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Abstract 22 
 23 

An important question in regional climate downscaling is whether to constrain (nudge) 24 

the interior of the limited-area domain toward the larger-scale driving fields.  Prior 25 

research has demonstrated that interior nudging can increase the skill of regional climate 26 

predictions originating from historical data.  However, there is concern that nudging may 27 

also inhibit the regional model’s ability to properly develop and simulate mesoscale 28 

features, which may reduce the value added from downscaling by altering the 29 

representation of local climate extremes.  Extreme climate events can result in large 30 

economic losses and human casualties, and regional climate downscaling is one method 31 

for projecting how climate change scenarios will affect extreme events locally.  In this 32 

study, the effects of interior nudging are explored on the downscaled simulation of 33 

temperature and precipitation extremes.  Multi-decadal, continuous Weather Research 34 

and Forecasting model simulations of the contiguous United States are performed using 35 

coarse reanalysis fields as proxies for global climate model fields.  The results 36 

demonstrate that applying interior nudging improves the accuracy of simulated monthly 37 

means, variability, and extremes over the multi-decadal period.  The results in this case 38 

indicate that interior nudging does not inappropriately squelch the prediction of 39 

temperature and precipitation extremes and is essential for simulating extreme events that 40 

are faithful in space and time to the driving large-scale fields. 41 

  42 
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1.    Introduction  43 

Projecting climate change to local scales is important for understanding and mitigating 44 

the effects of climate change on society and the environment.  Many of the current 45 

general circulation models (GCMs) for simulating climate are run with a horizontal 46 

resolution of about 1° × 1°.  Although at this resolution the large-scale atmospheric 47 

features that drive weather and climate are well represented, mesoscale features and local 48 

topography are not resolved, and consequently the GCM may not accurately represent 49 

local changes in temperature and precipitation extremes (Dulière et al. 2011; Werth and 50 

Garrett 2011).  To predict the local effects of climate change, the GCM’s fields can be 51 

projected to local scales using a regional climate model (RCM) by applying dynamical 52 

downscaling techniques (e.g., Giorgi 1990).  The RCM may then be used to inform 53 

problem-focused climate assessments that address community goals and values (Tryhorn 54 

and DeGaetano 2011). 55 

To interpret climate change at the local level, there is great interest in 56 

characterizing changes in “extreme events”.  Extreme events are rare but important 57 

meteorological phenomena such as droughts, floods, extreme heat and cold, and strong 58 

wind events that are statistically associated with the tails of a probability distribution 59 

(e.g., Meehl et al. 2000b; Garrett and Müller 2008).  Extreme weather events have 60 

significant societal impacts such as large economic costs and human casualties (e.g., 61 

Meehl et al. 2000a).  Indices of climate extremes often involve tracking the exceedances 62 

of a critical threshold value (e.g., Karl et al. 1999), and may consider the frequency, 63 

duration, and areal extent of the exceedance.  Changes in the duration and/or intensity of 64 

extreme events will impact air quality, water quantity and quality, agriculture (growing 65 
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season, types of crops, water availability), energy demands and sources, urban 66 

infrastructure and building codes, and the overall economy.  Because of the spatial 67 

heterogeneity in extreme precipitation and temperature events (e.g., Trenberth et al. 68 

2007), RCMs that are used for projecting future changes in frequency and intensity of 69 

extreme events must reflect the state-of-the-science. 70 

When using RCMs to downscale GCM fields, interior nudging may reduce errors 71 

in RCM predictions compared with applying a constraint only at the lateral boundaries 72 

(Miguez-Macho et al. 2004; Castro et al. 2005; Lo et al. 2008; Alexandru et al. 2009; 73 

Bowden et al. 2012a).  Feser et al. (2011) indicate that constraint toward the atmospheric 74 

large scales (i.e., via nudging) when downscaling often increases mesoscale variability 75 

and “adds value” to the global climate model forecasts.  The balance in the constraint 76 

toward the GCM fields against the RCM’s freedom to develop mesoscale features is 77 

difficult to determine objectively and has not yet been achieved (e.g., Kanamaru and 78 

Kanamitsu 2007; Alexandru et al. 2009; Bowden et al. 2012a).  Arritt and Rummukainen 79 

(2011) juxtapose that nudging too weakly allows the RCM to diverge from the GCM 80 

fields, while nudging too strongly can suppress the development of the finer-scale 81 

processes that are sought with the RCM.  Christensen et al. (2007) also caution that while 82 

nudging minimizes large-scale error in the RCM, it can also mask model biases.  Pielke 83 

et al. (2012) argue that nudging can force the RCM to retain and potentially exacerbate 84 

errors that exist in the GCM.  Although nudging is becoming increasingly common for 85 

regional climate modeling, using interior nudging techniques is not universally accepted 86 

as a standard practice for dynamical downscaling. 87 
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Despite improving the means and retaining large-scale consistency with the 88 

driving model, there is some concern that using interior nudging techniques may dampen 89 

the extremes and variability.  Using the Canadian RCM (CRCM), Alexandru et al. (2009) 90 

found that increasing the strength of spectral nudging by initiating spectral nudging closer 91 

to the surface decreased the intensity of precipitation during a summer period.  Cha et al. 92 

(2011), using the Weather Research and Forecasting (WRF) model with a version of 93 

spectral nudging that follows von Storch et al. (2000) and is similar to the CRCM, found 94 

that while spectral nudging reduced errors in the tracks of tropical cyclones, it artificially 95 

weakened tropical cyclone intensities.  Bowden et al. (2012a) showed that spatial 96 

variability with analysis nudging in WRF is decreased as the nudging timescale is 97 

decreased. 98 

There are few studies that investigate the ability of RCMs to simulate extreme 99 

events, particularly over North America, and none of the following explicitly mention 100 

using nudging.  Using the Pennsylvania State University–National Center for 101 

Atmospheric Research mesoscale model (MM5), Lynn et al. (2007) showed that correctly 102 

predicting the surface energy balance was essential for predicting extreme summer 103 

temperatures over the eastern U.S.  Dulière et al. (2011) showed that both WRF and the 104 

Hadley Centre Regional Model (HadRM) adequately represented local extremes of 105 

temperature and precipitation in the Northwest U.S. over a recent 5-yr period.  Caldwell 106 

et al. (2009) found that WRF driven by 40-yr climate simulations overpredicted 107 

precipitation extremes over California and underpredicted the frequency of precipitation 108 

events.  By contrast, Mladjic et al. (2011) found that the CRCM underpredicted 109 

precipitation extremes across Canada for an historical 30-yr period. 110 
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This study addresses two relevant questions for dynamical downscaling for the 111 

contiguous United States (CONUS):  how well can a RCM simulate temperature and 112 

precipitation means and extremes for a multi-decadal period, and how does nudging 113 

affect the frequencies and intensities of those extreme events?  Colin et al. (2010) created 114 

a 23-yr simulation with ALADIN-Climate and found that spectral nudging did not 115 

adversely affect the prediction of extreme precipitation events over Europe.  This study 116 

investigates the effects of nudging techniques on predictions of extreme temperatures and 117 

precipitation with the WRF model as a RCM to simulate an historical 20-yr period.  We 118 

evaluate the results against high-resolution analyses and examine the impacts of nudging 119 

on simulated extremes across the CONUS to determine whether interior nudging in WRF 120 

inappropriately squelches the extremes. 121 

 122 

2.    Model description 123 

The WRF model version 3.2.1 (WRFv3.2.1) was initialized at 0000 UTC 2 December 124 

1987 and run for a 1-month spin-up, then run continuously for 20 years through 0000 125 

UTC 1 January 2008.  The two-way-nested modeling domains (108- and 36-km 126 

horizontal grid spacing; see Fig. 1) covered North America and the CONUS, 127 

respectively.  WRF was run with a 34-layer configuration that extended to a model top at 128 

50 hPa.  The physics options included the Rapid Radiative Transfer Model for global 129 

climate models (RRTMG; Iacono et al. 2008) for longwave and shortwave radiation, the 130 

WRF single-moment 6-class microphysics scheme (Hong and Lim 2006), the Grell 131 

ensemble convective parameterization scheme (Grell and Dévényi 2002), the Yonsei 132 

University planetary boundary layer (PBL) scheme (Hong et al. 2006), and the Noah 133 
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land-surface model (Chen and Dudhia 2001).  The input data are 2.5° × 2.5° analyses 134 

from the NCEP-Department of Energy Atmospheric Model Intercomparison Project 135 

(AMIP-II) Reanalysis data (Kanamitsu et al. 2002) (hereafter, R-2), which are at 136 

comparable spatial and temporal resolutions as GCM fields.  Since the data are from an 137 

historical period, the downscaled runs can be evaluated against higher-resolution 138 

reanalysis products.  The R-2 fields provide initial, lateral, and surface boundary 139 

conditions, and they serve as the constraints when interior nudging is used.  No further 140 

observational data are assimilated into the WRF simulation. 141 

Three 20-yr runs are performed with WRF.  One simulation includes nudging 142 

only through the lateral boundaries (Davies and Turner 1977) using a 5-point sponge 143 

zone (i.e., no nudging, NN).  The other simulations additionally use one of the two forms 144 

of grid-based nudging that are available in public versions of WRF: analysis nudging 145 

(AN) and spectral nudging (SN).  Both forms of interior nudging can reduce errors in the 146 

means in regional climate modeling with WRF (e.g., Lo et al. 2008; Bowden et al. 147 

2012a). 148 

The analysis nudging technique in WRF (Stauffer and Seaman 1990; Deng et al. 149 

2007) is theorized to be most useful when the input data fields are not significantly 150 

coarser than the model resolution.  In WRF, analysis nudging adds a non-physical term to 151 

the prognostic equations that is proportional to the difference between the model state 152 

and a value that is interpolated in time and space from the reference analysis.  Analysis 153 

nudging is applied toward horizontal wind components, potential temperature, and water 154 

vapor mixing ratio.  The analysis nudging coefficients (Table 1) are set to the default 155 

values in WRF for wind and temperature for the 108-km domain, but reduced for 156 
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moisture (e.g., Otte 2008) and reduced for all coefficients for the 36-km domain (e.g., 157 

Stauffer and Seaman 1994).  The analysis nudging is only applied above the PBL to 158 

maximize WRF’s freedom to develop mesoscale circulation in the PBL. 159 

Spectral nudging is attractive as a scale-selective interior constraint for regional 160 

climate downscaling because it can restrict nudging toward the longer wavelengths.  161 

Similar to analysis nudging, spectral nudging affects the model solution through a non-162 

physical term in the prognostic equations, but instead the term is based on the difference 163 

between the spectral decompositions of the model solution and the reference analysis.  164 

The spectral nudging in WRFv3.2.1 follows Miguez-Macho et al. (2004) and can be 165 

applied toward horizontal wind components, potential temperature, and geopotential.  As 166 

in the analysis nudging simulation, spectral nudging is only applied above the PBL.  167 

Spectral nudging is used to constrain WRF toward synoptic-scale wavelengths and is 168 

applied in WRF to wavelengths longer than a threshold that is a function of domain size 169 

and a specified cutoff wavenumber.  The threshold wavelength for spectral nudging 170 

should not be less than the shortest wavelength resolved by the input fields, which is at 171 

least 4∆x (Pielke 1984) of the R-2 analyses, or ~1100 km in midlatitudes.  Nudging 172 

coefficients, threshold wavenumbers used for spectral nudging, and their corresponding 173 

wavelengths are given in Table 1. 174 

 175 

3.    Analysis 176 

The three WRF simulations on the 36-km domain are analyzed for the historical period 177 

1988–2007.  We seek to determine how nudging affects the representation of 2-m 178 
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temperature and precipitation extremes over the 20-yr period.  Since no interior nudging 179 

occurs within the PBL, neither 2-m temperature nor precipitation is directly assimilated. 180 

For a variable with a given statistical distribution, the frequency of extreme events 181 

(as measured by threshold exceedances) changes if the mean of the distribution shifts 182 

and/or if the variance (width) of the distribution changes (Meehl et al. 2000a).  A change 183 

in the mean will cause an increase in threshold exceedances on one end (e.g., the number 184 

of hot days) and a decrease on the other side of the distribution (e.g., the number of cold 185 

days).  A change in the variance will affect the frequency and magnitude of extremes on 186 

both sides of the distribution, and according to Katz and Brown (1992) it may be more 187 

important for changes in extreme outliers (i.e., events more than one standard deviation 188 

from the mean).  Since the representation of the mean and variance is important for the 189 

frequency and severity of extreme events, we first examine how the three downscaling 190 

strategies influence the mean 2-m temperature and precipitation from the RCM.  Then, to 191 

investigate the effects of nudging on the variability in the RCM we compare spatial 192 

spectra from the RCM fields with those from the reanalysis fields.  Finally, we examine 193 

the extremes of 2-m temperature and precipitation in the downscaled runs. 194 

The WRF simulations are compared to the R-2 fields to determine the extent to 195 

which the large-scale variability is preserved in the WRF simulation.  For near-surface 196 

fields, where mesoscale detail is expected to be gained by using a RCM, the WRF 197 

simulations are compared to high-resolution reanalyses from the North American 198 

Regional Reanalysis (NARR; Mesinger et al. 2006) and the Climate Forecast System 199 

Reanalysis (CFSR; Saha et al. 2010).  Both the NARR and the CFSR should include 200 

mesoscale detail that is comparable to what could be produced in the 36-km WRF 201 
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simulations.  The NARR is a 32-km limited-area reanalysis that has 3-h fields and is 202 

often used for understanding regional climate and for validation of regional climate 203 

modeling studies over North America (e.g., Ruiz-Barradas and Nigam 2006; Bukovsky 204 

and Karoly 2007; Lo et al. 2008; Becker et al. 2009; Bowden et al. 2012a).  The CFSR is 205 

a 0.31° (~35-38-km at midlatitudes) global reanalysis that consists of 6-h analyses 206 

supplemented with hourly forecasts.  Here, CFSR is used for comparisons of 2-m 207 

temperature, and NARR is used for precipitation, as explained below. 208 

Several of the extremes that are examined in this paper are comparisons of 2-m 209 

temperature against threshold values.  With 3-h temporal sampling, the NARR is 210 

inadequate for counting temperature exceedances.  We instead use the hourly gridded 211 

fields from the CFSR.  Saha et al. (2010) show that the multi-year mean and trend of 2-m 212 

temperature from CFSR match well with comparable fields used in the climate change 213 

community to estimate global warming trends.  Wang et al. (2011) show that 2-m 214 

temperature from CFSR is more highly correlated with observations than either R-2 or its 215 

predecessor R-1 is. 216 

To ensure that the fields from CFSR are qualitatively and quantitatively consistent 217 

with a validated source, the mean 2-m temperature for 1988–2007 (i.e., the 20-yr period 218 

of the WRF simulations) is computed for both NARR and CFSR interpolated to the 36-219 

km WRF domain at their highest temporal resolutions (i.e., 3-h and 1-h fields for the 220 

NARR and CFSR, respectively) using WRF preprocessing software.  Outside of regions 221 

with complex terrain, the 20-yr mean 2-m temperature is consistent between NARR and 222 

CFSR (Fig. 2).  East of the Rocky Mountains (excluding the southern Appalachian 223 

Mountains), the differences in the 20-yr mean 2-m temperature between NARR and 224 



11 

CFSR are typically within ±1.5 K.  Differences between NARR and CFSR in the 20-yr 225 

mean 2-m temperature typically exceed ±2.5 K in areas of complex terrain in the 226 

CONUS.  Although both NARR and CFSR are reanalysis products that are strongly 227 

influenced by observations, neither model assimilates 2-m temperature directly. 228 

Precipitation comparisons are made against NARR fields that have been 229 

interpolated to the 36-km WRF domain.  Over the CONUS, precipitation fields from the 230 

NARR are influenced by assimilating hourly precipitation derived from 1/8° daily 231 

analyses of rain gauge data, which are then converted to latent heat to constrain the 232 

NARR precipitation (Mesinger et al. 2006).  The amplitude of the annual cycle of 233 

precipitation is well-depicted by NARR (Ruiz-Barradas and Nigam 2006) and, overall, 234 

NARR precipitation is “virtually indistinguishable” from observations (Nigam and Ruiz-235 

Barradas 2006).  Bukovsky and Karoly (2007) conclude that although NARR is 236 

imperfect, it is superior to other reanalysis products for precipitation and it adequately 237 

captures extreme events, even over the topography of the western U.S.  Becker et al. 238 

(2009), however, note that NARR has a systematic bias toward more frequent, lighter 239 

precipitation and extremes are underestimated in the eastern United States.  In accordance 240 

with Mesinger et al. (2006), our precipitation comparisons are restricted to land and over 241 

the CONUS because NARR is less reliable where limited and coarser-scale data were 242 

assimilated.  Since the NARR precipitation fields represent the CONUS well, we use 243 

NARR instead of CFSR precipitation fields which have not been adjusted by 244 

observational assimilation.  Our analysis indicates that CFSR is much wetter than NARR 245 

(not shown), which is corroborated by Higgins et al. (2010) and Mo et al. (2011) who 246 

showed systematic overprediction of precipitation by CFSR throughout the CONUS. 247 
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 248 

a. Mean 2-m temperature and precipitation 249 

Although the focus of this work is on simulating extreme events, we first evaluate the 250 

mean values of 2-m temperature and total precipitation in the WRF simulations over 251 

different temporal scales because changes in the means will affect the extreme values.  252 

The 20-yr mean 2-m temperature is computed for each of the three WRF simulations and 253 

compared against CFSR (Fig. 2).  All three WRF simulations show a slight warm bias 254 

(>0.5 K) in the Plains (see Fig. 1) and along the southeastern Atlantic coast compared to 255 

CFSR.  The differences from CFSR are more pronounced in NN, where the warm bias 256 

exceeds 1.5 K in the southern Plains and a large area of cool bias of more than 0.5 K 257 

extends throughout southeastern Canada.  As in the comparison of NARR with CFSR, all 258 

three WRF simulations have large differences from CFSR in complex terrain, and the 259 

patterns, signs, and magnitudes of the differences in complex terrain are consistent when 260 

compared to the difference between NARR and CFSR (Fig. 2).  Differences between 261 

NARR and the WRF simulations are not as pronounced as in the comparisons with CFSR 262 

especially in complex terrain (not shown), which suggests that the NARR topography 263 

may be more consistent with WRF than the topography used in the global CFSR. 264 

The precipitation predicted by WRF is too high compared to NARR throughout 265 

much of the domain (Fig. 3).  Average annual precipitation in WRF is particularly 266 

exaggerated in complex terrain and east of the Rocky Mountains.  Although the average 267 

annual precipitation in WRF is too high regardless of whether nudging is used, the WRF 268 

simulations all correctly predict that the highest precipitation amounts occur along the 269 

northwestern coast and in the eastern United States. 270 
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The evaluation of the extremes in this paper focuses on the Midwest region 271 

(Fig. 1), which has only gradual changes in topography; the other regions are presented in 272 

less detail to permit a broader analysis.  The differences between NARR and CFSR in 20-273 

yr mean 2-m temperature are typically within ±0.5 K throughout the Midwest (Fig. 2), 274 

and those differences are overall the smallest of the regions in Fig. 1.  In the Midwest, 275 

NN has little bias compared to CFSR (Fig. 2), except for a slight cool bias between 276 

-1.5 K and -0.5 K around the northern, eastern, and southern peripheries of that region.  277 

AN has a slight warm bias (0.5–1.5 K) in the Midwest, and SN is the least biased 278 

compared to CFSR for the 20-yr mean 2-m temperature (Fig. 2). 279 

Figure 4 shows a time series of the monthly area-average 2-m temperature 280 

difference from CFSR for the Midwest region for each of the three WRF simulations.  281 

Although the 20-yr mean 2-m temperature from NN compares well to CFSR and 282 

arguably may be as good as or better than AN and SN, examining only the mean 2-m 283 

temperature over the 20-yr period can be misleading (cf. Fig. 2 and Fig. 4).  The monthly 284 

area-average 2-m temperature over the 20-yr period shows deviations greater than 4 K in 285 

NN (Fig. 4).  These month-to-month differences in NN indicate the RCM’s inability to 286 

correctly simulate weather conditions that are consistent with the large-scale driving 287 

fields and show that the modest mean annual bias (Fig. 2) results from averaging large 288 

monthly biases that have the opposite sign (Fig. 4).  Both AN and SN reduce the monthly 289 

deviations from CFSR to less than ±2 K (Fig. 4).  Each year, the most pronounced 290 

monthly cold bias in the Midwest in NN is typically in July or August (Fig. 4), and that 291 

cold bias is mitigated by both forms of nudging, slightly more strongly by AN than SN.  292 

AN is slightly warmer than SN for most months throughout the 20-yr period, which is 293 
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consistent with the relative comparisons of AN and SN to CFSR (Fig. 2).  AN and SN 294 

improve the average monthly predictions of 2-m temperature throughout the domain 295 

compared to NN (Fig. 5).  In NN, there is a pronounced cold bias (approaching 3 K) in 296 

the eastern U.S. in the summer, which is mitigated by either form of nudging. 297 

The three WRF simulations generally overpredict precipitation by 10–50 mm per 298 

month compared to NARR (Figs. 4 and 6), which is consistent with the overpredictions in 299 

Fig. 3.  The largest monthly differences in the Midwest (Fig. 4) are typically in NN, and 300 

the differences are progressively reduced in SN and AN.  Some months in the 20-yr 301 

period also have noticeable underpredictions of area-average precipitation of more than 302 

25 mm, particularly in NN.  In addition, the phase of the errors in NN is often not aligned 303 

with the errors in AN and SN, which suggests that the individual weather events in NN 304 

may be misrepresented.  Such large differences in area-average precipitation in NN over 305 

a one-month period (both overprediction and underprediction) indicate the RCM’s 306 

inability to accurately characterize prolonged periods of heavy rain and dry spells that 307 

could contribute to flooding and drought, and the resulting errors in the surface heat 308 

fluxes would affect the ability of the RCM to predict extreme temperatures (e.g., Lynn et 309 

al. 2007).  Overall, using either form of interior nudging improves the regional prediction 310 

of monthly precipitation by WRF, and AN gives better predictions than SN for 5 of the 6 311 

regions (Fig. 6). 312 

 313 

b. Spectra of downscaled fields 314 

Since variability can influence extreme events (Katz and Brown 1992; Meehl et al. 315 

2000a), spectra are examined to determine the effects of nudging on variability at 316 
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different spatial scales.  Spectra represent the contribution of each wavenumber to the 317 

total variance and can indicate how well the large-scale fields from R-2 are captured and 318 

reproduced by WRF.  In addition, comparing the WRF spectra to NARR shows if WRF 319 

is producing variability at the smaller scales where value should be added from the 320 

downscaling process. 321 

One-dimensional spatial spectra are computed along rows of the 36-km domain 322 

(grid-relative west-east) for R-2, NARR, and the three WRF simulations.  The spectra are 323 

computed every 6 h, and all data for each month are averaged over the 20-yr period.  The 324 

data are detrended by fitting the fields along each model row to a quadratic least-squares 325 

regression, then using the regression to remove linear and parabolic trends.  After 326 

subtracting the row mean, a Hamming window (Kaimal and Kristensen 1991) is used to 327 

taper the rows to force periodicity for the spectral computations.  Following Kaimal and 328 

Kristensen, the final spectra are multiplied by 2.52 to compensate for the reduction of 329 

variance from the Hamming window. 330 

In January, the variability in the long waves (longer than 4∆x for R-2) in 500-hPa 331 

temperature over the 20-yr period is consistent with R-2 in all three WRF simulations at 332 

36-km (Fig. 7).  WRF retains much of the large-scale variability from R-2 via the lateral 333 

boundaries during January when there is strong synoptic forcing, though there is a slight 334 

reduction in variability in NN at long wavelengths compared to the other spectral 335 

representations of January.  In the mesoscale wavelengths (between 4∆x for R-2 and 4∆x 336 

for WRF), both NN and SN add variability at a magnitude that is consistent with NARR, 337 

while AN has reduced variability compared with NARR.  Even by weakening the 338 

nudging on the 36-km domain compared to model defaults, the analysis nudging 339 
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technique may be nudging too strongly toward the R-2 fields and, as a result, 340 

unrealistically suppressing variability in the wintertime 500-hPa temperature.  Thus, the 341 

nudging coefficients used for AN should be further revised for regional climate 342 

simulations to achieve the optimal balance between mesoscale variability and fidelity to 343 

the driving fields.  Approaching 4∆x in WRF, all three WRF runs have higher variability 344 

than NARR, suggesting the downscaled runs have too much variance at those scales. 345 

In July, the long waves in 500-hPa temperature are consistent between R-2 and 346 

the nudged WRF simulations.  However, there is much greater and unrealistic variability 347 

in NN (note the logarithmic ordinate axis in Fig. 7).  This suggests that without interior 348 

nudging, weak synoptic forcing through the lateral boundaries allows WRF too much 349 

freedom to generate variability.  Simply comparing the three WRF simulations could lead 350 

to the conclusion that using either interior nudging technique in WRF adversely impacts 351 

the variability in the multi-decadal regional climate prediction.  However, the variability 352 

in NN is neither present in the large-scale driving fields (R-2), nor is it corroborated by 353 

the NARR.  At the mesoscale wavelengths, AN has reduced the variance compared to SN 354 

and NN during July.  SN is seemingly effective for producing large-scale variability that 355 

is consistent with NARR while also allowing the RCM to develop smaller-scale 356 

variability. 357 

Examining 700-hPa water vapor mixing ratio for January and July (Fig. 8) 358 

suggests the large-scale moisture fields from R-2 are generally retained, but there is too 359 

much variability in all three WRF simulations regardless of whether interior nudging is 360 

used.  The increased humidity variance in WRF is consistent with the overprediction of 361 

precipitation in all WRF simulations.  Unlike for 500-hPa temperature (and momentum 362 
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fields, not shown), the variance of 700-hPa water vapor mixing ratio with AN is not 363 

unrealistically suppressed.  This suggests that analysis nudging may be adjusting the 364 

variance in the moisture fields toward the observed state, which is also consistent with 365 

the better predictions of precipitation by AN than SN (Fig. 4), or that the humidity is 366 

strongly controlled by fields in the PBL that are not nudged.  Recall that the analysis 367 

nudging technique in WRF can adjust the water vapor mixing ratio field, while spectral 368 

nudging cannot. 369 

To focus on the long waves where the RCM should be consistent with the large-370 

scale driving fields, energy spectra are shown in Fig. 9 with a linear ordinate axis.  At 371 

250 hPa, the energy in the January meridional wind is reduced for all three WRF 372 

simulations compared to the representations in R-2 and NARR.  NN has notably lower 373 

energy than both AN and SN, where energy in the long waves is increased to approach 374 

the reference fields.  In July, the 250-hPa meridional wind spectra are qualitatively 375 

similar to January, but the magnitudes are smaller because the synoptic transport has a 376 

smaller meridional component in July in this domain.  At 500 hPa for January, the 377 

distinctions between the WRF runs and the reference fields are small, although NN still 378 

has slightly lower energy compared to the other runs.  However, at 500 hPa in July, NN 379 

has greater energy than the other WRF runs and the reference fields (consistent with 380 

Fig. 7).  In addition, compared to July at 250 hPa, the 500-hPa spectral energy of the 381 

meridional wind has the opposite sign of the error, so the distribution of energy in NN in 382 

the column is in error, and interior nudging notably acts to mitigate that error under weak 383 

synoptic forcing.  The analogous zonal wind spectra (not shown) are qualitatively similar 384 

to Fig. 9. 385 
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As shown in Figs. 7–9, a larger total variance in the RCM simulations is not an 386 

indication of added value.  Comparing the total variance of RCM simulations only to 387 

each other is not enough to determine the best representation of regional climate.  The 388 

added or reduced variance at the large scales in NN (Figs. 7–9) represents an undesired 389 

deviation from the driving fields, and those errors in variance at larger scales may 390 

cascade down and contaminate the smaller scales.  The spectra suggest that using interior 391 

nudging (AN or SN) produces larger-scale features that are more consistent with the 392 

driving fields.  The adverse impacts of AN at smaller scales may be mitigated by further 393 

decreasing the nudging strength (Bowden et al. 2012a). 394 

 395 

c. Annual totals of daily exceedances of extreme thresholds 396 

To evaluate extremes, we first examine exceedances of 2-m temperature and precipitation 397 

thresholds from the RCM compared to those computed from CFSR (temperature) and 398 

NARR (precipitation).  For the RCM simulations and the high-resolution reanalyses, the 399 

number of days in each year that the threshold was exceeded at each grid cell was tallied.  400 

Those annual tallies for each threshold were then area-averaged within each region (see 401 

Fig. 1).  The thresholds are based on the Annual Climatological Summary maintained by 402 

the NOAA National Climatic Data Center.  The thresholds also align well with a subset 403 

of the 27 extreme indices suggested by the World Climate Research Programme Climate 404 

Variability and Predictability (CLIVAR) Expert Team on Climate Change Detection and 405 

Indices (e.g., Karl et al. 1999).  Hot and cold thresholds for daily temperature and high 406 

daily precipitation thresholds are examined.  The analysis for R-2 is not shown because 407 

the temperature data are too temporally coarse (6-h) to capture threshold values, and the 408 
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precipitation estimates from R-2 are biased high (e.g., Guirguis and Avissar 2008; Wang 409 

et al. 2011). 410 

Figure 10 shows the area-averaged number of days with 2-m temperature >90°F 411 

(32.2°C), or “summer days”, based on hourly data.  None of the RCM simulations 412 

predicts as many area-average exceedances of the 90°F threshold as the CFSR for the 413 

Midwest region in any of the 20 years simulated.  Compared to CFSR, NN 414 

underestimates the annual number of summer days by as many as 40 days across the 415 

Midwest region.  Both forms of interior nudging improve the simulation of summer days 416 

compared to NN, although AN and SN still typically underestimate the number of 417 

summer days by 10–20 days compared with CFSR.  For the summer day threshold in the 418 

Midwest over this period, AN performs best.  The underprediction of summer days in all 419 

WRF simulations (Fig. 10) is consistent with a persistent overprediction of precipitation 420 

in the region (Figs. 3 and 4), where the surface energy balance is likely tilted more 421 

toward latent heating because of the moist ground.  In addition, the underprediction of 422 

temperatures at the “summer day” threshold is consistent with Fig. 4, which shows the 423 

largest underprediction of temperature typically occurs in July and is most pronounced in 424 

NN. 425 

Figure 11 shows a comparison of the WRF simulations to CFSR over the 426 

Midwest region for three cold thresholds:  number of days with temperature <32°F (0°C, 427 

frost days), number of days with maximum temperature <32°F (0°C, freeze days), and 428 

number of days with temperature <0°F (-17.8°C).  For the first decade of the 20-yr 429 

simulation, all three WRF simulations tended to underpredict the number of frost days, 430 

but the number of area-average frost days for the Midwest was typically within five days 431 
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of CFSR for all three WRF runs during the second decade.  NN often had the largest 432 

differences from CFSR.  Both AN and SN predicted similar numbers of frost days for 433 

most years and represented an improvement over NN throughout the 20-yr period. 434 

For some years during the period, NN approximately predicted the area-average 435 

number of freeze days in the Midwest compared to CFSR (Fig. 11), but other years 436 

underpredicted the number of freeze days by more than 10.  However, AN and SN 437 

consistently predicted the number of area-average annual freeze days within five days of 438 

CFSR.  All three WRF simulations were consistent with CFSR in characterizing the 439 

number of very cold days (temperature <0°F) throughout the 20-yr period, though the 440 

most notable differences from CFSR occurred in NN. 441 

Across all regions, the distributions of the 20-yr annual exceedances of the hot 442 

(90°F) and cold (32°F) thresholds are shown in Fig. 12.  In NN, there is reduced 443 

interannual variability and too few exceedances of the hot threshold in the Midwest, 444 

Northeast, and Southeast, which is consistent with the strong summer cold biases shown 445 

in Fig. 5.  In all of those regions, both AN and SN increase the interannual variability and 446 

the number of exceedances to be more consistent with CFSR.  In the Northwest and 447 

Southwest, NN overpredicts the exceedances of the hot threshold, and this overprediction 448 

is mitigated with nudging.  For the cold threshold, NN tends to artificially increase the 449 

interquartile range in the northern regions, where >100 cold days occur annually.  For the 450 

nudged runs, the interquartile ranges are closer to CFSR than NN is in those regions.  451 

Nudging does not suppress the prediction of cold days relative to NN or to CFSR in most 452 

regions, although there is a slight reduction in the number of cold days predicted in the 453 

Plains in all WRF runs. 454 
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To understand the ability of WRF to simulate heavy precipitation events, 455 

comparisons are made to NARR estimates of numbers of days with precipitation 456 

exceeding thresholds of 0.5 in and 1.0 in (similar to CLIVAR indices of ≥10 mm and 457 

≥20 mm).  Figure 13 shows that for both precipitation thresholds, all three WRF 458 

simulations overpredict the annual area-average number of days that each threshold was 459 

surpassed in the Midwest compared to NARR.  The overprediction of precipitation at the 460 

high thresholds by WRF occurs for each year of the 20-yr simulation period (Figs. 13 and 461 

14), and it is consistent with the general overprediction of precipitation shown in Figs. 3, 462 

4, and 6.  In general, the overpredictions occur most frequently in NN, which suggests 463 

that without interior nudging, the configuration of WRF used here has a tendency to 464 

generate more heavy precipitation events than are observed.  In general, NN predicts 465 

about ten more days ≥0.5 in and about five more days ≥1.0 in per year than were 466 

observed in the Midwest (using NARR as the benchmark).  At the 0.5 in threshold, the 467 

SN simulation tends to overpredict the number of days as often as NN (Figs. 13 and 14).  468 

The precipitation event totals at both thresholds are best matched with NARR in AN in 469 

five of the six regions, possibly because AN is the only simulation that constrains 470 

moisture on the interior of the domain.  Radu et al. (2008) showed that spectral nudging 471 

exaggerated the intensity of wintertime precipitation events unless a constraint toward 472 

specific humidity was introduced.  Thus more heavy precipitation events are erroneously 473 

predicted without using interior nudging, and AN appropriately suppresses the number of 474 

events toward the observed state. 475 

 476 
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d. Monthly extremes and interannual variability 477 

Here, extremes are assessed relative to the 20-yr climatology by examining monthly-478 

averaged daily maximum and minimum 2-m temperature, monthly-averaged diurnal 479 

temperature range, and total monthly precipitation.  As in the previous subsection, values 480 

are tabulated at each grid cell and aggregated to form an area average.  For each of the 12 481 

months, the means and standard deviations are computed relative to each model run’s 482 

distribution to account for the bias in the RCM predictions (e.g., Figs. 2–4) and to track 483 

the annual cycle in the Midwest region.  This subsection not only addresses extremes, but 484 

also the effects of nudging on the mean, variability, and timing of events in the RCM.  To 485 

examine the effects of the variability on the extremes, two standard deviations from the 486 

mean (±2σ) are considered outlier months.  Assuming the data are normally distributed, 487 

approximately 1 in 22 values falls outside ±2σ, so those events occurring less than 5% of 488 

the time could be considered rare or extreme.  Although this criterion is objective and 489 

practical, it is limited for precipitation which does not have a normal distribution, and its 490 

lower bound is 0. 491 

Using the ±2σ criterion, the CFSR identifies three exceptionally hot months and 492 

four exceptionally cold months in the Midwest region using the monthly area-averaged 493 

daily maximum 2-m temperature (Fig. 15).  Four of those months (January 2006, 494 

September 1993, December 1989, and December 2000) were correctly characterized as 495 

exceptional in all three WRF runs, regardless of whether interior nudging was used.  The 496 

exceptionally cold August 1992 was also identified as the coldest August in all three 497 

WRF runs, despite falling short of the -2σ criterion.  (August 1992 is obscured for AN 498 

and SN in Fig. 15 because August 2004 has a similar value.)  This shows that WRF can 499 
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create credible predictions (e.g., from persistent and strong synoptic forcing through the 500 

lateral boundaries) and does not rely on nudging to compensate for shortcomings in 501 

physics.  However, March 2000 and June 1988 were merely cast as unusually warm in 502 

NN, but correctly characterized as extreme by AN and SN.  In fact, the summer of 1988 503 

had the hottest June, July, and August of the 20-yr period, a prolonged period of drought 504 

in the Midwest.  Without interior nudging, NN consistently underpredicted 2-m 505 

temperature during the summer months (consistent with Fig. 4), and did not identify 1988 506 

as having a remarkably hot summer.  In NN, July 1988 was 0.5 K cooler for the region 507 

than July 2006, its hottest July (a false alarm), which was only unusually warm (+1σ) in 508 

CFSR, AN, and SN.  In addition, April 2006 was the hottest April of the 20-yr period in 509 

CFSR, AN, and SN, but without interior nudging, NN classified that month as near 510 

normal.  Without interior nudging, WRF captured some of the extreme months during the 511 

20-yr period, but had several misses and false alarms.  Although imperfect, using interior 512 

nudging in WRF improves the representation of the extreme months, eliminates the 513 

misses and false alarms, and greatly improves the accuracy in characterizing the relative 514 

severity of the events. 515 

As with daily maximum temperature, several months that had exceptionally hot or 516 

cold monthly area-averaged daily 2-m temperature minima (June 1992, August 1992, 517 

December 1989, December 2000) were correctly characterized in all three WRF runs, 518 

regardless of whether nudging was used (Fig. 16).  However, without nudging, NN 519 

misclassified the severity of some months (October 1988 and 2007, which were the 520 

coldest and hottest Octobers at ±1σ rather than ±2σ, which suggests reduced interannual 521 

variability for October), missed extreme months altogether (June 2003, which was the 2nd 522 
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coldest in CFSR, AN, and SN, but average in NN), or simulated extreme conditions when 523 

they did not occur (November 2003, which was the 3rd hottest and +1σ in NN, but 524 

average in CFSR, AN, and, SN). 525 

The diurnal range of the 2-m temperature can illustrate the effects of precipitation 526 

on temperature.  As demonstrated with the maxima and minima of the daily 2-m 527 

temperature, WRF without nudging can sometimes accurately predict extreme events.  528 

February and March 1998 and November 1999 were correctly classified with 529 

exceptionally small diurnal range by all three WRF runs (Fig. 17), and June 1988 was 530 

exceptionally large in all three WRF runs.  In other cases, nudging was necessary to 531 

intensify (May 1988, July 1988, November 1992, July–September 1993) or mitigate 532 

(November 1997) the magnitude of the diurnal range.  Interior nudging was necessary to 533 

capture the magnitude of the expanded diurnal range during the extreme hot and dry 534 

summer of 1988.  In addition, nudging correctly reduced the diurnal range during July–535 

September 1993, following the record-breaking flooding events.  The annual variability 536 

in the diurnal range in NN is erroneously largest in winter months (and enhanced 537 

compared to CFSR, AN, and SN), and smallest in summer months (and suppressed 538 

compared to CFSR, AN, and SN).  This shows that interior nudging is needed to correctly 539 

simulate the intraannual and interannual variability in diurnal range. 540 

Month-by-month area-average precipitation totals for the 20-yr period are shown 541 

in Fig. 18.  Evaluating monthly precipitation totals over a region allows us to remove 542 

acute events (which are also important, but discussed as part of Figs. 13 and 14) and 543 

assess prolonged synoptic patterns that either increase or decrease widespread 544 

precipitation at some point in the year.  Based on NARR for the 20-yr period, there were 545 
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nine individual months with >+2σ area-average precipitation (exceptionally wet) in the 546 

Midwest, and one month with <–2σ area-average precipitation (exceptionally dry) in the 547 

Midwest (Fig. 18).  Without interior nudging in WRF, NN predicted ten exceptionally 548 

wet months and no exceptionally dry months.  However, of the ten exceptionally wet 549 

months identified by NN during the 20-yr period, only four of them actually verified as 550 

exceptionally wet; the other six months predicted as exceptionally wet by NN were 551 

usually only slightly wetter than average according to NARR.  In addition, the 552 

exceptionally dry month (June 1988) was predicted to be only abnormally dry (<–1σ) by 553 

NN, and it was not even the driest June of the 20-yr period in NN.  By contrast, the 554 

exceptionally dry year in June 1988 was correctly predicted by both AN and SN at <–2σ.  555 

June 1988 had <50% of the area-average monthly precipitation of the next driest June of 556 

the 20-yr period in both AN and SN, as in NARR. 557 

AN identified eight exceptionally wet months, and SN identified ten exceptionally 558 

wet months.  The months identified by AN and SN as exceptionally wet often matched 559 

those identified from NARR as exceptionally wet (see Fig. 18).  In cases where there was 560 

disagreement on the extremity of the precipitation during the month, often the month was 561 

the wettest year for that month during the period in NARR and the WRF nudging cases, 562 

so the 2σ threshold may have been too strict.  By contrast, in cases where NN was 563 

inconsistent with NARR, the errors in classifying the extremity of the monthly 564 

precipitation were much larger.  For example, March 1998 was exceptionally wet (>+2σ) 565 

as classified by NARR and as predicted by AN and SN, but it was predicted as slightly 566 

wetter than average (between ±1σ) by NN.  March 2002 was predicted as exceptionally 567 

wet by NN, but verified as slightly wetter than average in NARR and was correctly 568 
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classified by AN and SN.  Problems in NN also persisted in summer months, where 569 

August 2007 was an exceptionally wet month in NARR and was correctly predicted by 570 

AN and SN as the wettest August of the 20-yr period (Fig. 18); NN, however, classified 571 

August 2007 as abnormally dry (<–1σ).  Lastly, the three wettest months during the 20-yr 572 

period in NARR were May 2004, June 1998, and July 1992 (Fig. 18).  All three of those 573 

months were correctly predicted as the top three wet months by AN and SN, while NN 574 

did not identify any of those months among the three wettest.  Overall, while imperfect 575 

and subject to refinement, applying interior nudging toward the coarse-resolution R-2 576 

fields through AN and SN enabled WRF to identify extreme months in the Midwest 577 

region that were better matched to NARR than NN.  Without interior nudging NN 578 

identified the approximate number of extreme wet months, and NN correctly identified 579 

four of the ten extreme months during the 20-yr simulation period.  However, there were 580 

six misses and six false alarms for NN predictions of exceptionally wet months during the 581 

20-yr period (and one egregious miss of the exceptionally dry month), which is unreliable 582 

for predicting extreme precipitation. 583 

 584 

4.    Summary 585 

In this paper, the impacts of interior nudging on the prediction of extremes in regional 586 

climate modeling were explored.  Using the WRF model as the RCM, three continuous 587 

simulations covering 1988–2007 were evaluated where the constraint toward the large-588 

scale driving conditions was exercised either only at the lateral boundaries or via one of 589 

the two interior nudging techniques in WRF.  The simulations were initialized with 590 

reanalysis fields from R-2 as a proxy for a coarse-resolution global climate model.  591 



27 

Comparisons of the spectra from WRF output fields were made against R-2 to determine 592 

if the WRF simulations were consistent with the driving model at large scales.  Finer-593 

scale comparisons of the WRF simulations were drawn against comparable-resolution 594 

reanalyses from the NARR and CFSR products. 595 

We showed that nudging improves the prediction of monthly means over a multi-596 

decadal period, which is consistent with other studies using shorter (1-yr or less) 597 

simulations (e.g., Miguez-Macho et al. 2004; Castro et al. 2005; Lo et al. 2008, Rockel et 598 

al. 2008; Alexandru et al. 2009; Bowden et al. 2012a).  By constraining only at the lateral 599 

boundaries, WRF often but not always captures the interannual variability, which is also 600 

noted in Bowden et al. (2012b), and some of the extremes.  However, interior nudging 601 

improves the simulation of the mean 2-m temperature and both the hot and cold extreme 602 

thresholds, so nudging improves the distribution and does not simply shift a model bias.  603 

Using interior nudging is clearly an advantage for simulating extreme wet and dry 604 

precipitation periods during the multi-decadal period.  All WRF runs overpredicted 605 

precipitation totals through the multi-decadal period (as in Caldwell et al. 2009) 606 

regardless of whether nudging was used.  Yet, both forms of interior nudging reproduced 607 

extreme events with greater accuracy and did not produce the false alarms and 608 

misclassifications of events when nudging was not used.  Overall, interior nudging 609 

preserved the variability in the large scales from the driving fields and adjusted the 610 

smaller-scale variability toward the high-resolution reanalyses. 611 

These results should not be used to compare the interior nudging techniques 612 

directly because of differences in their fundamental approaches and the variables that are 613 

nudged.  However, the application of nudging in WRF for regional climate modeling 614 
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stands to be improved to capitalize on the strengths of both methods.  Although analysis 615 

nudging is not theoretically applicable for regional climate modeling, using it is 616 

preferable to not using interior nudging.  Here, the analysis nudging simulation is 617 

heuristic because its precipitation means and extremes are consistently more accurate 618 

than the other two runs in five of the six regions in our domain, so it is plausible that 619 

spectral nudging in WRF can be improved. 620 

Our results clearly indicate that using interior nudging for regional climate 621 

modeling with reasonable settings will not inappropriately squelch temperature and 622 

precipitation extremes over prolonged periods in mid-latitudes.  In some cases, increased 623 

spatial variability and larger extremes were predicted without using interior nudging, but 624 

those predictions were inaccurate.  Using an interior constraint toward the large-scale 625 

fields is absolutely necessary to consistently predict extreme events that are faithful to the 626 

large-scale atmospheric circulation and approach the verified values.  Because there is no 627 

consensus on whether nudging is appropriate for regional climate modeling (e.g., 628 

Rummukainen 2010), this research adds confidence to use nudging for dynamical 629 

downscaling particularly when there is an interest in extreme events.  Nudging techniques 630 

must be used appropriately (i.e., nudging toward synoptic-scale waves for spectral 631 

nudging, and using relaxation timescales that are sufficiently long for analysis nudging) 632 

to maximize the benefit from them.  However, we did not explore whether model biases 633 

could be masked and/or exacerbated by nudging.  If the downscaling techniques are 634 

extended to global climate fields (i.e., Type 3 or Type 4 rather than Type 2, following 635 

Castro et al. 2005), then the resultant regional climate projections may include the effects 636 

of biases in the global climate fields that will not be overcome by nudging.  Our results 637 
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reflect one configuration of WRF, and the generality of our conclusions should be 638 

evaluated for other configurations of WRF and other RCMs.  Using historical data, WRF 639 

provides realistic regional climatology and captures some interannual variability without 640 

interior nudging.  However, accurately capturing changes in the interannual variability of 641 

critical thresholds of 2-m temperature and precipitation are important to generate 642 

credible, problem-focused climate assessments (e.g., Tryhorn and DeGaetano 2011), and 643 

that can best be achieved today by using interior nudging techniques in the RCM. 644 
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FIG. 1. WRF 108-km and 36-km domains, and the regions used for model evaluation:  810 

Northwest (NW), Southwest (SW), Plains (PL), Midwest (MW), Southeast (SE), and 811 

Northeast (NE).  From Bowden et al. (2012a). 812 

 813 

FIG. 2. Mean 2-m temperature difference (K) from CFSR for 1988–2007 from NARR and 814 

from WRF simulations NN, AN, and SN. 815 

 816 

FIG. 3. Mean annual precipitation (mm) for 1988–2007 from NARR and from WRF 817 

simulations NN, AN, and SN. 818 

 819 

FIG. 4. Monthly area-averaged (a) 2-m temperature difference from CFSR (K) and (b) 820 

precipitation difference from NARR (mm) for the Midwest region (refer to Fig. 1) for 821 

three WRF runs:  NN (green), AN (blue), and SN (red). 822 

 823 

FIG. 5. 20-yr-average of monthly area-averaged 2-m temperature difference from CFSR 824 

(K) for 6 regions (refer to Fig. 1) for three WRF runs:  NN (“N”), AN (“A”), and SN 825 

(“S”). 826 

 827 

FIG. 6. 20-yr-average of monthly area-averaged precipitation difference from NARR 828 

(mm) for 6 regions (refer to Fig. 1) for three WRF runs:  NN (“N”), AN (“A”), and SN 829 

(“S”). 830 

 831 
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FIG. 7. Spectral variance from 500-hPa temperature for R-2, NARR, and WRF 832 

simulations NN, AN, and SN averaged for (a) January, and (b) July. 833 

 834 

FIG. 8. Same as Fig. 7, but for 700-hPa water vapor mixing ratio. 835 

 836 

FIG. 9. Low-frequency kinetic energy spectra for R-2, NARR, and WRF simulations NN, 837 

AN, and SN averaged for (a) January 250-hPa meridional wind, (b) July 250-hPa 838 

meridional wind, (c) January 500-hPa meridional wind, and (d) July 500-hPa meridional 839 

wind. 840 

 841 

FIG. 10. Annual area-averaged number of days with 2-m temperature above 90°F for the 842 

Midwest region.  Data are shown from CFSR (“O”) and WRF runs NN (“N”), AN (“A”), 843 

and SN (“S”). 844 

 845 

FIG. 11. Annual area-averaged number of days with (a) 2-m temperature below 32°F, (b) 846 

maximum 2-m temperature below 32°F, and (c) 2-m temperature below 0°F for the 847 

Midwest region.  Data are shown from CFSR (“O”) and WRF runs NN (“N”), AN (“A”), 848 

and SN (“S”). 849 

 850 

FIG. 12. 20 years of annual area-averaged number of days with 2-m temperature greater 851 

than 90°F (DT90, gray) and less than 32°F (DT32, white) for the 6 regions in Fig. 1.  852 

Data are shown from CFSR and WRF runs NN, AN, and SN.  Boxes are drawn from 25th 853 
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to 75th percentiles with 50th percentile shown in center of each box, and whiskers at 854 

minimum and maximum values. 855 

 856 

FIG. 13. Annual area-averaged number of days with (a) precipitation greater than 0.5 in 857 

and (b) precipitation greater than 1.0 in for the Midwest region.  Data are shown from 858 

NARR (“O”) and WRF runs NN (“N”), AN (“A”), and SN (“S”). 859 

 860 

FIG. 14. 20 years of annual area-averaged number of days with precipitation greater than 861 

0.5 in (DP05, gray) and precipitation greater than 1.0 in (DP10, white) for the 6 regions 862 

in Fig. 1.  Data are shown from NARR and WRF runs NN, AN, and SN.  Boxes are 863 

drawn from 25th to 75th percentiles with 50th percentile shown in center of each box, and 864 

whiskers at minimum and maximum values. 865 

 866 

FIG. 15. Monthly area-averaged daily maximum 2-m temperature (K) for the Midwest 867 

region for 1988-2007.  Data are shown from CFSR (upper-left) and WRF runs NN 868 

(upper-right), AN (lower-left), and SN (lower-right).  The solid black line indicates the 869 

20-yr, monthly mean of the daily maximum 2-m temperature, the dashed black lines 870 

indicate ±1 standard deviation from the mean, and the gray shading indicates ±2 standard 871 

deviations from the mean.  The data are color-coded by year, with the earliest years in 872 

blues progressing to reds in the later years. 873 

 874 

FIG. 16. Same as Fig. 15, but for daily minimum 2-m temperature (K). 875 

 876 
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FIG. 17. Same as Fig. 15, but for daily diurnal range (K). 877 

 878 

FIG. 18. Same as Fig. 15, but for precipitation (mm). 879 

880 
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TABLE 1. Nudging coefficients (s-1) and domain-relative wave numbers used for analysis 881 

and spectral nudging simulations.  Time scales (h) that correspond to the nudging 882 

coefficients and length scales (km) that correspond to the wave numbers are in 883 

parentheses.  Fields that are not applicable are indicated by –. 884 

 885 

 Wind Potential 

Temp. 

Water 

Vapor  

Mixing 

Ratio 

Geo-

potential 

West-

east 

wave 

number 

South-

north 

wave 

number 

Analysis Nudging 

(108-km) 

3.0 x 10-4 

(0.9) 

3.0 x 10-4 

(0.9) 

4.5 x 10-5 

(6.2) 

– – – 

Analysis Nudging 

(36-km) 

1.0 x 10-4 

(2.8) 

1.0 x 10-4 

(2.8) 

1.0 x 10-5 

(27.8) 

– – – 

Spectral Nudging 

(108-km) 

3.0 x 10-4 

(0.9) 

3.0 x 10-4 

(0.9) 

– 3.0 x 10-4 

(0.9) 

5 

(1728) 

3 

(1800) 

Spectral Nudging 

(36-km) 

3.0 x 10-4 

(0.9) 

3.0 x 10-4 

(0.9) 

– 3.0 x 10-4 

(0.9) 

4 

(1674) 

2 

(1512) 

 886 

 887 

888 
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 889 

 890 

FIG. 1. WRF 108-km and 36-km domains, and the regions used for model evaluation:  891 

Northwest (NW), Southwest (SW), Plains (PL), Midwest (MW), Southeast (SE), and 892 

Northeast (NE).  From Bowden et al. (2012a). 893 

  894 
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 895 

 896 

FIG. 2. Mean 2-m temperature difference (K) from CFSR for 1988–2007 from NARR and 897 

from WRF simulations NN, AN, and SN. 898 
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 900 

 901 

FIG. 3. Mean annual precipitation (mm) for 1988–2007 from NARR and from WRF 902 

simulations NN, AN, and SN. 903 
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 905 

 906 

FIG. 4. Monthly area-averaged (a) 2-m temperature difference from CFSR (K) and (b) 907 

precipitation difference from NARR (mm) for the Midwest region (refer to Fig. 1) for 908 

three WRF runs:  NN (green), AN (blue), and SN (red). 909 

  910 
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 911 

 912 

FIG. 5. 20-yr-average of monthly area-averaged 2-m temperature difference from CFSR 913 

(K) for 6 regions (refer to Fig. 1) for three WRF runs:  NN (“N”), AN (“A”), and SN 914 

(“S”). 915 

  916 
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 917 

 918 

FIG. 6. 20-yr-average of monthly area-averaged precipitation difference from NARR 919 

(mm) for 6 regions (refer to Fig. 1) for three WRF runs:  NN (“N”), AN (“A”), and SN 920 

(“S”). 921 

  922 
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 923 
 924 
 925 
 926 
FIG. 7. Spectral variance from 500-hPa temperature for R-2, NARR, and WRF 927 

simulations NN, AN, and SN averaged for (a) January, and (b) July. 928 

  929 
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b)
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 930 
 931 
 932 
 933 
FIG. 8. Same as Fig. 7, but for 700-hPa water vapor mixing ratio. 934 

 935 
  936 
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 937 
 938 
 939 
 940 
FIG. 9. Low-frequency kinetic energy spectra for R-2, NARR, and WRF simulations NN, 941 

AN, and SN averaged for (a) January 250-hPa meridional wind, (b) July 250-hPa 942 

meridional wind, (c) January 500-hPa meridional wind, and (d) July 500-hPa meridional 943 

wind. 944 
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 946 

 947 

FIG. 10. Annual area-averaged number of days with 2-m temperature above 90°F for the 948 

Midwest region.  Data are shown from CFSR (“O”) and WRF runs NN (“N”), AN (“A”), 949 

and SN (“S”). 950 

  951 
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 952 

 953 

FIG. 11. Annual area-averaged number of days with (a) 2-m temperature below 32°F, (b) 954 

maximum 2-m temperature below 32°F, and (c) 2-m temperature below 0°F for the 955 

Midwest region.  Data are shown from CFSR (“O”) and WRF runs NN (“N”), AN (“A”), 956 

and SN (“S”). 957 

  958 
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 959 

 960 

FIG. 12. 20 years of annual area-averaged number of days with 2-m temperature greater 961 

than 90°F (DT90, gray) and less than 32°F (DT32, white) for the 6 regions in Fig. 1.  962 

Data are shown from CFSR and WRF runs NN, AN, and SN.  Boxes are drawn from 25th 963 

to 75th percentiles with 50th percentile shown in center of each box, and whiskers at 964 

minimum and maximum values. 965 

  966 
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 967 

 968 

FIG. 13. Annual area-averaged number of days with (a) precipitation greater than 0.5 in  969 

and (b) precipitation greater than 1.0 in for the Midwest region.  Data are shown from 970 

NARR (“O”) and WRF runs NN (“N”), AN (“A”), and SN (“S”). 971 

  972 
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 973 

 974 

FIG. 14. 20 years of annual area-averaged number of days with precipitation greater than 975 

0.5 in (DP05, gray) and precipitation greater than 1.0 in (DP10, white) for the 6 regions 976 

in Fig. 1.  Data are shown from NARR and WRF runs NN, AN, and SN.  Boxes are 977 

drawn from 25th to 75th percentiles with 50th percentile shown in center of each box, and 978 

whiskers at minimum and maximum values. 979 
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 981 

 982 

 983 

FIG. 15. Monthly area-averaged daily maximum 2-m temperature (K) for the Midwest 984 

region for 1988-2007.  Data are shown from CFSR (upper-left) and WRF runs NN 985 

(upper-right), AN (lower-left), and SN (lower-right).  The solid black line indicates the 986 

20-yr, monthly mean of the daily maximum 2-m temperature, the dashed black lines 987 

indicate ±1 standard deviation from the mean, and the gray shading indicates ±2 standard 988 

deviations from the mean.  The data are color-coded by year, with the earliest years in 989 

blues progressing to reds in the later years. 990 
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 992 

 993 

FIG. 16. Same as Fig. 15, but for daily minimum 2-m temperature (K). 994 
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 996 

 997 

FIG. 17. Same as Fig. 15, but for daily diurnal range (K). 998 
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 1001 

FIG. 18. Same as Fig. 15, but for precipitation (mm). 1002 

 1003 


