0.0900	-0.3080	-0.2023	-0.3263	-0.0970	0.0363	0.0149	-0.2198	-0.1179	-0.2186	-0.0806
a(0)	-0.0263	-0.0875	-0.1808	-0.1550	0.0258	0.0332	0.2636	0.2549	-0.0090	-0.0565	0.0153	-0.0367
a(P)	0.6655	-0.8595	-0.0865	-0.7380	-0.2442	-1.5692	0.6766	-1.7886	0.2774	-1.0916	0.5614	-0.9972
a(S)	-0.1146	-0.0669	-0.3863	0.0192	-0.4479	-0.2211	0.1692	-0.0612	-0.2393	-0.1541	-0.2917	-0.1470
a(C)	-0.0373	-0.0205	-0.0748	-0.0580	-0.0651	-0.0401	-0.0824	-0.1454	0.1092	0.1268	0.0478	0.0751
a(Si)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
b	0.0605	0.0293	0.1630	0.0838	0.0670	-0.0763	-0.2888	-0.0771	-0.1154	-0.1819	-0.0141	-0.1722
С	0.0334	-0.0235	0.0567	-0.1104	0.1590	0.1340	0.2296	-0.0066	0.2944	0.2490	0.0721	0.1618
d	0	0	0	0	0	0	0	0	0	0	0	0