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Abstract 

 

The contribution of inorganic air pollutant emissions to atmospheric deposition in the 

Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the 

surrounding boreal forests, using a common epiphytic lichen bio-indicator species 

(Hypogymnia physodes) and applying multiple receptor models.  Source materials from 

anthropogenic and natural emitters of air pollution in the AOSR were obtained and 

chemically characterized to aid in the assessment.  The lichens selected for analysis were 

collected in 2008 using a stratified, nested grid approach radiating away from the central 

area of oil sands production, at 121 sampling sites extending as far as 150 km.  Source 

and lichen samples were extracted and analyzed for 43 elements using dynamic reaction 

cell inductively coupled plasma mass spectroscopy (DRC-ICPMS).  Source 

apportionment of the lichen tissue analytical results was conducted using Principal 

Component Analysis (PCA), Chemical Mass Balance (CMB), Positive Matrix 

Factorization (PMF), and Unmix Models. 

 

Initial Varimax rotated PCA screening analysis indicated that there were five principal 

components that could explain 89% of the variance contained in the lichen data set, with 

the majority of the variance lumped into a fugitive dust factor.  This fugitive dust source 

could be separated into tailings sand, haul road, and overburden components using CMB 

on lichen samples collected near the mining and oil processing facilities.  However, the 

CMB model performance was limited by the similarity of sources and the lack of total 



nitrogen measurements in the emission source profiles.  The PMF and Unmix models 

were found to perform best with this unique AOSR lichen data set, providing very similar 

results at near source as well as remote lichen collection sites.  The PMF results showed 

that sources significantly contributing to concentrations of elements in the lichen tissue 

include:  combustion processes (~23%); tailing sand (~19%); haul roads and limestone 

(~15%); oil sand and processed materials (~15%); and a general anthropogenic urban 

source (~15%). 

 

The spatial patterns of CMB, PMF, and Unmix receptor models estimated that source 

impacts on the Hypogymnia physodes tissue elemental concentrations from the oil sand 

processing and fugitive dust sources had a significant association with the distance from 

the primary oil sands surface mining operations and related production facilities.  The 

spatial extent of the fugitive dust impact was limited to an approximately 20 km radius 

around the major mining and oil production facilities indicative of ground level coarse 

particulate fugitive emissions from these sources.  The impact of the general urban source 

was found to be enhanced in the southern portion of the sampling domain in the vicinity 

of the Fort McMurray urban area.  The receptor model results showed lower Mn 

concentrations in lichen tissues near oil sands production operations suggesting a 

biogeochemical response.  Overall the largest impact on elemental concentrations of 

Hypogymnia physodes tissue in the AOSR was related to fugitive dust, suggesting that 

implementation of a fugitive dust abatement strategy could minimize the near-field 

impact of future mining related production activities. 

 

1. Introduction 

 

The Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada contains 

recoverable petroleum reserves estimated to be in excess of 170 billion barrels consisting 

mostly of bitumen (Attanasi and Meyer, 2010).  These proven reserves rank the AOSR 

third in the world behind only Saudi Arabia and Venezuela.  Oil production in the AOSR 

has been steadily increasing over the last decade from 0.6 million barrels per day in 2000, 

to 1.6 million barrels per day in 2011.  Production is expected to be in excess of 3.5 

million barrels per day by 2020.  Synthetic crude oil production from bitumen in the 



AOSR is accomplished using a combination of surface mining and in situ production.  Of 

the proven reserves, it is estimated that 20% of the bitumen will ultimately be recovered 

through surface mining and 80% from in-situ production techniques (Government of 

Alberta, 2008).  The type and magnitude of inorganic air pollutants emitted from these 

two extraction techniques are unique.  Quantifying their relative contribution to observed 

ambient concentrations and atmospheric deposition are critical to be able to mitigate and 

manage local environmental impacts as production levels are increased. 

 

Surface mining in the AOSR results in large scale land disturbance and is similar to coal, 

copper, and other traditional mining operations.  Currently, the soil and glacial till 

overlaying the deposits (over burden) is removed and the exposed oil sands are excavated 

and transported for processing using large scale shovel and truck hauling operations.  

Atmospheric pollution from shovel and truck fleet operations mainly consists of fugitive 

particulate matter (PM) emissions (wind-blown dust) and diesel engine combustion 

exhaust.  Bitumen is separated from sand and clay components and recovered using a 

warm water separation technique.  The water, sand, and clay waste stream is pumped to 

large tailings ponds where the water is removed and recycled; and the sand and clay are 

consolidated and used for mine reclamation activities.  After the oil sands are removed 

the miners reach the underlying limestone bedrock.  The limestone is quarried, crushed, 

and used for development of haul roads and other construction activities.  Over burden 

stored for future mine reclamation, haul roads, and tailings ponds are all potential sources 

of fugitive wind-blown dust. 

 

In-situ production refers to the extraction of bitumen from oil sand deposits that are 

present at depths that make it uneconomical to access using traditional surface mining 

(currently about 75 meters), and using techniques to separate the bitumen in place.  Steam 

assisted gravity drainage (SAGD) is currently the main in-situ stimulation technique 

employed.  SAGD involves the drilling of two parallel wells, one over the other.  Steam 

is injected into the upper well to thermally separate the bitumen from the host material.  

The reduced viscosity of the heated bitumen causes it to drain down into the second 

underlying well where it is pumped to the surface and recovered.  The natural gas- and 



syngas-fired boilers used to generate the steam are sources of atmospheric pollutant 

emissions (e.g., NO, NOx). 

 

The bitumen recovered from the AOSR is considered a “sour” extra heavy crude oil 

(Attanasi and Meyer, 2010).  The bitumen has a high specific gravity (>10ºAPI), is 

extremely viscous at ambient temperatures, and contains elevated concentrations of sulfur 

(>0.5%), and some metals (e.g., nickel, vanadium).  The bitumen is upgraded to synthetic 

crude oil by thermal/catalytic cracking to break down large long chain molecules and 

removing excess sulfur (hydro-desulfurization) to facilitate the production of valuable 

light (e.g., gasoline) and medium (e.g., diesel) distillate fuels.  Some facilities upgrade the 

bitumen to synthetic crude on site in the AOSR while others dilute the bitumen with 

naptha and transport it to refineries via pipeline to other parts of Canada or the United 

States.  Upgrading, refining, and power generation are significant sources of atmospheric 

NO, NOx, PM, and SO2 emissions.  In addition to the anthropogenic sources of 

atmospheric emissions from the petroleum industry in the AOSR, there are significant 

light duty mobile source emissions, commercial boilers, and residential heating sources 

as well as natural pollutant emitters such as forest fires. 

 

The AOSR is located in a remote boreal forest ecosystem.  Other than Fort McMurray, 

much of the region has no ready access by land transportation and is not serviced by 

commercial electric power infrastructure.  Active ambient monitoring is limited to Fort 

McMurray and a relatively narrow north/south transportation corridor.  Therefore, the 

Wood Buffalo Environmental Association (WBEA) Terrestrial Environmental Effects 

Monitoring program (TEEM) used the epiphytic lichen, Hypogymnia physodes, 

predominantly growing on jack pine (Pinus banksiana) and black spruce (Picea 

mariana), as a bio-indicator of the atmospheric deposition and accumulation of air 

pollutants for on-going terrestrial impact assessment.  Hypogymnia physodes was 

selected as the bioindicator species of choice because it is an epiphytic lichen that 

extracts all its nutrients from the air, has a high tolerance for SO2, is prevalent in all areas 

of the AOSR, and is commonly used in air quality monitoring (Garty, 2001; Jeran et al. 

2002).  Our investigation focused on total sulfur (S), total nitrogen (N) (Berryman et al., 

2010), 43 metals, stable isotopes of lead (Pb) (Graney et al., this volume), mercury (Hg) 



(Blum et al., this volume), and poly-aromatic hydrocarbons (Studabaker et al., this 

volume).  Initially, spatial maps of S and N accumulation in the lichen were developed 

for locations up to 150 km from the center of the oil sands production- emission source 

area, with sampling at sites distributed as a nested grid.  Based on the S and N 

distributions, metals and the Pb and Hg isotopes were quantified at a subset of the lichen 

sampling locations and the contributions of specific emission types were investigated 

(Graney et al., this volume; Blum et al, this volume). 

 

Deterministic or atmospheric dispersion models are routinely used by environmental 

managers and government regulators as a tool to estimate the transport, transformation, 

and deposition of atmospheric pollutants (Davies this volume).  The ability of these 

models (e.g., CALPUFF, CMAQ, ISC3, AERMOD) to reliably simulate the fate of 

emitted pollutants on the spatial scales of interest in the AOSR are highly dependent on 

the (i) quality of emission inventory data, (ii) completeness of the chemical kinetics 

module, (iii) accuracy and resolution of the underlying gridded meteorological fields, (iv) 

topography, and (v) proper parameterization of gas/particle interaction and wet and dry 

deposition phenomena.  In practice, it is extremely difficult to accurately model air 

pollution in remote areas such as the AOSR where non-point mobile sources, fugitive 

sources, batch processes, and forest fires are significant emission sources; and where few 

local meteorological measurements are available for 4 dimensional data assimilation to 

“nudge” the underlying meteorological drivers. 

 

Receptor models provide another approach to understanding the impacts of air pollution 

sources since the model results are based on measurement data at receptor or sampling 

locations.  Receptor models quantify the impact of air emission sources retrospectively 

by using advanced mathematical methods on a matrix of elements or compounds in 

atmospheric samples, or bio-indicators, as tracers for the presence of materials from 

specific sources (Gordon 1985; Hopke 1985; Hopke 2009).  The goal of receptor 

modeling is to apportion the sources into specific identifiable categories (e.g., 

combustion, refining, motor vehicles, incineration, metals smelting, etc.) and quantify 

their relative importance.  Receptor models can also be used to constrain the uncertainty 



in deterministic modeling estimates and help identify sources that may not be accurately 

represented in emission inventories. 

 

The main objectives of this study were to:  (i) identify the major sources of air pollution 

in the AOSR, (ii) collect and analyze samples to develop chemical source profiles (finger 

prints), (iii) conduct a quantitative source apportionment analysis to determine the major 

sources impacting the atmospheric deposition and accumulation of potentially phyto-

toxic levels of S and N in the tissue of Hypogymnia physodes, and (iv) provide supportive 

data for Forest Health Monitoring (Krupa; Percy et al., Chapter 9, this volume). 

 

2. Methods 

 

2.1 Lichen Sampling and Analysis 

A discussion on the selection of Hypogymnia physodes as a species for study can be 

found in Graney et al. (this volume).  A complete description of the collection, selection 

strategy, and analysis methods for the Hypogymnia physodes samples is contained in 

Edgerton et al. (this volume).  Briefly, in 2008 WBEA-TEEM funded the collection of 

lichen samples from 369 sampling locations using a stratified nested grid approach, with 

higher density sampling at the center of the grid in close proximity to the main oil sands 

production sites (Figure 1 in Edgerton et al., this volume).  All samples were analyzed for 

total S and total N at the University of Minnesota Research Analytical Laboratory 

(UMRAL) (Berryman et al., 2010).  A subset of samples from 121 of the sites was 

selected for total microwave assisted acid extraction and analysis for 43 elements using 

dynamic reaction cell quadrupole inductively coupled plasma-mass spectroscopy (DRC-

ICPMS) (Edgerton et al. this volume). 

 

2.2 Source Sampling and Analysis 

Bulk material samples representing the various steps in the oil sands production cycle and 

other background materials were collected by WBEA for our analysis including:  over 

burden, raw oil sand, aged oil sand, limestone, materials used to construct haul roads, 

bitumen, fluid coke, petroleum coke, vacuum tower bottoms, tailings sand, and ash from 



forest fires.  All bulk samples were extracted and analyzed by Atmospheric Research & 

Analysis (ARA; Cary, NC) using the same total microwave assisted acid extraction and 

DRC-ICPMS analysis methods used on the lichen samples (Edgerton et al. this volume).  

In addition, diluted source sample emissions were collected as particulate material on 

filters from the main stacks of an AOSR upgrading facility by Dessert Research Institute 

(DRI) (Wang et al. this volume) and the exhaust of heavy duty hauling trucks by DRI 

(Watson et al. this volume), as well as ambient PM2.5 on filters collected by WBEA at 

Fort McKay during forest fire heavy smoke impacted days (PM2.5 > 420 g m-3) were 

extracted and analyzed by ARA using DRC-ICPMS. 

 

2.3 Theory and Concepts of Source Apportionment and Receptor Models 

 

According to Hopke (2009) source apportionment is the estimation of the contributions to 

the pollutant concentrations resulting from emissions from multiple natural and 

anthropogenic sources.  Forensic data (mathematical and/or statistical) analysis tools 

called receptor models are applied to extract information on the sources of air pollutants 

from the measured constituent concentrations at receptor location.  Unlike deterministic 

dispersion air quality models, receptor models generally do not use pollutant emissions, 

meteorological data, and chemical transformation mechanisms to estimate the 

contribution of sources to receptor concentrations.  Instead, receptor models use 

mathematically detectable characteristics (chemical and physical) of gases and particles 

measured at a monitoring or receptor site to both identify and quantify source 

contributions to receptor concentrations.  These models are therefore a natural 

complement to deterministic air quality models.  The United States Environmental 

Protection Agency (EPA) Office of Research and Development has developed several 

integrated receptor modeling software tools such as Chemical Mass Balance (CMB), 

Unmix, and Positive Matrix Factorization (PMF).  Each of the EPA implemented 

receptor model programs have a graphical user interface, data screening and analysis 

tools, and data visualization capabilities.  EPA has made all of these models available to 

the public for use by students, researchers, industry, and government regulators 

(http://www.epa.gov/scram001/receptorindex.htm, last accessed on June 13, 2012). 

 



Typically, receptor models use repeated measurements of the chemical composition data 

for airborne PM samples collected at a monitoring site (spatially fixed, temporally 

resolved).  In such cases, the outcome is the identification of the pollution source types 

and estimates of the contribution of each source type to the observed concentrations 

(Table 1).  In lieu of a lack of sufficient data on the chemical composition of PM in 

AOSR, we used data from the epiphytic lichen, Hypogymnia physodes, as an accumulator 

or bio-indicator of various elements through atmospheric wet and dry deposition (Sloof, 

1995; Kuik et al. 1993).  It is believed that Hypogymnia physodes samples represent 3-5 

years of accumulated atmospheric deposition in their tissue (Berryman et al., 2010; 

Davies, this volume).  We developed our AOSR epiphytic lichen concentration data 

matrix based on samples collected at 121 locations in 2008 (spatially resolved, 

temporally fixed). 

 

2.3.1 Principal Component Analysis 

 

Principal component analysis (PCA) is often used as a preliminary data reduction 

technique to identify a small number of factors that explain most of the variance observed 

in a much larger number of measured variables.  According to Jolliffe (2002), PCA is 

probably the oldest (first introduced in 1901) and best known techniques of multivariate 

analysis.  Like many multivariate methods, it was not widely used until the advent of 

computers, but it is now available in virtually every statistical computer software 

package.  The central idea of PCA is to reduce the dimensionality of a data set in which 

there are a large number of interrelated variables, while retaining as much as possible of 

the variation present in the data set.  This reduction is achieved by transforming the data 

to a new set of variables, the principal components that are minimally correlated. 

 

Principal components may be viewed as the eigenvectors of a positive semi-definite 

symmetric matrix. The eigenvectors are “characteristic” vectors of a matrix.  They are 

unique in that they remain directionally invariant under linear transformation by its parent 

matrix.  Thus the definition and computation of principal components are straightforward 

and has a wide variety of applications (e.g., Pratt et al. 1985; Voukantsis, 2011).  The 

general form for the equation (1) to compute scores on the first (main) component 



extracted (created) in a principal component analysis: 

 

C1 = b11 (X1) + b12 (X2) + ... b1p (Xp)     (1) 

 

Where, 

C1 = the subject’s score on principal component 1 (the first component extracted);  

b1p = the regression coefficient (or weight) for observed variable p, as used in creating 

principal component 1, and Xp = the subject’s score on observed variable p. 

 

In previous air pollution studies, the principal components have been found to represent 

sources such as soil, motor vehicles, iron and steel production, metal smelting, coal 

combustion, incineration and oil combustion (Hopke et al., 1976; Gaarenstroom et al., 

1977).  In many cases, interpretations of the principal components have been difficult 

because most of the variability of the data was loaded onto a single component (Thurston 

and Spengler, 1985).  This is not surprising, since PCA is designed to incorporate the 

maximal amount of variance into the first factor (Hopke, 1985).  Varimax orthogonal 

rotation was performed in a manner described by Harmon (1976) to make physical 

interpretation of the principal components easier (Thurston, 1981).  Only rotated 

principal components with eigenvalues >1 are typically retained for consideration 

(Hopke, 1983). 

 

Thurston and Spengler (1985) introduced an absolute principle component (APC) scores 

calculation scheme by introducing an arbitrary zero-concentration sample wherein all 

elemental concentrations are zero.  Regressing mass concentration data on the APC 

scores gave estimates of the coefficients which convert the APC score into pollutant 

source mass contribution for each sample.  An attractive feature of this modeling 

framework is that no prior knowledge of the number or chemical composition of possible 

sources is required.  However, some of the major chemical characteristics of the emission 

source must be present to correctly attribute the PC to a particular source type. 

 

2.3.2 Chemical Mass Balance 

 



EPA implemented CMB version 8.2 was used for this analysis (U.S. EPA, 2004).  In 

receptor modeling, a mass balance equation can be written to account for “m” chemical 

species in the “n” samples as contributions from “p” independent sources (equation 2). 
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where, xij = the measured concentration of the jth species in the ith sample, fkj = the 

concentration of the jth species in material emitted by source p, gik = the contribution of 

the pth source to the ith sample, and eij = the portion of the measurement that cannot be 

fitted by the model. 

 

If the number and nature of the sources in the region are known (e.g., p and fpj's), then the 

only unknown is the mass contribution of each source to each sample, gip (Winchester 

and Nifong, 1971 and Miller et al., 1972).  The problem is typically solved using an 

effective-variance least-squares approach (Cooper et al., 1984) that is generally referred 

to as the Chemical Mass Balance (CMB) model (Watson et al., 1990; US EPA, 2004).  In 

an ideal case, location specific source profiles are generated using the same extraction 

and analytical techniques as the receptor samples.  Typically this type of source 

characterization is not feasible, and profiles from a source library are utilized such as 

those available in the EPA SPECIATE version 4.3, profile repository 

(www.epa.gov/ttn/CHIEF/software/speciate, last accessed on June 13, 2012).  In this case 

AOSR specific source profiles were generated (see Section 3.1). 

 

Three statistical measurements are commonly used to evaluate - CMB model’s ability to 

match the calculated species concentrations and the receptor data (U.S. EPA, 2004b) -:  r2 

values, chi square values, and the percent of total mass explained by the fit.  An r2 value 

is the fraction of the variance in the measured concentrations explained by the variance in 

the calculated species concentrations.  It is determined by linear regression of calculated 

versus model-measured values for the fitting species.  Ranges are from 0 to 1, with values 

>0.8 indicating that the measured concentrations are well explained by the source 



contribution estimates.  The chi square value is the weighted sum of squares of the 

differences between the measured and calculated element concentrations.  Ideally, there 

should be no difference, resulting in chi square of 0.  A large chi square (>4.0) means that 

one or more of the calculated species concentrations significantly differs from the 

measured concentrations.  The values for these statistics exceed their targets when:  (i) 

contributing sources have been omitted from the CMB calculation; (ii) one or more 

source profiles have been selected which do not represent the contributing source types; 

(iii) uncertainty estimates of receptor or source profile data are underestimated; and/or 

(iv) errors or inconsistencies between analytical measurements used for source and 

receptor data.  Percent mass explained is the ratio of the difference between the sum of 

the model-calculated source contribution estimates and the measured mass 

concentrations.  Ratios should equal to 100%, but values between 80% and 120% are 

acceptable.  In our CMB application the total variable (PM mass in lichen) is not 

measurable.  Also, receptor concentrations are normalized to lichen mass.  As a result, the 

CMB calculation estimates potential source contributions (‘g’ matrix in equation 2) in the 

form of the total lichen mass concentration attributable to sources. 

 

CMB is most useful for primary emissions where the chemical characteristics of the 

particles are sufficient to characterize their apportionment.  Inclusions of profiles for 

secondary particles are difficult since they represent the product of atmospheric 

transformations of gaseous emissions into particles and are generally treated as specific 

chemical species such as sulfate, nitrate, and ammonium or ammonium sulfate and 

ammonium nitrate.  Unlike the multivariate receptor models like PMF and Unmix, CMB 

can be used to determine contributions with a single sample. 

 

2.3.3 Positive Matrix Factorization 

 

EPA implemented Positive Matrix Factorization (PMF) version 4.2 was used for this 

analysis (U.S. EPA, 2011).  PMF is a constrained eigenvector, implicit least-squares 

analysis aimed at minimizing the sum of squared residuals for the model.  Paatero and 

Tapper (2003) showed that in a PCA analysis, there is scaling of the data by column or by 

row and that scaling will lead to distortions in the analysis.  They further showed that the 



optimum method for scaling uncertainty in the data matrix would be to scale each data 

point individually.  In this way, the more precise data will have more influence on the 

solution than points that have higher uncertainties.  However, point-by-point scaling 

results in a scaled data matrix that cannot be reproduced by a conventional factor analysis 

based on the singular value decomposition. 

 

PMF allows each data point to be individually weighed.  This feature allows the modeler 

to adjust the influence of each data point, depending on the confidence in the 

measurement.  For example, data below detection can be retained for use in the model, 

with the associated uncertainty adjusted so these data points have less influence on the 

solution than measurements above the detection limit.  A speciated data set can be 

viewed as a data matrix X of i by j dimensions, in which i is the number of samples and j 

is the chemical species that were measured.  Thus, PMF uses an explicit least-squares 

method that minimizes the object function Q in with respect to g (mass) and f (species 

profile) based on the uncertainties u (Equation 3), while constraining the results so that 

no sample can have a significant negative source contribution. 
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Initially, a unique algorithm (PMF2, Paatero, 1997) was used for solving the factor 

analysis equation.  For small and medium-sized problems, this algorithm was found to be 

more efficient than Alternate Least Squares (ALS) methods (Hopke et al., 1998).  

Subsequently, a different approach that provides a flexible modeling system has been 

developed for solving the various PMF factor analyses least squares problems (Paatero, 

1999).  This approach, called the multi-linear engine (ME), has been applied to 

environmental problems that involve the solution of more complex models (Begum et al., 

2005; Chueinta et al., 2004; Hopke et al., 2003; Paatero and Taper, 2003; Zhao et al., 

2004). 

 

Block bootstrap is the widely used method to estimate variability or modeling uncertainty 

in a PMF solution (U.S. EPA, 2011).  The block bootstrap method captures effects from 



random errors in the solution, and also partially accounts for errors from computational 

rotational ambiguity.  EPA - PMF performs bootstrapping by randomly selecting blocks 

of samples, and creating a new input data of the selected sample, with the same 

dimensions as the original dataset.  PMF is then run on the newly created dataset, and 

each factor from the bootstrap run is mapped to the base run factor by comparing the 

contributions of each factor.  The newly created bootstrap factor is assigned to the base 

factor with which the bootstrap factor has the highest un-centered correlation above a 

user-specified threshold.  If no base factors have a correlation above the threshold for a 

given bootstrap factor, that factor is considered ‘unmapped’.  If more than one bootstrap 

factor from the same run is correlated with the same base factor, they will all be mapped 

to that base factor.  This process is repeated for as many bootstrap runs as the user 

specifies.  A solution is considered valid when the occurrence of unmapped factors is less 

than 10% of the total bootstrap runs.  EPA - PMF reports variability in factor strengths as 

various (5, 25, 50, 75, and 95) percentiles of factor strengths. 

 

PMF2 was used to analyze data sets of major ion compositions of daily precipitation 

samples collected at a number of sites in Finland (Juntto and Paatero, 1994) and bulk 

precipitation (Anttila et al., 1995) to obtain information on the sources of those ions. 

Polissar et al., (1996) applied PMF2 data from seven Alaska National Park sites to 

resolve the major source contributions quantitatively. 

 

Lee et al., (1999) applied PMF to urban aerosol compositions in Hong Kong.  They were 

able to identify up to 9 sources that provided a good apportionment of the airborne PM.  

Similarly Huang et al., (1999) analyzed elemental composition of PM at Narragansett, RI 

using both PMF and conventional PCA analysis.  They were able to resolve more 

components, with PMF using physically realistic compositions.  Thus, the approach does 

have some inherent advantages particularly through its ability to individually weight each 

data point.  PMF is somewhat more complex and harder to use, but it provides improved 

resolution of sources and better quantification of those sources than PCA (Huang et al., 

1999). 

 



Chueinta et al. (2000) introduced a directional source contribution analogous to a wind 

“rose” to help provide information on the direction of the source relative to the receptor 

site.  Ramadan et al. (2000) applied PMF to a set of daily data from Phoenix, AR.  In this 

analysis, separate profiles were resolved for diesel and spark-ignition vehicles.  

Analogously Lewis et al. (2003) analyzed the same data using Unmix and found similar 

results for sources that contribute the largest amounts to the ambient mass concentrations. 

 

Chemical composition of PM2.5 samples collected from1988 to 1995 at Underhill, 

Vermont were analyzed by Polissar et al. (2001a).  Sources representing wood burning, 

coal and oil combustion, photochemical sulfate production, metal production plus 

municipal waste incineration, and the emissions from motor vehicles were identified.  In 

addition emissions from smelting of nonferrous metal ores and arsenic, as well as soil 

particles and particles with high concentrations of Na were identified by PMF. 

 

2.3.4 Unmix 

 

EPA implemented Unmix version 6.0 was used for this analysis (U.S. EPA, 2007).  

Unmix is a constrained multivariate receptor model which seeks to solve a general 

mixture problem where the data are assumed to be a linear combination of an unknown 

number of sources of unknown composition which contribute an unknown amount to 

each sample (Henry, 2003).  Like PMF, Unmix also assumes that the compositions and 

contributions of the sources are all non-negative.  Unfortunately, it has been shown that 

non-negativity conditions alone are not sufficient to give a unique solution and more 

constraints are needed (Henry, 1987).  To mitigate this constraint, Unmix assumes that 

for each source there are at least a few samples that contain little or no contribution from 

that source.  This has been found to be a reasonable assumption since, in an ambient 

monitoring example, the wind could be blowing away from the source, or for a lichen 

bio-monitoring example the receptor location may be too far away from the source to 

make a significant impact.  Using only the concentration data for a given selection of 

species, Unmix estimates the number of sources, source compositions, and source 

contributions to each sample.  It should be noted that, unlike PMF, Unmix does not allow 

for down-weighting using data uncertainty values. 



 

Unmix is also based on an eigenvalue analysis.  The model uses a transformation method 

based on the Self-Modeling Curve Resolution (SMCR) technique.  The SMCR technique 

identifies the feasible region of the real solution with explicit physical constraints, such as 

source compositions must be non-negative.  Explicit physical conditions form linear 

inequality constraints in the space spanned by the eigenvectors, and these constraints 

form the feasible region in eigenvectors’ space. 

 

The Unmix model users manual (EPA, 2007) has a good description of how SMCR 

identifies specific source impacts by using “edges”.  Briefly, if the data consists of many 

observations of M species, then the data can be plotted in an M-dimensional data space 

where the coordinates of a data point are the observed concentrations of the species 

during a sampling period.  If there are N sources, the data space can be reduced to an (N-

1)-dimensional space.  Edges are drawn using the assumption that for each source there 

are some data points where the contribution of the source is not present or small 

compared to the other sources.  These are called edge points and Unmix works by finding 

these points and fitting a hyper-plane through them; this hyper-plane is called an edge (if 

N = 3, the hyper-plane is a line).  By definition, each edge defines the points where a 

single source is not contributing.  If there are N sources, then the intersection of (N-1) of 

these hyper-planes defines a point that has only one source contributing.  Thus, this point 

gives the source composition.  In this way the composition of the N sources are found, 

and from this the source contributions are calculated so as to give a best fit to the data. 

 

As an example the model was applied to PM composition data from Phoenix (Lewis et 

al., 2003).  The analysis generated source profiles and overall average percentage source 

contribution estimates for five source categories:  gasoline engines (33 ± 4%), diesel 

engines (16 ± 2%), secondary sulfate (19 ± 2%), crustal/soil (22 ± 2%), and biomass 

burning (10 ± 2%).  One of the unique aspects of this study was the ability to separate 

motor vehicle contributions into separate diesel and gasoline sources.  Diesel emissions 

were identified by high elemental carbon relative to the organic carbon whereas gasoline 

vehicles had a profile with more organic than elemental carbon.  In addition, a substantial 



difference was found in the contribution of diesel emissions between weekend and 

weekday samples. 

 

The Unmix’s use of hyper-plane edges was found to be particularly useful when 

modeling high time resolution (30 min) PM2.5 measurements in Tampa, FL (Pancras et 

al., 2011).  Multiple sources such as residual oil combustion, lead smelting, coal 

combustion, biomass burning, marine aerosol, general industrial, and a Cd-rich source 

were clearly identified. 

 

3. Results and Discussion 

 

3.1 AOSR Source Characterization 

The sources of inorganic atmospheric emissions in the AOSR are dominated by the 

mining, processing, and upgrading of oil sand.  While there are numerous sources of 

emissions, most are different mixtures of similar components.  The raw material that 

drives the oil production activities in the AOSR is oil sand; made up primarily of sand, 

clay, bitumen, and water.  The mining and processing of the oil sand aims to separate the 

bitumen (produced material) from the sand, clay, and water (tailings).  The bitumen is 

upgraded and refined creating targeted products such as synthetic crude, diesel fuel, and 

gasoline; and byproducts such as petroleum coke and elemental sulfur (e.g., used in 

agriculture).  Petroleum coke is burned to produce electrical power and steam.  Diesel is 

used to fuel mining shovels, heavy haul trucks, and buses.  Limestone and overburden are 

used to construct haul roads.  Tailing sand is processed and stored in large ponds for use 

in mine pit reclamation.  Superimposed over the oil sands mining and processing 

emissions are regional contributions from forest fires, a common occurrence in the 

AOSR.  This reality makes source apportionment modeling a challenge in the AOSR. 

 

The analytical results from the bulk material and stack test filters showed extensive 

overlap or collinearity among the samples.  We ultimately found it helpful to consolidate 

similar source categories for developing the emission profiles for CMB, and interpreting 

the PCA, PMF, and Unmix receptor modeling results.  Table 2 summarizes the 

composited source samples, their sample types, and sampling locations.  Table 3 presents 



the analytical emission profiles (mean ± standard deviation) for the consolidated sources 

used in CMB model runs. 

 

3.2 Modeling Information 

 

Elemental concentrations measured in the Hypogymnia physodes samples that exhibited a 

signal-to-noise ratio > 2 (2 above MDL; Edgerton et al., this volume) were chosen for 

inclusion in PCA, CMB, PMF, and Unmix modeling.  For PCA, CMB, and PMF runs a 

total of 28 species were retained (Al, As, Ba, Ca, Ce, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, 

N, Na, Nd, Ni, P, Pb ,S, Se, Si, Sm , Sr, Ti, V, Zn).  For Unmix runs, Ba and Ca were 

dropped as better model fit statistics were observed in the absence of those two species.  

Two samples exhibited several outlier concentration points, and were therefore excluded 

from the data modeling.  The following results are based on the remaining 119 samples.  

Variation in elemental concentrations of a lichen specimen may arise due to its age, 

chronic exposure, and the corresponding tissue gain or loss; and their governing genetic 

and morphological variations.  For those reasons, a total of ten-field duplicate samples 

were also collected and analyzed.  A mean relative percent deviation for every element 

from the field duplicate results was then calculated and used as sampling precision in 

equation 4 to estimate the measurement uncertainty in elemental concentrations needed in 

PMF and CMB. 

 

	              (4) 

 

3.3 Principal Component Analysis – Multi-linear Regression 

 

A PCA analysis of the lichen speciation data yielded five factors with eigenvalues greater 

than 1.0 after Varimax rotation.  The overall model explained 89% of the total variance. 

Communalities of all elements were over 80% with the exception of Cu, Pb, Ca, and Zn, 

whose communalities were greater than 65%.  The rotated component matrix (factor 

loading) is presented in table 4. 

 



The first factor component (FC #1) accounted for 58% of the total variance, and showed 

high loadings of fossil fuel marker elements (V, Ni, Mo, As, Se), and crustal elements 

(Li, Na, Al, Si, Ti, Fe, Mo, La, Ce, Nd, Sm).  Given the AOSR source composition data 

presented in Table 3, this factor very likely represents a composite of all coarse PM 

sources such as oil sand, process material, and fugitive emissions.  The FC #2 accounted 

for 14% of the total variance with significant loadings for Mg, P, K, Ca, Sr, and Ba.  

These elements are consistent with composition of the limestone bedrock material mined 

in the AOSR region.  FC #3 explained 7% of the total variance and has a high loading of 

S and N.  Oxides of sulfur and nitrogen can be either primary (stack) or secondary 

products of high temperature combustion processes.  Therefore, this factor likely 

represents emissions from stack (stationary) and fleet vehicles (mobile).  FC #4 presented 

high loadings for Zn, Ba, and Cu, and accounted for 6% of the total variances.  

Identification of this source is difficult since Zn, Ba, and Cu may be attributed to motor 

vehicle brake/tire wear, combustion of synthetic lubricants, or general anthropogenic 

activities.  The last factor showed a strong negative loading for Mn.  Graney et al., (this 

volume) observed Mn depletion in Hypogymnia physodes near the active mining and 

bitumen upgrading facilities, perhaps due to biological inhibition of uptake or losses from 

tissue degradation.  Nevertheless, it only accounted for 4% of the total variance, and 

therefore FC #5 is neglected from further analysis. 

 

Percent contribution of every element in a factor was determined by running a multi-

linear regression (MLR) model on each measured variable as dependant and all four 

absolute factor scores as independent variables (Thurston, 1985).  Table 5 summarizes 

the apportionment of measured concentrations by the PCA-MLR method.  Over 65% of 

the measured concentrations of Al, Ce, La, Mo, Ni, Si, Ti, and V were found to 

contribute to FC #1, which may be related to oil sand mining and processing activities.  

Elevated Ca, P, and Sr contributions confirm FC #2 as limestone, while the 40-45% of 

the measured N and S in FC #3 suggest that this factor is combustion related.  Zn and Pb 

are the dominant contributing elements to the factor identified as general anthropogenic.  

A significant fraction of the measured Ba, Mg, S, Pb, K, and Zn concentrations were not 

explained by the PCA-MLR model. 

 



3.4 Chemical Mass Balance 

 

The selection of appropriate source profiles is a challenge when utilizing CMB.  In this 

case, we used all the individual source sample profiles collected in the AOSR in the 

initial CMB model runs.  Many of the local sources were observed to be not estimable by 

CMB due to excessive collinearity between the source profiles such as haul road dust 

emissions, limestone bedrock, tailing sand, oil sand, and overburden samples.  Crustal, 

limestone, and oil component signatures (e.g., Ni, V) were present in all of these source 

materials (because bitumen extraction from oil sand is not 100% quantitative).  The 

general CMB model (and other receptor models) assumes that (i) composition of source 

emissions are constant over the ambient and source sampling period, (ii) chemical species 

do not react with each other, (iii) chemical species add linearly, (iv) all major 

contributing sources are identified and characterized, (v) number of sources are less than 

the number of chemical constituent measured, (vi) source profiles are linearly 

independent, and (vii) measurement error is available, and it is random, uncorrelated, and 

normally distributed.  However, studies show that deviations from one or more of the 

above mentioned assumptions can still yield acceptable apportionment results.  

Nonetheless, ‘nearly collinear’ sources affect CMB apportionment and often lead to 

unacceptable solutions.  Chemically similar sources without unique marker species to 

distinguish between them are termed as collinear sources.  If two or more sources exhibit 

similar composition profiles, negative contributions are outputted by CMB.  Such 

situations can be mitigated by variable selection, (e.g., eliminating one or more analytical 

species or entire sources that are nearly collinear).  But, care must be taken to not to 

eliminate a known source to improve the numerical performance of a receptor model. 

 

Mined oil sand (raw material) is physically and chemically dissociated into bitumen 

(target product), byproducts (petroleum coke), and residual materials (tailings).  But the 

individual sources can still retain chemical similarities.  To illustrate this point, the linear 

combination of tailing sand + processed material (y axis) is plotted against raw oil sand 

(x axis) composition in Figure 1.  Therefore, either oil sand or processed material and 

tailing sand can be included in the model, but not all three together.  Limestone source 

material was also not included in the CMB run as this crushed bedrock construction 



mineral was found to be collinear with the haul road dust source profile.  Upon closer 

examination, it was clear that the haul road dust profile was dominated by limestone 

mineral.  This finding was not surprising, because these temporary roads are constructed 

primarily of mined limestone minerals, overburden, and low grade oil sand.  Large 

variability in emission signatures from the main upgrader stack and heavy-duty hauler 

fleet source profiles were other major areas of concern as species with large uncertainties 

are likely to be non-influential in the CMB apportionment (U.S. EPA, 2004b). 

 

In order to overcome these obstacles, we combined similar source materials into 

composite source profiles (Table 2) and re-ran the CMB model with these carefully 

chosen seven local source profiles such as haul road dust, processed materials, tailing 

sand, fleet vehicles, main upgrader stack, forest fire/wood smoke, and overburden.  The 

fit statistics (r2 >0.8 and chi square > 2) were excellent for samples collected near the 

mining location, and worse for the distal samples.  For receptors located within a 20 km 

radius (n= 28), 72 ± 23% of the lichen mass was explained by these six sources.  Median 

PM contributions of haul road dust, processed materials, tailing sand, overburden, forest 

fires, fleet vehicles, and main upgrader stack to the near field lichens were estimated to 

be 242 ± 78, 190 ± 116, 178 ± 100, 87 ± 57, 45 ± 30, 6 ± 2, and 1 ± 0 mg g-1 of lichen 

mass, respectively. 

 

Figure 2 presents individual sample contribution as a function of distance (km) from the 

center of the surface mining oil production activities.  The strong influence of fugitive 

dust from the oil sand mining and processing operations on the near field (<20 km) lichen 

samples is clear.  The relative magnitude of the fugitive dust sources was found to be 

haul road>tailing sand>overburden.  Distal samples (>20 km) were under-estimated 

possibly because of under-representation of contributing sources in the CMB model 

itself.  Edgerton et al. (this volume) documented that the lichen tissue concentrations 

collected in distal site locations were found to be lower in element concentrations than 

other areas in North America.  It has been observed that under-representing the number 

of sources had little effect on the calculated source contribution estimates (SCEs) if the 

dominant species of the missing sources were excluded from the solution (U.S. EPA, 

2004b).  Since the objective of this study is to evaluate air pollution from the AOSR 



region, no further attempts were made to explain all of the measured concentrations in 

distal receptor samples. 

 

3.5 Positive Matrix Factorization and Unmix Modeling 

 

3.5.1 Description of Factors 

 

A six factor solution was found to be optimal by both the PMF and Unmix, models.  

Figure 3 presents and compares the source profiles generated by the models.  In general, 

all factors showed good agreement between the two modeling approaches used, except 

the factor attributed to combustion sources.  The block bootstrap method was used to 

evaluate modeling uncertainty in both PMF and Unmix solutions.  There were not any 

rejected (uncorrelated) factors from either model runs.  Factor contributions were paired, 

and linear regression analysis was performed between the pairs of Unmix and PMF factor 

contribution estimates.  As shown in Table 6, all of the six factors, interpreted as sources 

in the following section, showed good agreement between the two modeling results (r2 > 

0.5, slope > 0.6).  The following source identifications are for PMF and Unmix 

indentified factors: 

 

Oil Sand & Processed Material: High loadings of V (59%), Ni (46%), Mo (51%), La 

(34%), Ce (34%), and Sm (35%), with La/Ce and V/Ni ratios close to source material 

values identifies this factor as the oil component in the oil sand + processed material 

signature.  Modeled V/Ni, and La/Ce ratios are 2.40 and 0.48, respectively.  The 

composite oil sand source profile contains V/Ni of 1.95 and La/Ce of 0.42.  This factor 

does not include a significant Ca loading, which is also a characteristic of oil sand source 

profile.  A source contribution estimate (SCE) map (Figure 4) depicts an area of high 

source impact at the very center of the oil sand mining and processing activities.  This 

type of clear near-field enhancement is consistent with ground level emission of coarse 

particle fugitive dust.  Coarse PM is produced mainly by mechanical forces such as 

crushing and abrasion, and therefore, consist primarily of finely well divided minerals 

such as oxides of aluminum, silicon, iron, calcium, and potassium.  Coarse particles of 

soil or dust mostly result from entrainment by wind or from other mechanical action.  



Since the size range of these particles are quite large, their corresponding deposition 

velocities by sedimentation are relatively high.  Therefore, particles retention time in the 

atmosphere and transport scales are generally short, resulting in enhancement of near 

field deposition gradients (Davidson and Wu, 1989; Landis and Keeler, 2002). 

 

Fugitive Tailings Sand:  This factor comprises elements Al, Si, Ti, Ca, Ba, La, and Sm 

with large relative occurrence.  The composite tailing sand source sample shows a close 

resemblance with this factor.  Since tailing sand is processed and has had the bitumen 

removed, it is physically (smaller aggregate particle size) and chemically (lower 

concentration of the oil tracer species such as Ni and V) different from the mined raw oil 

sand particles.  The SCE map (Figure 5) clearly supports that this factor is local to the 

central oil sand mining and production areas, but with a slightly more easterly extent and 

more widely distributed in space as compared to the oil sand factor.  We therefore assign 

this factor to represent local fugitive sand resulting from the exposed tailings ponds and 

various ground based hauling activity. 

 

Haul Road & Limestone Mixture:  Elevated levels of Ca, Mg, Sr, and Ba characterize this 

factor.  The ratio of Ca/Sr and Ca/Mg are very close to the limestone source material 

collected in the active mining areas.  The limestone bedrock mined in this region 

underlying the oil sands is used to construct temporary roads for truck hauling operations.  

Spatial contribution estimates presented in Figure 6 matches our expectation with high 

loading estimates near the active mining areas in 2008 and hauling road activity. 

 

Combustion Source Emissions:  S, N, P, K, and Cu contributed 47%, 39%, 52%, 42%, 

and 26% of their respective modeled concentrations to this factor.  Oxides of nitrogen 

and sulfur are primarily combustion related emissions such as SAGD boilers and 

upgrader main stacks (N, S) and fleet vehicle (P, Ca, Cu) emissions.  The spatial 

distribution of contributions (Figure 7) for this factor shows the area of highest impact 

was farther away from the oil production facilities, which is consistent with an elevated 

stack emitting a plume with thermal buoyancy.  The impact of ecosite classification of 

the lichen collection sites (Graney et al., this volume) showed significant differences for 

this factor.  Mean source contribution estimate from dry (1.5) sites were significantly 



higher than wet (0.6) sites.  High loadings for P and K, and larger contribution estimates 

in dry ecosite locations may signify that this factor also includes contributions from forest 

fire emissions. 

 

Mn/Biochemical:  PMF and Unmix models attribute 74 and 82% of the measured Mn 

concentrations to this factor, respectively.  The spatial map of this factor contribution 

(Figure 8) in some ways resembles surface topography and also clearly shows that Mn is 

depleted in close proximity to the main oil sand mining and production areas.  Larger 

source contributions are observed at higher elevation sites, and minimal contributions are 

seen in samples collected in lower elevation areas.  There is also a significant difference 

between mean source contributions between wet (1.2) and dry (0.8) ecosite classification.  

Therefore, this factor is thought to represent a biochemical response from the 

Hypogymnia physodes mobilizing these elements in response to (i) their metabolic needs, 

and (ii) to the impact of near field deposition of other chemical species from the oil 

production activities.  Previous investigators have documented morphological responses 

(e.g., less diversity, smaller size) in lichen colonies in response to proximity to air 

pollution sources (Berryman et al., 2010), on a global scale the observations presented 

here of Mn inhibition/suppression response in Hypogymnia physodes tissue may be 

unique. 

 

General Anthropogenic:  This factor contains significant loadings of Zn and Pb, which 

are the typical tracer elements of general anthropogenic pollution.  The source 

contribution estimate plot (Figure 9) shows larger contribution to this factor from the 

south in the vicinity of Fort McMurray, where urban activities are expected. 

 

3.5.2 Apportionment 

 

Percent contributions of total sulfur, total nitrogen, soil, and other trace metal oxides to 

the Unmix/PMF identified factors are presented in Table 7.  Confidence intervals for total 

sulfate and nitrate apportionment in absolute lichen mass (mg g-1) is also included in the 

table.  Soil contribution was calculated as the sum of oxides of Si, Ca, Fe, and Ti.  Sum of 

other atmospheric metal oxides were also calculated as described by Landis et al. (2001).  



Both models explained >97% of the measured total sulfur and total nitrogen 

concentrations.  Metal oxides contributions estimated by the two models differ.  This was 

most likely due to Ca not being included in the Unmix model (see Section 3.2).  While 

Unmix over-predicted other metal oxides, PMF did not explain 8% and 6% of the soil, 

and other metal oxides contributions, respectively. 

 

Nearly 40% of the measured sulfate and nitrate concentrations were explained by 

combustion sources that include fleet vehicles, stack, and forest fire emissions.  General 

anthropogenic background emerges as the next significant source for sulfate and nitrate. 

As expected, soil related contributions are significant from tailing sand fugitive dust and 

haul road fugitive dust factors.  Of all the sources identified, oil sand & processed 

materials, tailing sand fugitive dust, haul road fugitive dust, and combustion emissions 

are originating from the AOSR oil sand mining and production operations.  Together, 

these sources explain 72% of the measured element concentrations (as oxides) found in 

Hypogymnia physodes tissue samples (Figure 10). 

 

4. Conclusions 

 

Overall the concentration of elements observed in Hypogymnia physodes tissue samples  

in the boreal forests in the AOSR were consistent with those reported in other areas of 

Canada, the United States, and in other areas in the northern hemisphere (Edgerton et al., 

this volume).  However, near field samples collected within 20 km of the main surface 

mining and oil sand production/upgrading operations had significantly higher 

concentrations of both crustal (La, Ce, Nd, Ti, Fe, Ca, Sr) and anthropogenic elements 

(Ni, V, Sn, Mo, Cr, Cu, Sb).  The anthropogenic and natural sources of air pollution in 

the AOSR including oil sands mining and processing activities and forest fires were 

identified, sampled, and chemically characterized.  The relative contributions of the 

different inorganic air pollutant source types in the AOSR on the epiphytic lichen 

Hypogymnia physodes tissue concentrations observed in the surrounding boreal forests 

was investigated using PCA, CMB, PMF, and Unmix receptor models. 

 



Initial PCA screening analysis indicated that there were five principal components that 

could explain 89% of the variance contained in the lichen data set.  Use of the CMB 

model was hindered by source collinearity issues, but was able to successfully apportion 

near field sampling locations (<20 km of mining and upgrading facilities).  CMB 

determined that six of the seven composited source profiles significantly contributed to 

the near field lichen tissue concentrations.  The PMF and Unmix multivariate receptor 

models provided very consistent results, and indicated there were six significant source 

factors.  Five of the sources impacting the lichen tissue concentrations were primarily 

anthropogenic including:  (i) oil sand & processed material, (ii) tailing sand fugitive dust, 

(iii) combustion processes, (iv) limestone & haul road fugitive dust, and a (v) general 

urban source.  The remaining significant source was a Mn dominated biogeochemistry 

factor. 

 

The spatial patterns of CMB, PMF, and Unmix receptor model estimated source impacts 

on the Hypogymnia physodes tissue concentrations from the oil sand/produced material 

and fugitive dust sources were significantly correlated to the distance from the primary 

oil sands surface mining operations and related production facilities.  The spatial extent 

of the impact was approximately limited to a 20 km radius around the major mining and 

oil production facilities which is clearly indicative of ground level coarse particulate 

fugitive emissions from these sources.  The relative impact of the general urban 

background source was found to be enhanced in the lichens in proximity to the Fort 

McMurray urban area.  The receptor models also show a Mn related biogeochemical 

response factor that is a combination of ecological factors (wet versus dry ecosite) as well 

as a Mn response to near field oil sands production operations. 

 

Overall the largest impact on elemental concentrations of Hypogymnia physodes tissue in 

the AOSR was related to fugitive dust, suggesting that implementation of a fugitive dust 

abatement strategy could minimize the near-field impact of future mining related 

production activities.  Over the next decade as oil production increases in the AOSR (i) 

new surface mining operations will expand the footprint of land disturbance, (ii) in-situ 

techniques will represent a larger percentage of overall bitumen extraction volume, (iii) 

new production and upgrading technologies will improve extraction efficiencies while 



reducing energy demand, (iv) new techniques for treating tailings will emerge, and (v) 

mine remediation activities will accelerate.  How these changes impact atmospheric 

deposition in the surrounding boreal forests remains to be seen.  It is recommended that 

the combination of epiphytic lichen biomonitoring and the application of receptor models 

continue to be used to inform residents in the AOSR on the impact of bitumen production 

on their communities and natural forest resources. 
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Table 1.  Recent Examples of PMF and Unmix Receptor Modeling Studies. 
 

Date Authors Study Location 
 

2005 Begum et al. Washington, DC. 
2011 Cao et al. Xi’an, PRC 
2011 Chan et al. Brisbane, Australia 
2009 Cheng et al. Hong Kong, PRC 
2011 Gu et al. Augsburg, Germany 
2003 Hopke et al. Baltimore, MD 
2003 Hsu et al. Chicago, IL 
2006 Kim & Hopke Great Smokey Mountain, NC-TN 
2004 Kim et al. Atlanta, GA 
2003 Lewis et al. Phoenix, AZ 
2003 Maykut et al. Seattle, WA 
2004 Olson et al. World Trade Center, New York, NY 
2006 Pancras et al. Tampa, FL 
2011 Pancras et al. Tampa, FL 
2009 Sosa et al. Mexico City, MX 
2004 Wang et al. Beijing, PRC 
2006 Zhao  & Hopke Mammoth Cave National Park, KY 
2004 Zhao et al. Houston, TX 
2004a Zhou et al. Pittsburgh, PA 
2004b Zhou et al. Rural New York, NY 

 



Table 2.  Summary of AOSR Composite Source Samples used in CMB Analysis 
 
No Sample Name Type Sampling Description Comments 

1 Haul Road Dust Composite
Average of 2 grab 
samples  from different 
haul roads  

Haul roads are constructed 
with mined materials 
(limestone, overburden, low 
grade oil sand).  Expected as 
fugitive dust source due to 
mining related traffic on these 
roads.  

2 Overburden 
Grab 
sample 

Sampled from the 
overburden pile 

Expected to be airborne under 
windy conditions. Profile 
represents soil and glacial till. 
Does not contain limestone 
component. 

3 Processed Materials Composite
Bitumen, fluid coke, 
vacuum tower bottoms, 
and petroleum coke 

Petroleum coke stored in 
large stockpiles and expected 
to be airborne under windy 
conditions. 

4 Tailing Sand Composite
Average of 3 tailing 
pond sand samples 
from different locations 

Expected to be airborne under 
windy conditions. 

5 Fleet Emissions Composite
Average of 14 samples 
from three facilities 

Filters collected by DRI 
(Watson et al., this volume). 

6 Upgrader Stack  Composite
Average of 12 stack 
samples from facility A 
main upgrader stack 

Filters collected by DRI 
(Wang et al., this volume). 

7 Forest Fire Composite

Average of 4 WBEA 
Fort McKay site dichot 
filter samples impacted 
by forest fire 

Filters collected by WBEA. 
Mean PM2.5 = 474 g m-3. 

 



Table 3a.  WBEA Source Profile Composition Table. 
 

Element Forest Fire PM Haul Road Dust Overburden 
 

Tailing Sand 

  Avg  SD Avg  SD Avg  SD Avg  SD 

  g g-1 g g-1 g g-1 g g-1

Li 0.33 ± 0.05 11.02 ± 6.79 21.92 ± 2.18 2.65 ± 0.84 
Be     0.51 ± 0.26 0.38 ± 0.26 0.06 ± 0.03 

Na 3.38 ± 1.48 852.03 ± 2.46 164.28 ± 29.74 175.59 ± 134.33 

Mg 27.9 ± 19.0 6303.0 ± 3119.3 1004.4 ± 130.6 129.5 ± 91.7 

Al 78.1 ± 51.9 16797.8 ± 9362.7 15391.5 ± 2228.5 3512.3 ± 1937.1 

Si 315.2 ± 56.3 14753.2 ± 8645.5 13262.2 ± 1933.1 51701.4* ± 15510.4* 

P 129.3 ± 19.9 276.6 ± 167.5 70.9 ± 17.1 43.1 ± 39.7 

K 2084.9 ± 285.2 3529.7 ± 732.0 2494.2 ± 202.9 1735.7 ± 1079.4 

Ca     27874.8 ± 23726.7 1303.4 ± 331.6 355.5 ± 300.5 

S 4099.7 ± 1138.1 2464.8 ± 258.3 1623.8 ± 164.4 85.0 ± 70.2 

Ti 1.55 ± 0.82 122.50 ± 12.40 72.97 ± 25.79 41.33 ± 41.53 

V 0.27 ± 0.09 28.25 ± 23.92 19.26 ± 2.27 2.38 ± 1.46 

Cr 3.95 ± 1.64 14.55 ± 11.47 11.38 ± 2.05 1.49 ± 0.71 

Mn 12.0 ± 6.6 226.9 ± 38.9 103.7 ± 7.9 54.7 ± 37.5 

Fe 485.4 ± 259.1 13663.2 ± 1851.7 4929.8 ± 323.5 912.7 ± 865.0 

Co 0.07 ± 0.05 4.79 ± 2.94 4.03 ± 0.64 0.49 ± 0.45 

Ni 0.55 ± 0.44 11.85 ± 5.62 8.48 ± 0.95 0.78 ± 0.77 

Cu 2.48 ± 0.41 7.51 ± 4.96 3.46 ± 1.06 0.47 ± 0.20 

Zn 159.91 ± 30.53 31.22 ± 17.54 18.28 ± 4.81 8.31 ± 5.44 

Se 1.74 ± 0.26 6.94 ± 3.36 5.30 ± 0.90 1.23 ± 0.37 

Rb 5.00 ± 1.00 19.22 ± 11.39 15.05 ± 1.54 5.51 ± 2.90 

Sr 0.85 ± 0.39 65.31 ± 7.07 24.56 ± 2.41 18.92 ± 8.22 

As 2.70 ± 0.33 3.73 ± 1.59 1.10 ± 0.53  ±   

Nb     0.27 ± 0.07 0.23 ± 0.17 0.11 ± 0.13 

Mo 0.23 ± 0.19 0.33 ± 0.03 0.47 ± 0.11 0.04 ± 0.02 

Pd 0.02 ± 0.01 0.23 ± 0.16 0.27 ± 0.10 0.09 ± 0.08 

Cd 8.82 ± 5.84 0.05 ± 0.02 0.04 ± 0.01  ±   

Sn 0.87 ± 0.53 0.22 ± 0.09 0.29 ± 0.35  ±   

Sb 0.04 ± 0.02 0.13 ± 0.05 0.04 ± 0.03 0.01 ± 0.01 

Cs 0.09 ± 0.02 1.14 ± 1.11 0.99 ± 0.11 0.14 ± 0.09 

Ba     111.96 ± 1.13 50.79 ± 6.00 60.16 ± 33.07 

La 0.08 ± 0.03 8.62 ± 2.98 7.65 ± 1.07 3.04 ± 0.91 

Ce 0.15 ± 0.07 18.00 ± 7.23 18.01 ± 2.00 6.36 ± 1.59 

Pr   ±  2.15 ± 0.91 1.97 ± 0.36 0.70 ± 0.18 

Nd 0.05 ± 0.02 8.71 ± 4.00 7.62 ± 0.95 2.52 ± 0.63 

Sm 0.01 ± 0.00 1.64 ± 0.88 1.43 ± 0.20 0.44 ± 0.11 

Ta         0.02 ± 0.04  ±   

W     0.04 ± 0.05 0.03 ± 0.07  ±   

Pt     0.01 ± 0.01 0.01 ± 0.04  ±   

Tl 0.15 ± 0.02 0.15 ± 0.06 0.09 ± 0.02 0.03 ± 0.02 

Pb 4.04 ± 1.82 5.14 ± 2.45 4.03 ± 0.39 2.05 ± 0.57 

Bi 0.07 ± 0.02 0.04 ± 0.04 0.03 ± 0.01 0.01 ± 0.00 

Th 0.03 ± 0.02 2.28 ± 1.58 2.15 ± 0.36 0.57 ± 0.23 

U 0.00 ± 0.00 0.49 ± 0.33 0.42 ± 0.06 0.09 ± 0.04 

NOTE: Concentration values < the reported MDL (Edgerton et al., this volume) were deleted. 
* Residue in the extraction vessels suggests the digestion of the tailings sand was incomplete. 
Based on the elemental composition expected for sandstone as listed in Faure (1991) it is likely 
that the amount of HF used during the digestion procedure was insufficient to dissolve all of the 
SiO2 in the tailings sand. The Si/Al ratio of sandstone listed in Faure 1991 was 14.72, the value of 
Si reported for the tailings sand reflects this Si/Al ratio. 



Table 3b.  WBEA Source Profile Composition Table. 
 

 Element Processed Materials Heavy Hauler Fleet Main Upgrader Stack 

  Avg  SD Avg  SD Avg  SD 

  g g-1 g g-1 g g-1 

Li 0.97 ± 0.16     3.12 ± 0.78 

Be 0.03 ± 0.01     0.09 ± 0.03 

Na 16.45 ± 2.12 104.19 ± 266.36 56.09 ± 17.58 

Mg 40.5 ± 3.3 62.2 ± 106.0 90.4 ± 31.6 

Al 518.1 ± 112.9 194.2 ± 1826.2 809.7 ± 281.7 

Si 754.5 ± 161.6 594.2 ± 1286.0 12691.0 ± 3623.1 

P 10.9 ± 2.1 5114.6 ± 1923.6 61.7 ± 31.2 

K 58.3 ± 11.2  ±   117.9 ± 36.0 

Ca  ±   9914.1 ± 4115.4 411.1 ± 120.0 

SO 754.5 ± 161.6 2157.9 ± 1897.4 148443.8 ± 20627.0 

Ti 28.54 ± 7.72 20.92 ± 32.75 168.15 ± 43.85 

V 21.85 ± 13.30     101.55 ± 30.40 

Cr 0.88 ± 0.23 10.65 ± 33.69 3.11 ± 4.52 

Mn 8.7 ± 4.2 3.3 ± 7.5 50.7 ± 19.9 

Fe 386.3 ± 117.0 148.4 ± 369.8 1792.2 ± 773.3 

Co 0.73 ± 0.23  ±   2.68 ± 0.91 

Ni 5.73 ± 2.03 5.57 ± 20.74 41.82 ± 15.56 

Cu 1.26 ± 0.15 138.06 ± 257.18 9.01 ± 11.31 

Zn 1.93 ± 0.40 5147.34 ± 1300.00 25.70 ± 22.54 

Se 0.61 ± 0.15 0.29 ± 1.41 12.30 ± 2.59 

Rb 0.23 ± 0.03     0.91 ± 0.27 

Sr 1.64 ± 0.35 5.14 ± 3.19 8.91 ± 3.19 

As  ±       3.70 ± 0.63 

Nb 0.06 ± 0.03     0.38 ± 0.12 

Mo 3.29 ± 1.01 3.86 ± 2.41 7.61 ± 2.51 

Pd 0.02 ± 0.01 0.14 ± 0.66  ±   

Cd 0.01 ± 0.00  ±   0.12 ± 0.05 

Sn  ±   1.33 ± 11.25 0.53 ± 0.41 

Sb 0.02 ± 0.00 0.84 ± 9.05 0.27 ± 0.21 

Cs 0.02 ± 0.00  ±   0.06 ± 0.02 

Ba 2.23 ± 0.72  ±   6.68 ± 3.59 

La 0.60 ± 0.13 0.06 ± 2.24 2.55 ± 0.75 

Ce 1.30 ± 0.27 0.07 ± 4.94 4.60 ± 1.37 

Pr 0.15 ± 0.03 0.05 ± 0.67 0.51 ± 0.15 

Nd 0.58 ± 0.13 0.07 ± 2.40 1.92 ± 0.57 

Sm 0.11 ± 0.03 0.01 ± 0.37 0.35 ± 0.10 

Ta             

W 0.04 ± 0.02     0.12 ± 0.08 

Pt         0.01 ± 0.00 

Tl 0.01 ± 0.00     0.06 ± 0.02 

Pb 1.11 ± 0.30 1.45 ± 5.02 2.97 ± 1.25 

Bi 0.02 ± 0.01     0.32 ± 0.13 

Th 0.17 ± 0.04     0.60 ± 0.17 

U 0.04 ± 0.01 0.03 ± 0.04 0.14 ± 0.04 

NOTE: Concentration values < the reported MDL (Edgerton et al., this volume) were deleted. 
  



Table 4.  Results of Varimax Rotated PCA Factor Loadings. 
 

Element FC #1 FC #2 FC #3 FC #4 FC #5 

S 0.50 0.00 0.74 -0.07 0.16 

N 0.59 0.17 0.67 0.13 0.07 

Li 0.93 0.25 0.20 0.01 0.06 

Na 0.88 0.25 0.16 0.17 0.08 

Mg 0.57 0.72 0.04 0.04 -0.08 

Al 0.95 0.22 0.16 0.01 0.07 

Si 0.91 0.26 0.12 0.13 0.09 

P -0.18 0.82 0.55 -0.07 -0.04 

K 0.27 0.82 0.51 -0.13 0.02 

Ca 0.49 0.65 -0.11 0.23 0.01 

Ti 0.96 0.20 0.12 0.07 0.10 

V 0.90 0.08 0.21 0.06 0.15 

Cr 0.94 0.20 0.13 0.08 0.10 

Mn -0.23 -0.08 -0.11 0.11 -0.95 

Fe 0.96 0.19 0.05 -0.01 0.05 

Ni 0.90 0.23 0.16 0.06 0.10 

Cu 0.69 0.17 0.42 0.26 -0.04 

Zn -0.19 0.31 0.05 0.80 -0.15 

Se 0.96 0.17 0.13 -0.01 0.08 

Sr 0.27 0.80 -0.05 0.22 0.19 

As 0.93 0.25 0.15 0.06 0.03 

Mo 0.88 0.08 0.30 0.10 0.12 

Ba 0.27 0.72 -0.01 0.44 0.06 

La 0.97 0.16 0.11 0.06 0.08 

Ce 0.97 0.16 0.12 0.03 0.08 

Nd 0.97 0.16 0.09 0.02 0.07 

Sm 0.97 0.16 0.08 0.01 0.07 

Pb 0.55 0.04 -0.06 0.63 0.02 



Table 5.  PCA-MLR Contribution of Key Elements to Identify Sources. 
 

Element 
  

Contribution from Each Source Category (%) 
Unexplained (%) 

  Oil Sand & 
Fugitive Dust 

Haul Road & 
Limestone 

Combustion 
Processes 

General 
Anthropogenic 

N 40 13 46 0 1 
S 28 0 40 -10 43 
Na 59 17 9 10 6 
Mg 24 31 0 0 45 
Al 81 19 12 0 -12 
Si 65 18 8 9 0 
P -19 80 45 -6 0 
K 10 30 14 -6 53 
Ca 38 50 -11 22 0 
Ti 78 15 8 5 -6 
V 98 8 24 0 -30 
Cr 86 18 12 6 -22 
Fe 60 11 0 0 30 
Ni 70 18 12 0 1 
Cu 42 10 24 12 11 
Zn -10 11 0 40 59 
Sr 22 63 -9 24 0 
Mo 64 6 24 6  0 
La 86 13 14 4 -17 
Ce 85 13 10 0 -8 
Pb 34 0 0 35 31 

 
  



Table 6.  Linear Regression Analysis between PMF and Unmix (y/x) Factor Contribution 
Estimates. 

 
Factors Slope (PMF/Unmix) r2 Intercept 
Oil Sand 0.95 0.91 0.05 
Fugitive Dust 1.23 0.92 0.23 
Haul Road & Limestone 0.98 0.54 0.02 
Combustion 0.66 0.55 0.36 
Mn Related Biochemical 1.07 0.75 0.07 
General Anthropogenic 0.85 0.58 0.17 

 
 
  



Table 7.  Percent Contributions of Total Sulfur, Total Nitrogen, Soil, and other Metal Oxide Sources from Factors Identified by Unmix and PMF 
to the Measured Concentration in the Lichen Samples. 

 
 Components Oil Sand Tailing Sand Mn/Biochemistry 

 

Zn-Pb/General Anthropogenic Haul Road Dust/Limestone Combustion Processes Unexplained 

  PMF Unmix PMF Unmix PMF Unmix PMF Unmix PMF Unmix PMF Unmix PMF Unmix 

Total Sulfur*, % 
22.5 12.3 0.6 8 2.7 15.7 24.9 20.5 1.1 4.6 45.7 40.8 2.5 0.7 

(0.2 - 0.6) (0.1-0.5) (0.0 - 0.5) (0.0 - 0.4) (0.0 - 0.4) (0.2 - 0.5) (0.0 - 0.6) (0.2 - 0.6) (0.0 - 0.4) (0.0 - 0.2) (0.8 - 1.4) (0.7 - 1.3)    

Total Nitrogen*, % 
15 11.9 5.4 10.6 6.5 18.3 25.7 17.9 6.5 9.5 38 34.6 2.8 0.1 

(2.4 - 7.2) (0 - 7.7) (0.7 - 6.9) (1.1 - 7.9) (1.4 - 6.9) (3.7 - 8.7) (3.0 - 11.2) (2.4 - 10.5) (2.0 -8.6) (0.6 - 5.7) (12.3 - 18.6) (10.5 - 19.9)    

Soil Related, % 14.4 12.8 34.7 43.9 7.3 8.9 7 16.4 21.9 25.3 6.6 1.8 8 -1.6 

Metal Oxides, % 11.4 0.1 3 13.7 10.5 24.7 12.6 3.7 15.1 29.2 41.5 45.6 5.8 -10.2 

 
* 5th and  95th percentile concentrations from the block bootstrap error estimation are given in mg g-1 lichen mass 



Figure 1.  Relationship between Profile Concentrations of Oil Sand and a Linear 
Combination of Processed Material and Tailing Sand. 
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Figure 2.  CMB Source Contribution Estimates as a Function of Distance from the Mid-
point of Oil Sand Mining and Upgrading Operations. 
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Figure 3.  PMF and Unmix Factor Profiles of the lichen samples collected in the AOSR. 
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Figure 4.  Modeled Source Contribution Estimate of Oil Sand Factor. 
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Figure 5.  Modeled Source Contribution Estimate of Fugitive Dust Factor. 
 

 
 

0.02 - 0.22 0.22 - 0.33 0.33 - 0.39 0.39 - 0.5 0.5 - 0.7 0.7 - 1.1 1.1 - 1.87 1.87 - 3.33 3.33 - 6.15

_ Wet Ecosite ^ Dry Ecosite Mining Footprint 0 25 5012.5 km

_
_̂

_

^ ___̂

^
_
^

_
^

_ __̂

^

^

^

^

^

^ ^̂
^

^_
_

_
_^

^ ^
_

^

^^
_
_

^
_

_

_̂
^

^

_

^
^

_

^

_

^

_
^

^

^

^

^

_

_

_

_

^_

^

^

_

^

_

_

_

_

_
^

_

_

_^

_

_

^

^

^

^

^

_

_

_

^

^

_

^

^

_

^_

^

_

^

^

_ ^

_

^

_

_



Figure 6.  Modeled Source Contribution Estimate of Haul Road & Limestone Factor 
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Figure 7.  Modeled Source Contribution Estimate of Combustion Source Factor. 
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Figure 8.  Modeled Source Contribution Estimate of Mn Related Biochemical Factor. 
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Figure 9.  Modeled Source Contribution Estimate of Zn-Pb/General Anthropogenic 
Factor 
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Figure 10a.  Estimated Percent Source Contributions by PMF model. 

   
 
 
 
Figure 10b.  Estimated Percent Source Contributions by Unmix model. 
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