
Comparison of support vector machine, neural network, and 
CART algorithms for the land-cover classification using 
limited training data points 
 
 
 
Yang Shao1*and Ross S. Lunetta2 
 
 
 
1U.S. Environmental Protection Agency, National Research Council, National Exposure 
Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, 
USA 
 
2U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 
T.W. Alexander Drive, Research Triangle Park, NC 27711, USA 
 
 
 
 

*Corresponding Author (e-mail: shao.yang@epa.gov; Tel: 919-541-4918) 
 
 
 
 
 
Key Words:  Land-Cover Mapping; Support Vector Machine: Accuracy Assessment 
 
 
 
 
 
_____________________________________________________________________________ 
 
Notice:  The U.S. Environmental Protection Agency funded and conducted the research 

described in this paper.  It has been subject to the Agency’s programmatic review and has been 

approved for publication.  Mention of any trade names or commercial products does not 

constitute endorsement or recommendation for use. 

 
 
 



Comparison of support vector machine, neural network, and 
CART algorithms for the land cover classification using 
MODIS time-series data 
 
Abstract  

Support vector machine (SVM) was applied for land-cover characterization using 

MODIS time-series data.  Classification performance was examined with respect to training 

sample size, sample variability, and landscape homogeneity (purity).  The results were compared 

to two conventional nonparametric image classification algorithms: multilayer perceptron neural 

networks (NN) and classification and regression trees (CART).  For 2001 MODIS time-series 

data, SVM generated overall accuracies ranging from 77% to 80% for training sample sizes from 

20 to 800 pixels per class, compared to 67% to 76% and 62% to 73% for NN and CART, 

respectively.  These results indicated that SVM’s had superior generalization capability, 

particularly with respect to small training sample sizes.  There was also less variability of SVM 

performance when classification trials were repeated using different training sets. Additionally, 

classification accuracies were directly related to sample homogeneity/heterogeneity.  The overall 

accuracies for the SVM algorithm were 91% (Kappa = 0.77) and 64% (Kappa = 0.34) for 

homogeneous and heterogeneous pixels, respectively.  The inclusion of heterogeneous pixels in 

the training sample did not increase overall accuracies.  Also, the SVM performance was 

examined for the classification of multiple year MODIS time-series data at annual intervals.  

Finally, using only the SVM output values, a method was developed to directly classify pixel 

purity.  Approximately 65% of pixels within the Albemarle-Pamlico Basin study area were 

labeled as “functionally homogeneous” with an overall classification accuracy of 91% (Kappa = 

0.79).  The results indicated a high potential for regional scale operational land-cover 

characterization applications.   
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I. INTRODUCTION 

MODIS (Moderate Resolution Imaging Spectroradiometer) data has been increasingly 

used to characterize land-cover and monitor vegetation phenology at regional and global scales, 

since being launched in 2000.  One of the most appealing aspects of MODIS data is its unique 

combination of spectral, spatial, radiometric, and temporal resolutions; which are considered to 

be substantially improved over other similar observation systems (Townshend and Justice, 

2002).  It has become common practice to utilize MODIS time-series data to monitor vegetation 

characteristics and condition using phenology information and derived metrics that can  provide 

additional information to differentiate spectrally confusing cover types (Defries and Townshend, 

1994; Friedl et al., 2002; Loveland et al., 2000).  At global scales, Friedl et al. (2002) developed 

an operational annual land-cover mapping approach using MODIS time-series data.  For regional 

applications, a large number of researchers have been exploring MODIS-based classification 

protocols (Knight et al., 2006), algorithms (Hansen et al., 2003; Lobell and Asner, 2004), and 

validation approaches (Giri et al., 2005).  

The use of MODIS time-series data, however, can substantially increase data input 

volume (features/dimensions) for classification applications.  For example, many researchers 

have applied a large number of MODIS spectral and temporal band combinations in their 

classifications (Carrão et al., 2008; Friedl et al., 2002; Knight et al., 2006; Xavier et al., 2006; 

Xiao et al., 2005; Wardlow et al., 2007).  In addition to the increasing computational 

requirements, the Hughes phenomenon can also impact classification performance (Bishop, 



2006; Camps-Valls et al., 2008; Gualtieri, 1999; Melgani and Bruzzone, 2004). Also, the 

availability of training pixels is often limited in practice, which may reduce the generalization of 

the classifier.  Feature selection can be used to reduce the impact of Hughes phenomenon, but 

aggressive feature reduction may lead to information loss (Melgani and Bruzzone, 2004).  These 

problems have been widely addressed in hyperspectral remote sensing applications that also use 

hundreds of input features for image classification and object detection.  Recent studies have 

suggested that support vector machine (SVM) can provide good results for hyperspectral remote 

sensing classification and superior results have been reported compared to traditional remote 

sensing classification algorithms such as maximum likelihood (ML), k-nearest neighbor, and 

neural networks (NN) (Huang et al., 2002; Melgani and Bruzzone, 2004; Pal and Mather, 2005).  

The most appealing property of SVM was the high capacity for generalization with relatively 

small numbers of training data points (Bishop, 2006; Pal and Mather, 2005).  However, the 

potential of SVM has not received much attention for MODIS time-series data classification.  

Specifically, the performance of SVM classification has not been thoroughly assessed with 

regard to training sample sizes, and training data variations and characteristics (i.e., 

homogeneous vs. heterogeneous).  

The objective of this study was to implement and assess SVM classification performance 

using MODIS time-series data.  We compared SVM approach with the two most commonly used 

nonparametric classification algorithms: (i) multilayer perceptron neural networks (NN); and (ii) 

classification and regression trees (CART).  The experiment was designed for examining the 

classification performance using relatively small training samples. We focused on the impact of 

training sample sizes ranging from 20–800 pixels per class using randomly selected samples 

from a large pool of training data points. Accuracy assessments were performed using multiple 



independent reference datasets.  In addition to the accuracy assessment for pure pixels, we also 

assessed mixed pixels, because many MODIS pixels (250 m GSD) were generally a mixture of 

two or more cover types.  The research goal was to provide insights for regional scale land-cover 

classification applications using MODIS time-series data.  

 

II. BACKGROUND  

A. SVM Classifier  

Early development of SVM started in 1970s and the popularity of SVM for pattern 

recognition and classification is actually surged in the late 1990s (Vapnik, 1995; Vapnik, 1998).  

In remote sensing, SVM was primarily used for the hyperspectral image classification and object 

detection (Gualtieri, 1999; Melgani and Bruzzone, 2004); although researchers have recently 

expanding its application for multispectral remote sensing data (Foody and Mathur, 2004; Huang 

et al., 2002; Pal and Mather, 2005).  Melgani and Bruzzone (2004) and Huang et al. (2002) 

provided a detailed introduction of SVM to the remote sensing community. Mountrakis et al. 

(2011) summarized empirical results from over 100 articles using the SVM image classification 

algorithm. The primary advantage of SVM was good generalization capability with limited 

training samples. The authors acknowledged SVM’s limitations in parameter selection and 

computational requirements.  However, SVM provided superior performance compared to most 

other image classification algorithms for both real-world remote sensing data and simulated 

experiments.  

Using hyperspectral remote sensing data, Melgani and Bruzzone (2004) performed a 

detailed comparison of SVM, conventional K-nearest neighbor, and a radial basis neural 

network. Their results indicated that SVM substantially outperformed the other two classifiers.  



They concluded that SVM was less sensitivity to the Hughes phenomenon, thus feature selection 

procedure may not be needed for high dimensional dataset.  Furthermore, they compared a range 

of SVM multi-class classification strategies including one-against-all, one-against-one, and 

hierarchical tree-based classification scheme or approaches. The results from these approaches 

appeared to be quite similar.  The superior performance from SVM was also reported by 

(Camps-Valls et al., 2004; Camps-Valls and Bruzzone, 2005; Gualtieri, 1999), particularly with 

respect to the classification of hyperspectral remote sensing data.  

Huang et al. (2002) implemented SVM classification for a spatially degraded Landsat 

Thematic Mapper (TM) data.  The SVM classification accuracy was superior to that obtained 

using a maximum likelihood algorithm and a decision tree algorithm.  However, there was no 

advantage to use SVM compared to a neural network classifier.  It should be noted that the input 

feature dimension in their study was rather small.  In addition, the sizes of training samples were 

fairly large (i.e., 2% to 20% of entire image).  The advantage of SVM thus may not be evident in 

those scenarios. Camps-Valls et al. (2008) presented a novel family of kernel-based methods for 

time-series image classification. The SVM approach demonstrated superior performance 

compared to neural networks for high dimension time-series spectral data from multiple sensors.  

Similarly, Bovolo et al. (2010) approached image change detection as an outlier detection 

problem. SVM provided a robust outlier detection capability in their study. Carrão et al. (2008) 

employed SVM to examine the impacts of MODIS temporal and spectral factors for a general 

land-cover classification in Portugal. Their findings indicated that a limited number (n=3) of 

MODIS composited images, if selected appropriately, provided sufficient image classification 

accuracy. The results were consistent with those presented by Shao and Lunetta (2011).  



In addition to the SVM-based categorical classification, there is also growing interests in 

the SVM regression for estimating sub-pixel land cover proportions (Brown et al., 2000). In 

general, the SVM represents a novel approach compared to conventional ML, CART, and NN 

classifiers. Currently, only a few studies have applied SVM algorithm for time-series MODIS 

image classification (Carrão et al., 2008). Additional SVM applications for regional scale land-

cover classification need to be conducted to better understand performance. The implementation 

of SVM for MODIS time-series data is of particular interest for operational regional-scale land 

cover characterization.  

 

B. NN and CART Classifications 

Neural network classification algorithms have long been used for remote sensing image 

classification (Paola and Schowengerdt, 1995; Richards and Jia, 1999).  Many have suggested 

that these types of models are superior to traditional statistical classification approaches (i.e., 

maximum-likelihood classification), because they do not make assumptions about the nature of 

data distribution, and the function is simply learned from training samples. Several neural 

network models are commonly applied (Tasdemir and Merenyi, 2009). ARTMAP models have 

been increasingly used due to their stability and computational performance (Carpenter et al., 

1997).  For instance, Gopal et al. (1999) used fuzzy ARTMAP to classify annual sequence of 

composited NDVI data. They found an increase of 7.0% in overall accuracy compared to a 

maximum likelihood classification. The same ARTMAP algorithm was also used by other 

researchers for time-series NDVI image classification at regional and global scales. The results 

from ARTMAP algorithm were consistently superior to those obtained from a maximum 

likelihood classification. Bagan et al. (2005) employed the self-organizing map (SOM) neural 



network technique to classify land-cover types using 16-day composites of MODIS Enhanced 

Vegetation Index (EVI) data. Superior classification results were found compared with those 

obtained using maximum likelihood classification method. Using time-series MODIS NDVI 

data, Shao et al. (2010) characterized specific crop types with a multi-layer perceptron (MLP) 

neural network model. The principal challenges associated with MLP implementation was the 

adjustment of network parameters (network architecture, learning rate, and momentum).  Early 

stopping criteria are also needed to reduce the risk of network overfitting (Bishop, 2006).  

CART (Breiman, 1984) is a tree-based framework that has been widely used in remote 

sensing applications (Friedl et al., 2002; Lawrence and Wright, 2001).  The key to determine the 

structure of a decision tree is to select an input feature and threshold value at each splitting. The 

CART can easily result in overfitting if allowed to grow to fit the training data.  A tree prune can 

be employed to cut tree levels, thus increase the generalization ability of CART (Lawrence and 

Wright, 2001; Venables, 1997). Currently, this type of tree-based classification algorithm is the 

dominant technique for MODIS and TM based classifications.  The standard MODIS global 

land-cover data is produced by the decision-tree algorithm, because of its robustness and global 

operational considerations (Friedl et al., 2002; Quinlan, 1993). Using regression tree algorithm, 

Hansen et al. (2003) examined the continuous field (i.e., sub-pixel land-cover proportions) 

representations based on signatures from the MODIS time-series metrics.  A total of 68 annual 

metrics were derived from MODIS spectral bands to capture the phonologic cycle.  The large 

number of input feature requires a significant amount of training pixels to generate robust 

classification result. The CART algorithm was also used by Wardlow and Egbert (2008) to 

examine the applicability of time-series MODIS 250 m NDVI data for large-area cropland 

mapping over the U.S. Central Great Plains.  The composite MODIS NDVI data were obtained 



from March 22 to November 1.  They obtained very high overall accuracies for general cropland 

(94%) and summer crop (84%).  

 

III. METHODS 

A. Study Area and Data Pre-processing 

The experiment was conducted for the Albemarle-Pamlico Estuarine System (APES) in 

North Carolina and Virginia (Fig. 1), US.  The APES covers an area of 52 000 km2 and is the 

second largest estuarine system in the US.  The land-cover types and compositions of APES are 

considered to be representative for the southeastern US.  For the last 10–15 years, numerous 

remote sensing dataset, field observation, and water quality indicators have been collected for the 

APES.  It is treated as a Near-Laboratory research area by US Environmental Protection Agency 

(EPA) to monitor long-term landscape change, water quality, and watershed conditions (Knight 

et al., 2006; Lunetta et al., 2006).    

 

Fig. 1 about here 

 

The MODIS 16-day composite of vegetation index data (MOD13Q1, Collection 5) from 

2000–2009 were obtained from the USGS EROS Data Center (http://eros.usgs.gov/).  The spatial 

resolution for this MODIS dataset is 250-m.  Each composite image contains 13 data layers that 

represent MODIS-derived vegetation index, data quality, and acquisition information.  For this 

research, the EVI (Enhanced Vegetation Index) was selected over NDVI (Normalized Difference 

Vegetation Index) for the image classification, because EVI has fewer problems with saturation 

and provides better separability between cover types (Huete et al., 2002).  In addition to the EVI, 



the short wave infrared (SWIR) surface reflectance band-7 was also included as input, because it 

can provide useful information to differentiate urban and agricultural land.  The MODIS 

reliability index was used to identify pixels with quality issues. The MODIS reliability index is a 

simple decimal number that ranks the product into several data quality categories (i.e., good, 

marginal, etc.). Overall, the image quality is quite good for the APES.  Generally, pixels 

identified as good and acceptable quality are over 95% of total pixels for all composite images. 

A Savitzky–Golay filter was applied to estimate new values for pixels with poor reliability index 

(Chen et al., 2004). The 16-day MODIS composite time-series data were re-projected from a 

sinusoidal projection into an Alber’s Equal Area Conic projection.  For each calendar year, a 

total of 46 input features (23 EVI and 23 MIR bands) were used for the image classification.  

The NLCD (National Land Cover Dataset) 2001 data were also obtained from the USGS 

EROS Data Center.  A geographic link between the MODIS and NLCD 2001 data were 

developed.  For each 250 m MODIS pixel, we computed the proportional land-cover for major 

NLCD 2001 classes including urban, deciduous forest, evergreen forest, agricultural land, and 

wetland.  The urban class is combined from four NLCD 2001 sub-classes: open space, low 

intensity, medium intensity, and high intensity impervious surface.  The pasture/hay and 

cultivated crop classes in NLCD 2001 were combined as a single group of agricultural land.  A 

few cover classes such as barren land, mixed forest, and scrub/shrub were discarded due to their 

limited area coverage (i.e., <1.0%) in the study area.  In addition, all water pixels in the MODIS 

data were masked out using the NLCD 2001 as reference (i.e., >50% as threshold).  The main 

reason was that MODIS time-series data for water pixels had inconsistent values. The values for 

water pixels can be affected by cloud presence during the temporal compositing process. This 

may cause large uncertainties for the image classification (Knight et al., 2006; Lunetta et al., 



2010).  The spatial scaling-up of NLCD 2001 provided detailed sub-pixel cover type proportions 

at the 250 m MODIS spatial scale.   

A large number of training and validation pixels were derived by linking 2001 NLCD and 

MODIS dataset.  Classification accuracy and error assessment were also examined based on the 

characteristics of NLCD 2001 reference data.  Furthermore, these cover types could be flexibly 

grouped into broad classes for different applications.  For the general comparison of SVM, NN, 

and CART, a simplified broad land-cover classification scheme was used in this study: urban, 

natural land, and agricultural land.  The natural land includes deciduous forest, evergreen forest, 

and wetland.  It should be noted that NLCD 2001 itself has classification errors and uncertainties 

(Nowak and Greenfield, 2010; Wickham et al., 2010).  Wickham et al. (2010) conducted a 

detailed accuracy assessment for the NLCD 2001 data that documented an overall accuracy of 

85.3% (Anderson Level I).  In this study, the NLCD 2001 classes were aggregated to three broad 

classes. This would potentially increase the overall accuracy of reference data and support 

general accuracy assessment at coarser spatial resolution (i.e., 250 m). Past research has 

indicated that finer resolution satellite derived land-cover classification products can provide 

reference data comparable to those derived from aerial photography interpretation to evaluate 

coarser resolution imagery products (Lunetta et al., 2002).  

 

B. SVM Classification  

MODIS pixels with 100% singe class cover proportion (i.e., 100% urban) were 

considered homogeneous pixels.  Within the broad classification scheme, a large number of pure 

pixels were identified for the APES study region.  Overall, approximately 24% of MODIS pixels 

were determined to be homogeneous for year 2001.  To examine the impact of training sample 



size on classification results, we generated a number of training datasets with different training 

sample sizes: 20, 50, 100, 200, 300, 400, 500, 600, 700, and 800 pixels for each cover type.  We 

repeated the random selection of training samples 50 times.  This allowed us to examine the 

robustness of classification algorithms with respect to the variability of training dataset.  

The SVMlight package was used for the MODIS data classification (Joachims, 2002).  We 

used a one-against-all approach for the multi-class classification problem.  For example, an 

urban-against-all classifier was designed to separate urban class against the remaining cover 

types. Therefore, we decomposed the multi-class problem into three two-class classification 

problems: urban-against-other, natural land-against-other, and agricultural land-against-other.  

Each two-class classifier was trained to separate one class of interest and the “other” class 

combined from the remaining two classes.  Accordingly, there were three output values for each 

pixel.  We predicted the final class label based on the largest output value among the three.  

Although the one-against-all approach may suffer from training set imbalance and output scaling 

problems, it’s currently the most common SVM approach due to its simplicity and efficiency 

(Bishop, 2006).  

The MODIS time-series data were rescaled (0.0–1.0) for the SVM training.  A radial 

basis function (RBF) was selected as the primary SVM kernel function.  A range of values were 

tested for two SVM parameters C (1–50) and γ (0.1–10). A grid-search method was used to 

examine various combinations of C and γ values, and the best combination was identified using a 

cross-validation method (Joachims, 2002).  Specifically, for each training dataset, 20% training 

pixels were set aside for the cross-validation purposes.  After training, the MODIS time-series 

data were used as input to produce classification maps for the entire study area. This type of 



cross-validation approach was also implemented for the other two classification algorithm. This 

was important for the consistency and comparison purposes.  

 

C. Neural Network and CART Classifications  

The same training datasets were used for the MLP NN and CART classifications.  The 

software employed for the MLP classification was the Stuttgart Neural Network Simulator (Zell, 

1998).  A three-layer MLP NN classifier was designed for the classification. The input layer 

consisted of 46 inputs nodes, indicating 46 input features from MODIS time-series data.   For the 

multiclass MLP classification, three output nodes were used at the output layer, representing 

three land cover types identified above.  Network output target was set as a 1-of-M target coding 

system (e.g. 1,0,0).   The number of nodes at hidden layer was examined ranging from 5–25.  A 

back-propagation algorithm was used to adjust the weights and minimize the overall error.  

Different learning rates (0.01–0.20) and momentum values (0.5–0.9) were also tested to identify 

appropriate network training protocols.  The best network architecture and training parameters 

were identified by a cross-validation approach.  For all training dataset, 20% training pixels were 

set aside for the cross-validation purposes. A trained NN was then used to classify the MODIS 

time-series image.  Ideally, the network output signals would approximate posterior probabilities 

of three cover classes, if large number of training pixels were employed in the network training.  

For the training of the CART algorithm, the three target cover classes were labeled as 

categorical values of 1–3, respectively.  CART splits the MODIS input data into independent 

regions based on binary decisions.  The tree prune was conducted based on a cross-validation 

method with 20% training pixels setting aside for the cross-validation. The best classification 

tree was retained for the actual MODIS time-series analysis.  It should be noted that the 



performance of CART algorithm can be improved by bagging and boosting algorithms (Friedl et 

al., 2002), however, these algorithms were not implemented because they can be applied to each 

of the three classification methods and potentially improve classification performance for all 

three methods.  

 

D. Accuracy Assessment  

Five percent of the MODIS pixels were randomly selected for the accuracy assessment 

after training pixels used for the classification training were removed from the MODIS pixel 

pool.  To assess classification stability, we conducted accuracy assessments using three different 

groups of reference data points.  For the first group, all randomly selected pixels (5.0% of total 

pixel) were used for the assessment.  The reference pixel was labeled based on the class with the 

largest sub-pixel portion.  For the second group, only pixels with a dominant sub-pixel cover 

type proportion (i.e., > 75%) were used for the accuracy assessment.  Accordingly, the accuracy 

statistics represented classification performance for relatively “homogeneous” pixels.  For the 

third group, the remaining “heterogeneous” pixels (i.e., dominant cover < 75%) were used for the 

accuracy assessment.  Accuracy statistics such as overall accuracy and Kappa coefficient were 

compared for three classification methods with respect to different groups of reference data.  The 

McNemar’s significance testing was used to evaluate significant differences between 

classification methods. 

We anticipated large difference in classification accuracy for “homogeneous” versus 

“heterogeneous” pixel groups.  In general, homogeneous pixels should have high accuracy and 

confidence, while heterogeneous pixels commonly exhibit high classification uncertainties and 

lower accuracies.  To account for this accuracy disparity, we applied a two-level classification 



labeling approach.  In addition to providing a single (or dominant) class label for each pixel, we 

developed an additional label as pixel purity. The approach was designed to provide additional 

details about the output signals from classification algorithm. In a neural network-based image 

classification framework, many studies suggested that the network output signals can be linked 

to sub-pixel cover proportions (Foody, 1996; Moody et al., 1996).  The network output signals 

can be retained in a “fuzzy” manner (i.e., between 0 and 1).  These signals could also be used as 

a pixel purity index.  Similarly, for SVM algorithm, we derived the pixel purity information 

based on the output signals from the SVM analysis.  Specifically, a pixel was labeled as 

“homogeneous” if the largest SVM output value was >1.0 and the second largest output <1.0.  

Other pixels were labeled as “heterogeneous” because there was no dominant cover class based 

on the SVM output values.  

 

IV. RESULTS AND DISCUSSION 

A. Training Sample Size and Classification Repeatability 

Fig. 2 shows the overall accuracies and Kappa coefficients for three classification 

algorithms using a numbers of training sample sizes.  For each training sample size, the 

classification was repeated for 50 trials using different training sets.  The solid lines indicate the 

average accuracy statistics from the 50 trials and the box boundary represent the standard 

deviation away from the mean value.  Overall accuracies clearly show that SVM outperformed 

NN and CART at the entire range of the training sample sizes.  For a smaller training size (i.e., 

20 pixels per class), the overall accuracy for SVM was 77%, which was substantially higher than 

those obtained from the NN (67%) and CART (62%) classification.  The difference of overall 

accuracies for three algorithms reduce as the training sample size increases, although the SVM 

algorithm still outperformed the NN (-4%) and CART (-7%) at 800 pixels per class.  It is also 



noticeable that the impacts of training sample size were much less for the SVM algorithm 

compared to the other classification algorithms.  For the SVM approach, the overall accuracies 

achieved at 20 and 800 pixels per class differed by approximately 3%.  For NN and the CART 

approaches, the differences were 9% and 11%, respectively.  This suggested that SVM is less 

sensitive to the training sample size.  It can achieve relatively high accuracy even with small 

number of training pixels (i.e., 20 pixels per class). The result is supported by previous efforts 

(Melgani and Bruzzone, 2004; Pal and Mather, 2005). 

 

Fig. 2 about here 

 

For any given training sample size, smaller variability between individual trials for the 

SVM compared to the NN and the CART algorithms were evident.  For SVM, the variability of 

the overall accuracy was slightly higher at 20 pixels per class compared to 800 pixels per class. 

For the NN and the CART algorithms, however, the standard deviation was approximately 8.0% 

when small training sample size was used.  The variability of overall accuracy decreased as the 

training sample size increased.  Kappa coefficients show the same trends as the overall accuracy.  

The McNemar’s significance testing suggested that SVM generated significantly (p<0.05) better 

results than the CART algorithm for all classification trials (i.e., 20–800 training pixels per 

class).  The comparison of SVM and NN suggested that the results from SVM were significantly 

better for a majority of trials (467 of 500), the difference between these two algorithms decreases 

as the size of training sample increases.  

The comparison of accuracy statistics indicates that SVM algorithm should be favored 

among the three classification algorithms, especially when limited numbers of training pixels are 



available for the classification training.  The decreased variability between individual trials is 

also important in practice, because the selection of training samples can be resource intensive 

and subjective; different image analyst may choose very different spatial locations to identify 

training pixels.  SVM provided superior and more consistent classification results among the 

three classification algorithms.  

Table1 shows the error matrix of accuracy assessments using the NLCD 2001 as 

reference.  For simplicity, the results were reported only for experiments using 800 training 

pixels per class.  The reference pixels (250 m GSD) were labeled based on the largest or 

dominant sub-pixel cover type proportions.  Fig. 3 shows the classification results from three 

algorithms.  For all three classification approaches, there were considerable classification errors 

for urban class.  The commission error statistics were 59%, 77%, and 79% for SVM, NN, and 

CART, respectively.  Large overestimation of urban class was particularly evident for NN and 

CART approaches.  The confusion was contributed from the agricultural land.  At 250 m spatial 

resolution, the urban class often has high level of spectral heterogeneity.  Generally, residential 

areas represent various mixtures of vegetation and partial impervious cover.  Depending on the 

mixture level, the temporal signal of urban class can mimic those of agricultural land, causing 

classification errors (Shao et al., 2010).  

 

Fig. 3 about here 

 

The classification accuracies for natural and agricultural lands were much higher than 

urban class for all three classification algorithms.  For natural land, the user’s accuracies were 

86%, 90%, and 87% for SVM, NN, and CART, respectively.  Relatively low and balanced 



commission/omission errors were observed suggesting good classification performance for all 

three algorithms.  For agricultural land, the commission errors were similar for SVM (27%) and 

NN (24%); both are much lower than the CART algorithm (33%).  There were large differences 

in the omission errors for three algorithms (SVM = 33%, NN =38%, and CART=41%).  The 

relatively high omission error can also be observed in Fig. 3.  Many small patches of agricultural 

land in the mid-west portion of the study area were miss-classified.  These results are consistent 

with past findings in Shao et al. (2010), the patch sizes of agricultural land have significant 

impacts on the classification accuracies.   

The comparison suggested that SVM has major advantages for the urban and agricultural 

land classification, although there were still substantial omission errors related to these two cover 

types.  For the same study area, Knight et al. (2006) also reported high omission errors using the 

Spectral Angle Mapper (SAM) algorithm.  For urban class, their omission error reached as high 

as 90%. 

B. Accuracy for “Homogeneous” and “Heterogeneous” Pixels 

It should be noted that the classification performance is not only depending on the 

training data and classification algorithm.  The characteristics of study area, classification 

scheme, pixel spatial resolution, and quality of reference data may contribute substantially to the 

accuracy statistics.  Generally, accuracy statistics appear to be “good” if homogeneous pixels are 

used as reference.  Table 2 shows the error matrix using relatively homogenous pixels (dominant 

cover >75%) as reference.  This reduced the total reference pixel number from 71 063 to 42 350.  

The overall accuracy increased to 91%, 89%, and 85% for SVM, NN, and CART algorithms, 

respectively.  These values are considerably higher than the numbers reported in Table 1.  The 

omission errors for urban and agricultural land were much reduced.  Kappa coefficients were 



also increased substantially to 0.77, 0.74, and 0.65 for three algorithms, respectively.  The 

accuracy statistics appeared to be acceptable, especially the numbers for the SVM algorithm.  

Table 3 shows the classification error distributions using only heterogeneous pixels.  

Although these pixels do not have dominant sub-pixel cover proportions, they still need to be 

labeled as only one cover classes to provide a traditional hard label approach.  The overall 

accuracies dropped to 64%, 58%, and 55% for SVM, NN, and CART, respectively.  The 

commission and omission errors were very high for the urban class for all three algorithms.  This 

suggests that it is a major challenge to identify urban pixels with relatively high level of pixel 

heterogeneity.  An urban pixel can not be easily identified if the sub-pixel urban proportion is < 

75%.  There was also large confusion between natural and agricultural land; similar results were 

previously reported by (Friedl et al., 2002).  However, SVM and NN performed better than the 

CART in differentiating these two classes — indicated by the lower omission errors.  

Clearly, the characteristics of the reference data are critical for the accuracy statistics. 

The overall accuracies for “homogenous” and “heterogeneous” pixels differed greatly.  For 

CART algorithm the difference was about 30%.  For many remote sensing image classification 

accuracy assessments, only homogenous pixels are used as reference, thus the overall accuracy 

may be skewed.  Using the SVM approach, we further implemented a two-level classification 

labeling approach that included a pixel purity label for each pixel based on the SVM output 

signals (i.e., using threshold value of 1.0). As a result, approximately 65% of total pixels were 

labeled as “functionally homogeneous” pixels because their largest SVM output values were 

>1.0 and the second largest SVM output values were <1.0.  The overall accuracy for these SVM-

derived “homogeneous” pixels were 91% (Kappa = 0.79).  Furthermore, a comparison of the 

SVM-derived “homogeneous” pixels with the NLCD 2001 data indicated that over 77% of these 



pixels contained dominant sub-pixel cover proportions (>75%), and almost all the remaining 

pixels had a relatively high level of homogeneity (>50%).  These results suggest that the SVM 

output signals can be very useful for representing two-levels of classification results.  The first 

level being a traditional hard cover type label and second representing pixel purity and associated 

classification accuracies.  Users should be cautious in the interpretation of classification accuracy 

for pixels with high level of heterogeneity. It should be noted that the pixel purity label can also 

be generated for other classification algorithm. For instance, the strength of neural network 

output signals can be directly linked to sub-pixel cover type proportions (Moody et al., 1996; 

Foody, 1996).  

 

C. SVM Classification of Heterogeneous Pixels 

Our initially selected training samples can be considered as “homogeneous” pixels.  All 

training pixels had one dominant pixel cover type (i.e., 100%).  This type of sampling scheme 

may not reflect the spectral variability of individual cover types (Gong and Howarth, 1990; 

Huang et al., 2002).  Alternatively, there was the concern that SVM classification may be 

sensitive to outliers in the training set, since the optimal hyperplane of SVM was developed 

using only a small portion of the training data (Bishop, 2006).  

An additional experiment was conducted by selecting training pixels including some 

heterogeneous pixel cover type proportions (i.e., dominant cover >75%).  This sample scheme 

represented a relaxation of signal purity.  The training, classification, and accuracy assessment 

procedures remained the same for the SVM classification.  The inclusion of heterogeneous pixels 

in the training did not have large impacts on the overall accuracies and Kappa coefficients.  

Differences were within 1% with or without the inclusion of heterogeneous pixels in training 



(Table 4).  The inclusion of heterogeneous pixels in the training data did result in more 

agricultural pixels (31.2%) than using homogeneous pixels for training (agricultural pixel = 

26.4%).  Accordingly, the commission error for agricultural land increased slightly (27% vs. 

30%) and the omission error reduced from 33% to 27%.  Overall, the similarity of classification 

performance using homogenous or heterogeneous pixels is promising for operational mapping 

efforts.  In practice, training pixels can be selected with some flexibility, particularly when visual 

interpretation of MODIS time-series data is used for the training sample selection (Shao et al., 

2010).  

 

D. Regional Scale Operational Classifications 

The comparison of three classification algorithms clearly shows the superior 

classification accuracy of SVM versus the other two algorithms tested.  Additional consideration 

for algorithm selection includes model parameters, speed, and easy-of-use. The CART algorithm 

has advantages in all of these aspects.  It does not require additional model parameters and is fast 

in both training and actual data classification.  The major problem is relatively low classification 

accuracies (Liu and Wu, 2005).  The CART algorithm splits the feature space into many 

independent regions and each input is associated with one of these regions which are aligned 

with the axes of the feature dimension.  This type of decision boundary is not smooth and the 

solution may not be the optimal (Bishop, 2006).   Furthermore, the interpretability of CART is 

often overstated.  The tree structure developed for many remote sensing classification 

applications can be very complex and it is impossible to derive meaningful interpretation. 

SVM and NN both need to adjust additional model parameters.  For the MLP NN 

classifier, we adjusted the number of nodes at the hidden layer, learning rate, momentum, and 



training epochs. Fig. 4 shows the impacts of network architecture (number of nodes at the hidden 

layer) for the classification. Other model parameters (i.e., learning rate and momentum) were 

kept stable for this testing.  Overall accuracy values were derived from 50 different repetitions 

using 800 training pixels per class.  The mean and standard deviation of overall accuracy were 

then calculated and compared. The overall accuracy continued increasing when the number of 

nodes at the hidden layer increased from 5– 20 (at single node increments).  However, there was 

no gain in the overall accuracy beyond 20 nodes.  Different combinations of the model 

parameters lead to a large number of trials for network training.  This is the major drawback of 

NN classifier, although NN typically generate good classification results if large numbers of 

training samples are available.  For the SVM algorithm, only two model parameters (C and γ) 

were examined in our study.  A grid-search algorithm was developed and limited human 

interactions were needed.  The SVM training and classification can be time-consuming for a 

large remote sensing dataset.  For this study, the SVM training time was not an issue because of 

the moderate sample size.  The actual classification took several hours on a SUN Ultra 2 

workstation.  Given its classification performance, the SVM should be the superior algorithm for 

regional level land-cover characterization.  

 

Fig. 4 about here 

 

We employed the SVM algorithm for the classification of multiple year MODIS time-

series data at annual intervals. We implemented the SVM classifications for 2001 and 2009 

MODIS data.  Two TM images from 2009 were obtained for the validation purpose.  The TM 

imagery was classified using similar classification scheme and method used for the NLCD 2001 



data (Homer et al., 2004).  The classification results were degraded to 250 m spatial resolution.  

Each reference pixel was then labeled based on the dominate sub-pixel cover type proportion.  

We followed the same training, validation, and accuracy procedures used for the MODIS 2001 

classification. Table 5 shows the accuracy assessment for 2009 MODIS classification using three 

different algorithms.  SVM generated overall accuracies ranging from 79% to 83% for training 

sample sizes from 20 to 800 pixels per class, compared to 74% to 83% and 64% to 78% for NN 

and CART, respectively. Similar to the 2001 MODIS classification, SVM algorithm was 

superior when a relatively small number of training samples was used for the training. The 

overall accuracy was almost identical for SVM and NN algorithms when the number of training 

samples increased above 400 pixels per class. The results from CART were consistently lower 

compared to those obtained from other two algorithms.  

 

V. CONCLUSIONS 

Three classification algorithms were compared using MODIS time-series data as inputs. 

The classification experiments were conducted with respect to the impacts of training sample 

sizes, training sample variations, and the characteristics of reference data points. The SVM 

achieved higher overall accuracies and significantly improved Kappa coefficients for the entire 

range of training sample sizes compared to the NN and the CART algorithms. The differences 

were particularly large for smaller training sample sizes.  Also, SVM classification performance 

exhibited minimal variability in response to different training data.  Furthermore, classification 

accuracies were highly dependent on reference data characteristics.  Overall accuracies differed 

significantly for reference pixels with homogeneous versus heterogeneous sub-pixel cover 

components.  The SVM were implemented for the APES study area at the annual interval using 



MODIS time-series data.  For a three-class classification scheme, the best overall accuracies 

were 80% and 83% for 2001 and 2009, respectively.  For 2001 MODIS classification, overall 

three-class accuracies increased to 91% for SVM-derived “functionally homogeneous” pixels. 
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TABLES 

 
TABLE 1. Error matrices were constructed using reference data derived from the NLCD  
2001. Pixels were rescaled to 250 m GSD and labeled according to dominant cover type.   
Five percent of the MODIS pixels were randomly selected for the accuracy assessment. 
 
TABLE 2. Error matrices were constructed using reference data derived from the NLCD 2001. 
Pixels were rescaled to 250 m GSD.  Only homogenous (>75%) pixels are used as reference data 
points. 
 
TABLE 3. Error matrices using the NLCD 2001 as reference data.  Note that pixels were 
rescaled to 250 m GSD. Only heterogeneous (<75%) pixels are used as reference data points.  
 

TABLE 4. Comparison of error matrix using homogenous and heterogeneous pixels  
for training data.  Results are from SVM classification using 800 training pixels per class.   
 
TABLE 5. Comparison of overall classification performance (APES 2009) for the SVM, NN, 
and CART algorithms using a range of training data sample sizes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
FIGURES 
 
Fig. 1. Location map of the Albemarle-Pamlico Estuary System (APES) study area. 
 

Fig. 2. Comparison of overall classification performance for the SVM, NN, and CART 
algorithms using a range of training data sample sizes.  The solid lines represent mean values and 
the boundary box indicates one standard deviation bounds. 
 

Fig. 3. Comparison of classification results for SVM (a), NN (b), and CART (c) algorithms. The 
NLCD 2001 (d) is also included as reference. 
 
Fig. 4. The impacts of neural network architecture (number of nodes at the hidden  
layer) on classification results.  The central line is the mean accuracy values from the 50 
different repetitions. The boundary line represents mean value +/- one standard deviation.  
 
 
 
 



TABLE 1. Error matrices were constructed using reference data derived from the NLCD  
2001. Pixels were rescaled to 250 m GSD and labeled according to dominant cover type.   
Five percent of the MODIS pixels were randomly selected for the accuracy assessment. 
 
 

 Reference 
SVM Urban Forest Ag Total % correct % commission 

Urban 2.2 1.4 1.8 5.4 41 59 
Forest 1.6 58.6 7.9 68.1 86 14 

Ag 1.0 6.2 19.4 26.5 73 27 
Total % 4.8 66.1 29.1 100.0 80 (n = 71 063) 

% Correct 46 89 67 
% Omission 54 11 33 Kappa = 0.58 

       
NN 

Urban 3.4 6.0 5.7 15.1 23 77 
Forest 0.8 55.0 5.5 61.2 90 10 

Ag 0.6 5.2 17.9 23.7 76 24 
Total % 4.8 66.1 29.1 100.0 76 (n = 71 063) 

% Correct 72 83 62 
% Omission 28 17 38 Kappa = 0.54 

CART 
Urban 3.0 6.0 5.2 14.2 21 79 
Forest 0.9 52.4 6.7 59.9 87 13 

Ag 0.8 7.7 17.3 25.8 67 33 
Total % 4.8 66.1 29.1 100.0 73 (n = 71 063) 

% Correct 64 79 59 
% Omission 36 21 41 Kappa = 0.48 

       
       
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 2. Error matrices were constructed using reference data derived from the NLCD 2001. 
Pixels were rescaled to 250 m GSD.  Only homogenous (>75%) pixels are used as reference data 
points. 
 

Reference 
SVM Urban Forest Ag Total % correct % commission 

Urban 2.4 1.2 1.0 4.6 52 48 
Forest 0.7 70.6 2.7 74.0 95 5 

Ag 0.3 3.2 17.9 21.4 84 16 
Total % 3.4 75.1 21.5 100.0 91 (n = 42 350) 

% Correct 69 94 83 
% Omission 31 6 17 Kappa = 0.77 

NN       
Urban 3.1 3.9 2.8 9.7 32 68 
Forest 0.2 68.7 1.7 70.6 97 3 

Ag 0.1 2.5 17.1 19.7 87 13 
Total % 3.4 75.1 21.5 100.0 89 (n = 42 350) 

% Correct 91 92 79 
% Omission 9 8 21 Kappa = 0.74 

CART       
Urban 2.9 4.2 2.8 9.8 29 71 
Forest 0.3 65.8 2.7 68.7 96 4 

Ag 0.3 5.1 16.1 21.4 75 25 
Total % 3.4 75.1 21.5 100.0 85 (n = 42 350) 

% Correct 83 88 75 
% Omission 17 12 25 Kappa = 0.65 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 3. Error matrices using the NLCD 2001 as reference data.  Note that pixels were 
rescaled to 250 m GSD. Only heterogeneous (<75%) pixels are used as reference data points.  
 
 

   Reference    
SVM Urban Forest Ag Total % correct % commission 

Urban 1.9 2.0 3.0 6.9 28 72 
Forest 2.8 40.9 15.5 59.2 69 31 

Ag 1.9 10.6 21.4 33.8 63 37 
Total % 6.6 53.5 39.8 100.0 64 (n = 28 713) 

% Correct 29 76 54 
% Omission 71 24 46 Kappa = 0.34 

NN       
Urban 3.8 9.6 10.0 23.5 16 84 
Forest 1.6 34.8 10.9 47.3 74 26 

Ag 1.2 9.1 19.0 29.2 65 35 
Total % 6.6 53.5 39.8 100.0 58 (n = 28 713) 

% Correct 58 65 48 
% Omission 42 35 52 Kappa = 0.31 

CART       
Urban 3.3 9.1 8.7 21.0 16 84 
Forest 1.7 33.0 12.3 47.0 70 30 

Ag 1.6 11.5 18.9 31.9 59 41 
Total % 6.6 53.5 39.8 100.0 55 (n = 28 713) 

% Correct 49 62 47 
% Omission 51 38 53 Kappa = 0.26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 4. Comparison of error matrix using homogenous and heterogeneous pixels  
for training data.  Results are from SVM classification using 800 training pixels per class.   
 
  

 Reference 
Pure Urban Forest Ag Total % correct % commission 
Urban 2.2 1.4 1.8 5.4 41 59 
Forest 1.6 58.6 7.9 68.1 86 14 

Ag 1.0 6.2 19.4 26.5 73 27 
Total % 4.8 66.1 29.1 100.0 80 (n = 71 063) 

% Correct 46 89 67 
% Omission 54 11 33 Kappa = 0.58 

Mixed Urban Forest Ag Total % correct % commission 
Urban 2.2 1.3 1.5 5.0 43 57 
Forest 1.4 56.8 6.3 64.4 88 12 

Ag 1.2 8.0 21.2 30.5 70 30 
Total % 4.8 66.1 29.1 100.0 80 (n = 71 063) 

% Correct 45 86 73 
% Omission 55 14 27 Kappa = 0.59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 5. Comparison of overall classification performance (APES 2009) for the SVM, NN, 
and CART algorithms using a range of training data sample sizes.  
 

Sample size of training data 
20 50 100 200 300 400 500 600 700 800 

SVM 79.4 80.7 80.9 82.0 82.4 82.0 82.6 82.3 82.6 82.5 
NN 73.7 76.9 78.0 80.6 81.4 82.1 82.2 82.3 82.3 82.7 

CART 64.4 71.1 73.4 76.3 76.0 78.0 77.5 77.8 77.1 77.6 
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