Surface Water Response Modeling

Jim Weaver, US EPA Office of Research and Development Ada, Oklahoma

United States Environmental Protection Agency

15th Annual OSC Readiness Training Program

www.trainex.org/osc2012

Co-presenters

٠

Huron, S.D., May 17, 2008

Goals

Surface water spills:

- How fast does it get downstream?
- What will be the concentration when it gets there?
- Do I need to worry about that drinking water intake?
- Can I plan a response?
- Can these questions be answered quickly enough to matter?
- Two approaches:

States mental Protection

- Empirical tracer data
- Numerical model development

First Approach: USGS Empirical Equations

- Based on hundreds of tracer experiments conducted in all sizes of rivers over the last 40+ years
- No calibration of model needed
 - Otherwise travel time and dispersion coefficients are highly uncertain
- "Unit Peak" concentration concept accounts for variation in
 - Mass loading
 - River discharge
 - Travel distance

Figure 3. Unit concentrations as a function of traveltime with equation 7 plotted on the figure for two values of Q/Q_a .

$$V_p = 0.094 + 0.0143 \times (D'_a)^{0.919} \times (Q'_a)^{-0.469} \times S^{0.159} \times \frac{Q}{D_a}$$

Calculations depend on: Ann. Discharge, Q_a Discharge, Q Drainage Area, D_a Slope, S Distance

United States Invironmental Protection

Figure 9. Plot of velocity of the peak concentration as a function of dimensionless drainage area, relative discharge, slope, local discharge, and drainage area.

Extended Approach

We are extending the original approach:

- Multiple reaches of rivers differing properties
- Branching river networks
- Continuous loadings
- Loadings on different parts of network

Empirical Approach

- Empirical equations do not include initial mixing
- Do not include lakes, impoundments
- Only simple (first order reaction) can be included
- Data needed:
 - River mile distance
 - Average annual discharge
 - Today's discharge
 - Drainage Area
 - Mass/volume of spill
 - Duration

States mental Protection

Uncertainty in Mass and Duration

ted States

ironmental Protection

Numerical Transport in Rivers

- Direct Solutions of partial differential equations
- Travel times
 - Not well estimated by simple point estimates of flows
 - Alternatively: use USGS regression equations
- Turbulent dispersion
 - Recent work has provided better estimates of dispersion coefficients
 - Alternatively: perform a tracer experiment
 - Reactions
 - Flexible, but must characterize

One Dimensional Numerical Model

Monocacy River 6/1968

Monocacy River Tracer Experiment 1 run

Mixing Schematic (Jobson, 1996)

Figure 1. Lateral mixing and longitudinal dispersion patterns and changes in distribution of concentration downstream from a single, center, slug injection of tracer. (Modified from Kilpatrick, 1993, p. 2.)

nited States nvironmental Protection

Missouri River Tracer Experiment

•Current numerical transport work focuses on simulating this experiment:

•Extensions:

United States Environmental Protection

٠

Mixing at tributariesBubbling air/oxygen at places of refuge

Summary

Empirical-base model captures transport essentials

- Data required on rivers
 - Drainage area, slope, discharge, annual discharge
- We're developing data for a few river networks
- (Should we do more?)
- Modeling tool to be made available through web/smart phone

 Numerical models – more powerful, but data/parameter limited

Jim Weaver US EPA National Risk Management Research Laboratory Ground Water and Ecosystems Restoration Division Ada, Oklahoma 74820 <u>Weaver.jim@epa.gov</u> 580-436-8550

http://www.epa.gov/athens/onsite