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Abstract

We examine the potential impacts of two additional sulfate production pathways using the Community Multiscale
Air Quality modeling system. First we evaluate the impact of the aqueous-phase oxidation of S(IV) by nitrogen
dioxide using two published rate constants, differing by 1-2 orders of magnitude. The reaction with alternate high
and low rate constants enhances monthly mean wintertime sulfate by 4-20% and 0.4-1.2% respectively. The
reaction does not significantly impact summertime sulfate. The higher sulfate predictions compare better with the
observed data as the model tends to underpredict sulfate concentrations throughout the year. We also investigate the
potential impact of the gas-phase oxidation of sulfur dioxide by the Stabilized Criegee Intermediate (SCI) using a
recently measured rate constant for its reaction with sulfur dioxide. Initial tests indicate that the gas-phase oxidation
of sulfur dioxide by the SCI does not significantly affect sulfate concentrations due to the competing reaction of the
SCI with water vapor. The current estimate of the rate constant for the SCI reaction with water vapor is too high for
the SCI reaction with sulfur dioxide to significantly affect sulfate production. However, a sensitivity analysis using a
lower rate constant for the water vapor reaction suggests that the SCI reaction with sulfur dioxide could potentially
enhance sulfate production in the model. Further study is needed to accurately measure the rate constants of the

aqueous-phase oxidation of S(IV) by nitrogen dioxide and the gas-phase reaction of the SCI with water vapor.

Keywords: sulfate; aqueous chemistry; Criegee intermediate; SO»; NO»; alkene; O;
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1. Introduction

Sulfate (SO4™) comprises a significant fraction of atmospheric particulate matter, and its relative atmospheric
abundance has important implications for several environmental issues including acid rain, human and ecosystem
health, and alteration of the earth’s energy balance (due to scattering of incomin g radiation). Particulate SO,* can be
emitted directly or produced in the atmosphere via gas- or aqueous-phase oxidation of sulfur dioxide (SO.). The gas-
phase oxidation of SO, by hydroxyl radical (OH) leads to the production of SO, in the atmosphere, and several
aqueous-phase chemical pathways have been identified for the conversion of S(IV) (the sum of SO,*H,0 [hydrated
SO,], HSO+ [bisulfite ion] and SO;*[sulfite ion]) to SO4™ (Seinfeld and Pandis, 2006). These pathways include the
aqueous-phase oxidation of S(IV) by hydrogen peroxide (H,0,), ozone (Os), oxygen catalyzed by iron (Fe[III]) and
manganese (Mn[II]), methylhydroperoxide (MHP), peroxyacetic acid (PAA), nitrogen dioxide (NO,), as well as
other oxidants. In environments where clouds or fogs are present, the production of SO,* is often dominated by

aqueous-phase oxidation of $(IV) by H,0, or O; (Seigneur and Saxena, 1988).

In many models, the aqueous-phase oxidation of S(IV) by NO, is generally overlooked due to the limited water
solubility of NO, (Seinfeld and Pandis, 2006). However, under certain conditions, this may be a significant S(IV)
oxidation pathway, such as for fog events in areas with high NO, levels and sufficient neutralizing capacity (Pandis
and Seinfeld,1989). There have been several studies of this reaction that indicate a range of rate constants that differ
by 1-2 orders of magnitude depending on experimental conditions (Lee and Schwartz, 1983; Huie and Neta, 1986;
Clifton et al., 1988). Lee and Schwartz (1983) reported a pH dependent rate constant of 1.4 x10° - 2.0 x 10° M™'s™
while Clifton et al. (1988) reported much greater values for the rate constant. Pandis and Seinfeld (1989) used the
lower reaction rate constant proposed by Lee and Schwartz (1983). In a later study, Littlejohn et al. (1993) adopted
the higher reaction rate by Clifton et al. (1988) and suggested SO,* production from the reaction of S(IV) with
dissolved NO; could be comparable to the contributions from the S(IV)-H,0, reaction over a range of atmospheric

conditions with high NO, concentrations and high aqueous phase pH.

Alkenes are emitted from both anthropogenic and biogenic sources. The reactions of alkenes and O; produce
Criegee biradicals which can decompose or become Stabilized Criegee Intermediates (SCI) (Finlayson-Pitts and
Pitts, 2000). The effect of the Os-alkene reactions on SO,> was first recognized in the early 70’s when Cox and
Penkett (1971) conducted experiments in a 220-liter aluminum chamber with Os, alkenes, and SO,. The Os-alkene
reactions increased SO,% in the chamber. The reaction of O with SO- proceeded at a very slow rate; thus, Cox and
Penkett suggested that the O;-alkene reactions form some intermediate which then reacts with SO, to form SO,>. In
a subsequent study, Cox and Penkett (1972) suggested that the presence of water vapor (H,0) inhibits the oxidation
of SO, by the Os-alkene reactions. Calvert et al. (1978) suggested that the Criegee intermediate can oxidize SO, to
form SO, Calvert and Stockwell (1983) conducted box model simulations using known gas-phase chemistry and
suggested that the reaction of SCI with SO, could enhance the SO, oxidation rate in highly polluted environments at
low relative humidity. Hatakeyama and Akimoto (1994) conducted a review of the reactions of Criegee

intermediates and noted that the reported rate constants vary from 3.0x10"° to 1.7x10™"" em® molecule™ s™' for the
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bimolecular reaction of SCI and SO,, 1.0x10"" to 7.0x10™"* cm® molecule™ s for the bimolecular reaction of SCI
and NO., and 2.0x10" to 1.0x10™' for the bimolecular reaction of SCI and H,0. It should be noted these values are
based on estimates by different investigators since the technique to detect SCI did not exist. Welz et al. (2012)
recently conducted direct kinetic measurements of the reactions of SCI with SO,, NO;, nitric oxide (NO), and H,O
and suggested that SCI can react with SO, and NO, 50-10,000 times faster than previous estimates. Using the results
of these direct measurements, they suggest that the reaction of SCI and SO, can produce as much SO4™ as the
oxidation of SO, by OH. The Comprehensive Air quality model with extensions (CAM,) and the Community
Multiscale Air Quality (CMAQ) are two widely used 3-D models for simulating regional air quality. These models
tend to under-estimate SO,> compared to observed atmospheric concentrations (Luo et al., 2011). This
underestimation can be caused by several reasons including under-estimation of emissions, misrepresentation of
meteorological fields, or inadequate chemical production in the atmosphere. Here, we examine the potential impacts
of the aqueous-phase oxidation of S(IV) by NO- and the gas-phase oxidation of SO, by SCI on SO.4” using the
CMAQ model.

2. Methodology

2.1 Model framework

This study uses the Community Multiscale Air Quality (CMAQ) modeling system (version 5.0) (Binkowski and
Roselle, 2003; Byun and Schere, 2006). CMAQ is a 3-D, multi-scale, multipollutant chemical transport model that
simulates the spatiotemporal evolution of pollutant concentrations over a given modeling domain. It incorporates
state-of-the-science representations of the major processes that influence the transformation and transport of
airborne chemicals, including advection, diffusion, aerosol dynamics, deposition, processing by clouds, and
chemistry (Byun and Schere, 2006). Evaluations of the CMAQ modeling system against ambient measurements
have shown that the CMAQ model has considerable skill in simulating O; and fine particulate concentrations (Eder
and Yu, 2006; Appel et al., 2007; Foley et al., 2010). The modeling domain covers Canada, United States, and
Mexico and consists of 299 x 459 horizontal grid-cells with a 12-km horizontal grid-resolution. The model vertical
extent is resolved using 35 vertical layers of unequal spacings with a surface layer height of 20-meters. Model
simulations were performed for a winter (January) and summer (July) month in 2006. Boundary conditions were
generated from GEOS-CHEM model results (Bey et al., 2001). The predefined clean air vertical profiles provided
with the CMAQ modeling system were used to set initial conditions. To minimize the impact of initial conditions on
predicted results, each model simulation included a ten day spin-up period. Meteorological fields were obtained
from the Weather Research and Forecasting model (version 3.3) (Skamarock et al., 2008). The 2005 National

Emissions Inventory (http:/www.epa.gov/ttn/chief/ net/2005_nei_point.pdf) was used to generate model-ready

emissions using the Sparse Matrix Operator Kernel Emissions (SMOKE) model (Houyoux et al., 2000). The
Biogenic Emissions Inventory System (version 3.14) was used to prepare biogenic emissions for the study (Schwede
et al., 2005). The study uses the updated 2005 Carbon Bond (CB0O5TU) chemical mechanism (Yarwood et al., 2005;
Whitten et al., 2010) which contains the gas-phase chemical reaction of SO, and OH. The rate constant of the
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reaction is taken from the 2006 NASA/JPL recommendation which is consistent with the value used in the
SAPRCO07 mechanism (Carter, 2010).

2.2 Aqueous-phase processing of sulfur in CMAQv5.0

CMAQ’s aqueous-phase chemistry module is based on that from the Regional Acid Deposition Model (RADM) and
includes five sulfur oxidation reactions (Chang et al., 1987; Walcek and Taylor, 1986) with two additional reactions
for secondary organic aerosol (Carlton et al., 2010). It contains the following aqueous-phase pathways for the
oxidation of S(IV) to SO,™ (Table 1): (1) H,0s, (2) O3, (3) MHP, (4) PAA, and (5) oxygen catalyzed by iron
(Fe[III]) and manganese (Mn[II]).

In previous versions of the CMAQ model, SO4” production via R7 was calculated using the prescribed background
concentrations of 0.01 pg/m’ for Fe(IIT) and 0.005 pg/m’ for Mn(II). As CMAQv5.0 now includes explicit treatment
of Fe and Mn aerosol, their tracked concentrations are now used to estimate Fe(III) and Mn(II) values for the metal
catalyzed oxidation pathway. To estimate aqueous-phase Fe(IIT) and Mn(II) concentrations from total (activated)
aerosol iron and manganese, the solubility and oxidation state of these species are needed. Iron solubility and
oxidation state is highly variable and dependent on a number of factors including origin of the aerosol and time of
day, with more soluble iron aerosol found in anthropogenic source regions compared to those areas with high levels
of natural dust emissions (Alexander et al., 2009; Seifert et al., 1998). Manganese is typically more soluble than iron
and exists mainly as Mn(II) in cloud/fog droplets; whereas iron cycles diurnally, and exists mainly as Fe(II) during
the day and Fe(IIT) at night (Alexander et al., 2009). In CMAQV5.0, the solubility of iron and manganese is kept
constant at 10% and 50%, respectively (Alexander et al., 2009). All dissolved manganese is assumed to be Mn(II),
and Fe(III) is assumed to be 90% of the dissolved Fe at night and 10% during the day. Note that while only Fe(III)
and Mn(IT) impact the S(IV) oxidatfon rate, all Fe and Mn in the activated droplets is subjected to
scavenging/deposition. The production rate of SO, for R7 is calculated following Martin and Goodman (1991) as
750[Mn(ID)][S(IV)] + 2600[Fe(IID)][S(IV)] + 1.0x10™"° [Fe(III)] [Mn(ID][SIV)].

2.3 Aqueous-phase oxidation of S(IV) by NO,

The aqueous-phase oxidation of S(IV) by NO, has been well documented in studies of removing combustion gases
(SO and NOy) produced in power plants using scrubbing technology (Shen and Rochelle, 1998; Dahlan et al., 2006;
Barreto et al., 2008; Hu et al., 2010). While there has been some disagreement between studies on the details of the
reaction mechanism, lab experiments have shown the reaction is favorable under high pH conditions (Lee and
Schwartz, 1983; Clifton et al., 1988; Littlejohn et al., 1993) and in the presence of oxygen (Littlejohn et al., 1993;
Shen and Rochelle, 1998).

Lee and Schwartz (1983) studied the products and stoichiometry of this reaction by bubbling NO, through a HSO5
solution and suggested the overall reaction is mainly:
HIOT ¢ NG, ¢ Hy0 = 50F « 35" & N0 (RB)
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with a pH-dependent rate constant (kg). At pH = 5.0, ks=1.4x10° M™' 5™/, but at pH = 5.8 and pH = 6.4 only a low
limit of 2x10° M" 5" could be determined. Production rate of SO, is estimated as kg[SIV)][NO:].

Some studies proposed that such a reaction was likely to involve electron transfer that might initiate sulfite oxidation
in a chain mechanism (Nash, 1979; Littlejohn, et al., 1993; Shen and Rochelle, 1998, Tursic et al., 2001). The

reactions and corresponding rate constants could then be expressed as (Takeuchi et al., 1977):

50§ & NGy =508 1hp = GEuIPFH 25~ (R9)
BSCG; + B, = BS05 t by = LExI0F M 5~% (R10)

Xue et al. (2012) adopted R9 and R10 and derived an overall reaction rate constant for (R8) of ~1.7x10° M™' 5™ at
pH =4,3.0x10° M s™' at pH = 4.6, and ~2.4x10° M"' 5" at pH=6 by solving a series of equations that describe
detailed reaction mechanism for the S(IV) + NO» (aq) pathway. However, Clifton et al. (1988) argued that the
reaction could not take place by a simple electron transfer. They suggested the initial step involves the formation of
an additive complex which can undergo subsequent reaction with further dissolved NO,. The measured rate
constants are 1-2 orders of magnitude larger than previous suggested values and are shown in Table 2. The reaction

is first order in NO, (Clifton et al., 1988; Littlejohn et al., 1993).

Henry’s Law coefficients may be used to estimate the relative amount of oxidants dissolved in liquid cloud water.
Henry’s Law coefficients for five oxidants are shown in Table 3. The Henry’s Law coefficient for H,O, is the
highest among these, and the Henry’s Law coefficients for O; and NO, are similar though a few orders of magnitude
lower than those for H,O,, PAA, and MHP. Henry’s Law coefficients increase as temperature decreases. Thus, a
lower temperature promotes partitioning of more oxidants into liquid cloud water. Consequently, during cool
periods when SO,> production from oxidants such as H,O, and O; is low, the dissolution of NO; in cloud droplets

in NO, rich environments could produce a pathway for conversion of S(IV) to SO,™".

2.4 Gas-phase oxidation of SO; by SCI

The CBO5TU mechanism used does not include SCI chemistry so modifications are needed to explicitly represent
the SCI and its subsequent chemical reactions. Although the model simulations in this study use the CBOSTU
mechanism, the modifications made to CBO5TU to represent SCI reactions are based on the more detailed
SAPRCO7 mechanism (Carter, 2010). The calculation of SCI yields is more straightforward for SAPRCO7 because
the reactions of the lumped species can be related back to the detailed mechanisms for the individual compounds
they represent (Carter, 2010), and the SCI yields for the various compounds have been measured or can be
estimated. This is not the case for the CB05TU mechanism, where other methods are used to derive the mechanisms

for the lumped model species. Examples of SCI yields for various compounds are summarized in Table 4.

In most cases, the SCI yields for the individual compounds in the detailed SAPRC07 mechanism can be equated

directly to the organic acid yields in the O; + alkene reactions, because SAPRC07 assumes that the SCI species react
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with H,O to form the corresponding acid. Thus, acid model species are used to represent the SCI formation. The
only exception concerns some of the terpenes whose mechanisms are used to derive that for the terpene (TERP)
model species, where some of the organic acids formed from the SCI + H,O reaction also contain carbonyl groups,
and are represented by the PROD2 model species. In those cases, the details of the mechanisms were examined to
derive the appropriate SCI yield for these model species.

Whitten et al. (2010) describe the CBO5TU mechanism; here only the changes made to represent the explicit SCI
and subsequent chemistry are discussed. Table 5 lists the modifications made to the CB05TU mechanism to
represent the effects of SCI formation on sulfate and NO; formation. The model species "CRIEGEE" was added to
the mechanism to represent SCI formation, and its reactions are included in Table 5. The SCI yields for the reactions
of O, with the CBO5TU model species were derived by assuming the yields derived for the lumped species in
SAPRCO7 that represents the most similar set of compounds. Other than the addition of the CRIEGEE model
species the reaction products and rate constants as described by Yarwood et al. (2005) and Whitten et al. (2010) are

not changed.

The CB05TU mechanism contains 172 reactions; three additional reactions are added to the mechanism (173-175) to
describe the chemical sinks for CRIEGEE model species. SCI reacts with SO,, NO,, H-0 and NO (Welz et al.,
2012). However, the reaction rate with NO is low; thus the consumption of CRIEGEE via the NO reaction is
neglected for any further consideration. The reaction of CRIEGEE with SO, produces SULF while the reaction with
NO, produces NOj radical. Note that this representation does not include the effect of the different SCI reactions on
formation of organic products, which are assumed to be unchanged regardless of how SCI reacts. For this reason, the
reaction of CRIEGEE with H,O, which affects only organic product formation, only represents the consumption of
CRIEGEE by this process, and thus has no product formation. The standard mechanism is based on the assumption
that most of the SCI reacts with H,O, and the changes in organic product formation resulting with the SCI reaction
with SO, or NO, is not represented. However, the representation of organic products in CBO5TU is highly
condensed, so changes in product model species yields may not be indicated. In any case, this approximate and
lumped representation is sufficient to represent the effect of the SCI reactions on sulfur chemistry, which is the

primary objective of this study.

Absolute rate constants for the reactions of CRIEGEE with SO, and NO, are based on the recent direct
measurements of Welz et al. (2012). The critical parameter is the rate constant ratio of the reactions of SCI with H,O
and SO,. Welz et al., (2012) provided only an upper limit of 4.0 x 10" cm’ molecule™'s” for the reaction of SCI with
H,0 which translates to a value of <1.0 x 10 for the rate constant ratio of the reactions of SCI with H,O and SO,.
While several studies provided rate constants for the reaction of SCI and H,O, the amount of useful information is
quite limited. There seem to be no quantitative measurements of the absolute rate constant. Hatakeyama and

Akimoto (1994) conducted a review of the SCI and suggested a rate constant for the reaction of SCI and H,O based
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on a relative rate constant. Since the absolute rate constant for the reaction of SCI with SO, is higher than previously
believed, the rate constant for the reaction of SCI with H,O based on relative rate measurements will also be higher.
Calvert et al. (2000) compiled rate constant ratios for the reactions of SCI with H,O and SO- ranging from 6.1 x 10
to 8.3 x 10™. The ratios based on the study of Suto et al. (1985), Becker et al. (1990), and Neeb et al. (1998) are
higher than the upper limit ratio of 1.0 x 10 from Welz et al. (2012) and thus, we do not use these values. The other
ratio of 6.1 x 107 is from Calvert et al. (1978) and about half of the upper limit suggested by Welz et al. (2012).
Since there is not any other known measurement, and this is consistent with the upper limit of Welz et al. (2012), the

rate constant for the SCI and H,O adopted here follows Calvert et al. (1978).

2.5 Simulation details

Four different simulations were completed (Table 6) for January and July 2006. The first simulation used the
CBO5TU chemical mechanism and the default aqueous-phase chemical reactions in CMAQvS5.0. The second
simulation used the CBO5STU chemical mechanism, the default aqueous-phase chemical reactions, and the aqueous-
phase oxidation of S(IV) by NO. with the lower rate constant reported by Lee and Schwartz (1983). The model used
interpolated values between pH 5.0 and 6.0. For cloud water pH below 5.0, the model used 1.4 x10° M's™ and for
cloud water pH above 6.0, the model used 2.0 x 10° M"'s™’. The third simulation was similar to the second simulation
except that the aqueous-phase oxidation of S(IV) by NO, with the higher rate constant reported by Clifton et al.
(1988) was used. We fitted an equation (Figure 1) using the reported rate constants at different pH and used it to
calculate the rate constant. For cloud water pH below 5.3, the minimum value reported by Clifton et al. (1988) was
used. Differences in the results between the third or the second and first simulations are attributed to the aqueous-
phase oxidation of S(IV) by NO-. The fourth simulation used the CBO5TU chemical mechanism augmented by the
SCI chemistry and the default aqueous-phase chemical reactions in CMAQvS5.0. Differences in the results between

the fourth and the first simulations are attributed to the gas-phase SO, oxidation by the SCI.

3. Results and discussions

3.1 Impact of the aqueous-phase oxidation of S(IV) by NO, on SO.*

Changes between predicted mean wintertime SO,”, SO, and NO, with and without the aqueous-phase oxidation of
S(IV) by NO; (with the higher rate constant) are shown in Figure 2. Mean SO, levels reach more than 2.5 pg/m’ in
most areas of the eastern US while values are less than 1.0 pg/m’ for the western US. The aqueous-phase oxidation
of S(IV) by NO, enhances the monthly mean SO by 12-20% in the midwest and northeastern US and 4-12% over
other areas of the eastern US. Although not shown here, it also enhances SO, aloft. Mean SO, levels exceed 15
ug/m? in the Ohio Valley region while mean NO, levels exceed 16.0 ppbv in many urban areas. The reaction
consumes SO, and NO, thereby decreasing their levels. Mean SO, decreases by 0.6-3.0% while mean NO,
decreases by 1.0-5.0%. It enhances SO, in areas with elevated NO, and SO». The aqueous-phase oxidation of S(IV)
by NO, with the lower rate constant also enhances mean wintertime SO,* by 0.4-1.2% in the northeastern US (not

shown). Thus, the reaction with the lower or higher rate constant leads to increases in wintertime SO,
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Changes between predicted mean wintertime nitrate, ammonium, and O; with and without the aqueous-phase
oxidation of S(IV) by NO, (with the higher rate constant) are shown in Figure 3. Mean nitrate levels reach 4.0 ug/m’
in the Midwest, northeastern US, and central California while lower values exist in other areas. The reaction
decreases mean nitrate by 2-10% over a large area of the eastern US. Sulfuric acid has a very low vapor pressure and
tends to reside primarily in the aerosol phase. In a system of sulfuric acid, water, ammonia, and nitric acid, available
ammonia preferentially reacts with sulfuric acid and only excess ammonia is available to form NHsNO; (Seinfeld
and Pandis, 2006). Since the aqueous-phase oxidation of S(IV) by NO, increases sulfate, less ammonia is available
to form NH,NO; and thus higher HNOs(g) and lower NHy(g) levels may be expected with the addition of the S(IV)
+ NO, reaction. Mean ammonium levels reach more than 2.5 ug/m’ in most areas of the eastern US and central
California. The S(IV) oxidation by NO, enhances mean ammonium by 0.4-2.0%. By increasing sulfate, the reaction
leads to a net increase in ammonium levels (i.e., the ammonium associated with increased sulfate exceeds the
amount lost to the decreased nitrate levels). Mean O; concentrations reach more than 20 ppbv in most areas of the
US. Higher values are predicted in the western US than those in the eastern US. The reaction enhances mean O;

only by 0.2-1.0% due to changes in NO,.

Changes between predicted mean summertime S0,> with and without the aqueous-phase oxidation of S(IV) by NO
(with the higher rate constant) are shown in Figure 4. Predicted mean summertime SO, levels exceed 5.0 pg/m’
over a large portion of the eastern US while values are less than 1.0 pg/m’ for most of the western US. The impact
of the aqueous-phase oxidation of S(IV) by NO; on S0O.% is negligible in most areas. It only enhances the monthly
mean SO, in isolated grid-cells by 0.4-2.0%. The impact of the aqueous-phase oxidation of S(IV) by NO, with the
lower rate constant on summertime S0,% is even smaller. Oxidant levels in summer are much higher than those in
winter due to higher temperature and actinic flux. Summertime SO.4* production is typically dominated by aqueous-
phase production via the H,O, pathway and the gas-phase reaction of SO, with OH (Seigneur and Saxena, 1988;
Mathur et al., 2008). Since wintertime H,O, and OH are lower, the wintertime production via these pathways is also
lower. Winter SO, and NO, levels are generally higher than those in summer in the US (Figure 9). The lower
temperature helps partitioning more SO, and NO; into cloud water and enhance the production of S0,* via the
aqueous-phase oxidation of S(IV) by NO; in winter. Thus, the production of S0, via the aqueous-phase oxidation

of $(IV) by NO; can effectively compete with these pathways and affect SO, levels in winter but not in summer.

3.2 Day-to-day variation of the enhanced SO,* due to the aqueous-phase oxidation of S(IV) by NO,

Here we examine the day-to-day variation of the changes in wintertime S04> due to the aqueous-phase oxidation of
S(IV) by NO,. The aqueous-phase oxidation of S(TV) by NO; affected sulfate in the Midwest by a relatively high
percentage (Figure 2). Time series of daily-averaged S0.> without the aqueous-phase oxidation of S(IV) by NO, are
plotted along with changes due to the aqueous-phase oxidation of S(IV) by NO; for a representative grid-cell in the
Midwest in Figure 5. Predicted S0.% without the additional NO, oxidation pathway range between 1.0-3.0 ug/m’
except on two days. Predicted SO,> on January 2 reaches 5.0 ugfm3, and on January 25, it drops to 0.5 ugfm3. The

aqueous-phase oxidation of S(IV) by NO, does not increase SO,* on all days, but it does increase SO,* on many

-9-
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days including three days when the reaction increases SO, by almost 100%. The impact on SO,” on other days is

smaller. Similar day-to-day variations are observed in other areas.

3.3 Impact of the gas-phase oxidation of SO, by SCI on SO,*

The maximum predicted SCI concentrations in winter and summer are shown in Figure 6. Higher values in summer
are predicted in the western and southeastern US while lower values are predicted in other areas. Predicted values in
summer are greater than those in winter due to higher alkene emissions and reaction rates. Predicted summertime
values are slightly lower than the “low” value of 4.5x10* molecules cm™ suggested by Welz et al., (2012). However,
the “low” value suggested by Welz et al., (2012) represents episodic levels of localized polluted environments. In
this study, we simulated the entire continental US using relatively large horizontal grid-sizes and by using the best
available emissions estimates. Consequently, values represent an average over the large volume in a grid-cell and

hence lower values are expected.

Changes in mean SO,” due to the SCI chemistry are shown in Figure 7. The SCI chemistry enhances the monthly
mean wintertime SO, only by 0.4-1.2% over a small area in the northeast US and does not enhance SO, in most
areas in the summer. It only enhances SO;” by 1.2-2.0% over a small area in Montana. It should be noted that
predicted SO,™ concentrations without the SCI chemistry in Montana are small; the SCI chemistry only marginally
increases SO,”. For typical atmospheric conditions of SO, = 10 ppbv, NO,= 10 ppbv, H,O = 10,000 ppmv (T = 25
°C, RH = 35%), we calculate that the reaction of SCI and H,O accounts for more than 95% of the total consumption
rate of SCI. Thus, the impact of the oxidation of SO, by SCI on SO, is negligible.

3.4 Sensitivity of the predicted SO,” due to the gas-phase oxidation of SO, by SCI

Here, we examine the sensitivity of predicted SO, to the rate constant for the SCI reaction of with H,O. Welz et al.
(2012) reported an upper limit of 4.0x10™"° cm® molecule™ s™ for the rate constant. However, based on an assumed
value of 1.0x10™'® cm’ molecule™ s (40 times lower than the upper limit), they suggested the SCI chemistry can
enhance atmospheric SO~ by as much as the oxidation of SO, by OH. We conducted another simulation for a 10-
day period in July (July 1-10) using the lower rate constant of 1.0x10™® cm® molecule™ s for the reaction of SCI
and H,0. Predicted mean SO,™ without SCI chemistry and increases in mean SO, due to SCI chemistry for the two
alternate SCI+H,O rate constants are shown in Figure 8. Predicted mean SO4™ levels exceed 4.0 pg/m’ in the
Southeast and Midwest while values are less than 1.0 pg/m® for most of the western US. As indicated earlier, the
SCI chemistry with the higher rate constant for the SCI and H,O reaction does not enhance SO,>. However, the SCI
chemistry with the lower rate constant for this reaction enhances SO,* by 2.0-10.0% over a large area in both the
eastern and western US. Consequently the relative importance of the SCI mediated SO,” production pathway is

dependent also on accurately characterizing atmospheric SCI chemical sinks.

3.5 Comparison of model predictions with observed data
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Time series of the predicted NO, concentrations with and without the aqueous-phase reaction of S(IV) and NO; are
compared to observations from the USEPA’s Air Quality System in Figure 9. Observed wintertime NO, values
range between 8-18 ppbv while summer values range between 6-12 ppbv. Summertime concentrations are lower
than winter values due to higher boundary layers and greater atmospheric oxidation capacity. Predicted NO;,
concentrations in winter compare well with the observed data. This suggests the production of wintertime S04 via
the aqueous-phase oxidation of S(IV) by NO; is not due to any unusually high NO, values used in the model.
Predicted summertime NO, values are greater than the observed concentrations by ~50% due primarily to the high
nighttime predictions. Despite the higher NO, values in the model, the aqueous-phase reaction of S(I'V) and NO,

does not enhance summertime SO,

The median and inter-quartile range of observed S0,> from the Clean Air Status and Trends Network (CASTNet)
sites are shown in Figure 10(a-b). It should be noted that CASTNet data are weekly averaged and data from all
monitoring sites are used to compute the values shown in the figure. Predicted values with and without the aqueous-
phase reaction of $(IV) and NO; are also shown in the figure. Observed SO, levels are greater than those predicted
both in winter and summer. However, due to the increased sulfate from the aqueous-phase reaction of S(IV) and
NO-, the reaction leads to improved model performance for winter SO, It does not affect the comparison of model
predictions in summer. Additional SO, production is needed to further improve model predictions in winter as well
as in summer. Since the impact of the SCI chemistry on SO, is negligible, predicted S0.* concentrations are not

compared to the observed data.

4. Summary and conclusions

We examined the impact of the aqueous-phase oxidation of S(IV) by NO> and the gas-phase oxidation of SO; by
SCI on SO, using the Community Multiscale Air Quality modeling system. To our knowledge, this is the first
study that employs both of these reactions for assessing the importance of these pathways relative to the
conventional SO, oxidation pathways. Our results suggest that the relative importance of aqueous-phase oxidation of
S(IV) by NO, shows distinct seasonal trends by enhancing SO,” in the winter but not in summer. Consistent with
the conventional view of sulfur chemistry, summertime conversion of SO; into S0, is dominated by the aqueous-
phase oxidation by H,O, and gas-phase oxidation by OH. Atmospheric levels of H;O, and OH in winter are lower
than those in summer; consequently, the wintertime conversion of SO; to SO.* via these pathways is also lower.
Thus, the aqueous-phase oxidation of S(IV) by NO, can compete more effectively with these pathways to enhance
SO, production in the winter. Pandis and Seinfeld (1989) studied acid deposition for a winter episode in 1985 and
suggested that the reaction contributes considerably to the sulfate production in San Joaquin Valley of California.
Our results over a larger geographic domain and for much lower SO, and NO, levels in the current atmosphere are

similar to the findings of Pandis and Seinfeld (1989) on the relative importance of this pathway.

We find the gas-phase oxidation of SO, by SCI does not affect SO,> appreciably. Our regional scale calculations do

not show the large and widespread increase that may be inferred from the results of Welz et al. (2012) who
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suggested that the pathway can enhance SO, by as much as the oxidation of SO, by OH. The disagreement arises
due to the chosen value for the rate constant of the reaction of SCI and H,O. We use a value which is two times
lower than the upper limit of 4.0x10""° cm® molecule™ s measured by Welz et al. (2012) but 24 times greater than
the value of 1.0x10"'® cm’ molecule™ s which they used for their analysis of the potential atmospheric impacts of
the SCI + SO, reaction. In our study, the majority of the SCI is consumed by the reaction of SCI and H,O;
consequently, the additional SCI chemistry does not significantly enhance SO.*". Consistent with the results of Welz

et al. (2012), the use of the lower rate constant, however, can potentially enhance SO, concentrations.

These results suggest that the rate constants of the aqueous-phase reaction of S(IV) and NO, and the gas-phase
reaction of SCI and H,O are important and should be further examined. We hope this study will motivate the
atmospheric chemistry community to further study these reactions to improve our current understanding of sulfur

chemistry.

Disclaimer
Although this paper has been reviewed by EPA and approved for publication, it does not necessarily reflect EPA’s
policies or views.
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Figure 1: Rate constant of the aqueous-phase chemical reaction of S(IV) and NO, as a function of pH (Clifton et al.,
1988)
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Figure 2: Winter (a) predicted mean sulfate without the aqueous-phase oxidation of S(TV) by NO, (b) % difference
in mean sulfate due to the aqueous-phase oxidation of S(IV) by NO, (higher rate constant) (c) predicted mean SO,
without the aqueous-phase oxidation of S(IV) by NO, (d) % difference in mean SO, due to the aqueous-phase
oxidation of S(IV) by NO, (higher rate constant) (e) predicted mean NO, without the aqueous-phase oxidation of
S(IV) by NO; (f) % difference in mean NO, due to the aqueous-phase oxidation of S(IV) by NO, (higher rate
constant)
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565

566  Figure 3: Winter: (a) predicted mean nitrate without the aqueous-phase oxidation of S(IV) by NO- (b) % changes in
567  mean nitrate due to the aqueous-phase oxidation of S(IV) by NO, (higher rate constant) (c) predicted mean

568  ammonium without the aqueous-phase oxidation of S(IV) by NO, (d) % changes in mean ammonium due to the
569 aqueous-phase oxidation of S(IV) by NO, (higher rate constant) (¢) predicted mean ozone without the aqueous-
570  phase oxidation of S(IV) by NO, (f) % changes in mean ozone due to the aqueous-phase oxidation of S(IV) by NO,
571  (higher rate constant)
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584
585  Figure 4: Summer: (a) predicted mean sulfate without the aqueous-phase oxidation of S(TV) by NO. (b) % changes

ggg in mean sulfate due to the aqueous-phase oxidation of S(IV) by NO, (higher rate constant)
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628

629  Figure 5: Winter: day-to-day variation of daily-averaged sulfate without the aqueous-phase oxidation of S(IV) by
630  NO.and changes in daily-averaged sulfate due to the aqueous-phase oxidation of S(IV) by NO, (higher rate

631  constant) for a grid-cell in the Midwest
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660

661  Figure 6: Predicted maximum Stablized Criegee Intermediate (SCI) concentrations in (a) winter and (b) summer
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667

668  Figure 7: Predicted percentage changes in mean sulfate due to the oxidation of SO, by SCI in (a) winter and (b)
669  summer
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Figure 8: (a) Predicted mean sulfate in summer (10-day average) without the oxidation of SO, by SCI (b) changes in
mean sulfate due to the oxidation of SO, by SCI (k = 2.4x10™" is used for the reaction of SCI and H,0) (c) changes
in mean sulfate due to the oxidation of SO, by SCI (k = 1.0 x10™'¢ is used for the reaction of SCI and H,0)
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Figure 9: A comparison of predicted NO, with and without the aqueous-phase oxidation of S(IV) by NO; (higher
rate constant) with observed data from the AQS in (a) winter and (b) summer. Model “A” represents predictions
without the aqueous-phase oxidation of S(IV) by NO», while model “B” represents predictions with the aqueous-
phase oxidation of SIV) by NO..
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718

719 Figure 10: The median and inter-quartile range of observed sulfate from the CASTNet sites, and predicted sulfate
720 with and without the aqueous-phase oxidation of S(IV) by NO, (higher rate constant) (a) winter and (b) summer.
721 Model “A” represents predictions without the aqueous-phase oxidation of S(TV) by NO,, while model “B”

722 represents predictions with the aqueous-phase oxidation of S(IV) by NO,.
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Table 1: Aqueous-phase sulfur chemistry in CMAQvS.0

Reaction No. Reaction Rate constant expression (M's") Reference
R1 R & Wy = SO +HT # - v b Jacobson, 1997
5 o LAEXLTE . 61
- 18 +188 5]

B +F —_ -4 PRty 3
R2 BSOS + MHP — 535 +H b, = 1. GRS e Jacobson, 1997

3 R 3 = TEE™ 5 F 2 PR e
R3 HEQS +PAA fa:' +H" b = TR0 =B E0Nll o ...‘i-i._—"r o EHI-] 3&C0b5011, 1997
R4 3G #+ 0, = PR +IH i, w220l Jacobson, 1997
RS HEGS + Gp=r SE + &~ b, = G 7ORAGR S e Jacobson, 1997
R6 FE™ 0, =S L 1. 80aa DRI Jacobson, 1997
R7 S == FelHE) [ HnlHE) = SO~ See text Martin and Goodman, 1991

Table 2: pH dependent rate constants for the aqueous-phase reaction of S(IV) and NO, (Clifton et al., 1988)

pH Rate constant (M™'s™)
5.3 1.24x107
6.7 1.54x10’
6.8 1.34x10’
8.7 1.67x10"
9.3 1.68x10
118 2.14x10"
13.0 2.95x10"

Table 3: Henry’s Law Coefficient (H) of SO, H,0,, PAA, MHP, O;, and NO, used in CMAQ

Oxidants | Equation for Henry’s Law | Hat260K | Hat270K | H at280K H at 290K H at 300K Reference
Coefficients Matm™) | Matm)) | (Matm™) (M atm’") (M atm™)
& B - - 3 3 e s o

H:0, 5 m8gxlte 31x10° 1.1x10° 41x10° 1.6x 10‘ 7.0x 10* | O'Sullivan etal., 1996
PAA [ 1.1x 107 53 x 10 26x10° 1.4x10° 7.5x10° | O'Sullivan etal., 1996
MHP . m}ie““'ﬂ"‘!i'!- 40x10° | 19x10° 9.5x 10° 5.0x 10° 28x 107 | O'Sullivan et al., 1996
NO: ¢ =it e | 41X 10° [ 29x10” 2.1x 107 1.5x 107 1.1x 107 Chameides, 1984

05 H = 1141 0r5e"w % 3.5x 107 2.5x 10~ 1.9x 10~ 1.4 x 10~ 1.1x 107 Kusall(]—é;:arll;;gg and
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Table 4: Measured SCI yields from alkene-Q; reactions

Alkene SCI yield Reference

Ethene 0.35-0.47 Finlayson-Pitts and Pitts, 2000
Propene 0.25-0.44 Finlayson-Pitts and Pitts,2000
t-2-Butene 0.19-0.42 Finlayson-Pitts and Pitts, 2000
1-Butene 0.27 Hasson et al., 2001
1-Pentene 0.29 Hasson et al., 2001
1-Octene 0.35 Hasson et al., 2001

Methylene cyclohexane 0.26 Hasson et al., 2001

o~Pinene 0.13 Hatakeyama et al., 1984
[—Pinene 0.25-0.27 Hatakeyama et al., 1984, Hasson et al., 2001
Isoprene 0.26 Hasson et al., 2001

Table 5: The CBOSTU mechanism with the SCI chemistry

Reaction Reaction Rate constant Note

No. ((:1113 molecule’ s")

118 03+ 0OLE= ... +0319*CRIEGEE See Yarwood et al. (2005) OLE represents terminal olefins in CBOSTU and has
lumping similar to that of OLE1 in SAPRC07. We

determined the SCI yield for OLE1 in SAPPRC07 and
used it for OLE in CB0OSTU.

122 O; +ETH =... + 0.37*CRIEGEE See Yarwood et al. (2005) | ETH represents ethene in CBOSTU, We used SCI yield
for ETHENE in SAPPRC07 and used it for ETH in

CBOSTU.

126 Os+10LE = ... + 0.316*CRIEGEE See Yarwood et al, (2005) IOLE represents internal olefins in CBOSTU and has
lumping similar to that of OLE2 in SAPRC07. We
determined SC1 yield for OLE2 in SAPPRC07 and

used it for IOLE in CBOSTU.

143 O3 +1SOP = ... + 0.354*CRIEGEE See Yarwood et al. (2005) | 1SOP represents isoprene in CBOSTU. We used the SCI
yield for ISOPRENE in SAPPRCO07 and used it for

ISOP in CBOSTU.
146 O; +1SPD = ... + 0.472*CRIEGEE See Yarwood et al. (2005) | ISPD represents isoprene reaction product in CBOSTU.
We used SCI yield for IPRD in SAPPRC07 and used it
for [SPD in CBOSTU.
151 0O;+ TERP = ... + 0.268*CRIEGEE See Yarwood et al. (2005) TERP represents monoterpene in CBOSTU and has
lumping similar to TERP in SAPRC07. We determined
SC1 yield for TERP in SAPPRCO7 and used it for
TERP in CBO5STU.

173 CRIEGEE + 80, = SULF 3.90x% 10" Welz et al,, (2012)

174 CRIEGEE + NO»= NO; 7.00 x 1077 Welz et al., (2012)

175 CRIEGEE + H,0 = 240x 10" Welz etal,, (2012)

Table 6: Descriptions of the model simulations
Simulation | Gas-phase chemistry Agqueous-phase chemistry
number
1 CBO5STU Five aqueous-phase reactions in CMAQvS5.0:
Oxidation of S(IV) by H,O., MHP, PAA, O, Fe/Mn
2 CBO5TU Six aqueous-phase reactions: reactions in simulation #1 and oxidation
of S(IV) by NO- with lower k reported by Lee and Schartz (1983)
3 CBO5TU Six aqueous-phase reactions: reactions in simulation #1 and oxidation
of §(IV) by NO, with higher k reported by Clifton et al. (1988)
4 CBO05TU + SCI Five aqueous-phase reactions in CMAQv5.0:
chemistry Oxidation of S(IV) by H,0,, MHP, PAA, O;, Fe/Mn
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