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Abstract: Pyrethroid insecticides are frequently used to control insects in residential and
agriculture settings in the United States and worldwide. As a result, children can be
potentially exposed to pyrethroids from foods and at home. This review summarizes data
reported in 15 published articles from observational exposure measurement studies
conducted from 1999 to present that examined children’s (5 months to 17 years of age)
exposures to pyrethroids in media including floor wipes, floor dust, food, air, and/or urine
collected at homes in the United States. At least seven different pyrethroids were detected
in wipe, dust, solid food, and indoor air samples. Permethrin was the most frequently
detected (> 50%) pyrethroid in these media, followed by cypermethrin (wipes, dust, and
food). 3-phenoxybenzoic acid (3-PBA), a urinary metabolite of several pyrethroids, was
the most frequently (> 67%) detected pyrethroid biomarker. Results across studies indicate
that these children were likely exposed to several pyrethroids, but primarily to permethrin
and cypermethrin, from several sources including food, dust, and/or on surfaces at
residences. Dietary ingestion followed by nondietary ingestion were the dominate exposure
routes for these children, except in homes with frequent pesticide applications (dermal
followed by dietary ingestion). Urinary 3-PBA concentration data confirm that the majority
of the children sampled were exposed to one or more pyrethroids.
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1. Introduction

In the early 1990’s, there was a growing public concern about children’s exposures and potential
health risks to pesticides in the United States (U.S.) which led Congress to pass the Food Quality
Protection Act (FQPA) of 1996 [1]. The FQPA was a landmark act that amended two prior pesticide
laws, the Federal Food Insecticide, Fungicide and Rodenticide Act (FIFRA) and the Federal Food,
Drug, and Cosmetic Act (FFDCA) and greatly changed how the U.S. EPA regulates pesticides today
[1]. The FQPA specifically requires the U.S. EPA to consider the aggregate exposures and cumulative
risks to infants and children prior to establishing pesticide tolerances in food.

Pyrethroids are synthetic pesticides commonly used to control insect pests in agricultural and
residential settings in the U.S. and worldwide. First generation pyrethroids (e.g., allethrin, imiprothrin,
phenothrin, prallethrin, resmethrin, and tetramethrin) were developed by the early 1970’s and typically
degrade quickly in sunlight, so they are primarily applied indoors or found in products like flea collars,
aerosol sprays, and foggers [2-4]. In the late 1970’s, the second generation pyrethroids (e.g., bifenthrin,
cyhalothrin, cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, and permethrin) were
designed to be more photostable and are frequently used in products to control for various types of
insect pests on agricultural crops, in and around residential dwellings, and on pets [2-4]. In addition,
these pesticide products are sometimes manufactured as mixtures of other pyrethroids and/or with
synergists to increase their insecticidal activity, and the composition of these products can change over
time [3].

Research has indicated that children can be exposed to pyrethroids in several different types of
environmental media at home and in consumed foods and beverages [5-9]. Once absorbed into the
body, the lipophilic pyrethroids are rapidly metabolized (half-lives < 24-h) to several polar metabolites
and are primarily eliminated in urine [10-11].

A limited number of observational exposure measurement studies have been conducted to examine
children’s potential exposures to pyrethroid insecticides by sampling various media such as dust,
wipes, air, food, and/or urine in residential settings in the U.S. [5-9,12-21]. These individual studies
have been vital in understanding children’s exposures and potential health risks to pyrethroids at home,
including identifying important sources and/or routes of exposure. I am unaware, however, of any
published review on children’s exposures to pyrethroids at home in the U.S.

The objectives of this review paper are to examine published findings of observational exposure
measurement studies that have assessed children’s exposures to pyrethroid insecticides at their homes
in the U.S., to summarize multimedia measurements data collected across these studies, to discuss
major findings among the studies, and to provide important insights on major data gaps and future
research needs.

2. Methods
A literature review using the PubMed database (http:/www.ncbi.nlm.nih.gov/pubmed) was

conducted to identify studies that examined children’s exposures to pyrethroids in environmental and
biological (urine) media at their homes in the U.S. from 1999 to present.


priggsbe
Rectangle


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

2.1. Environmental Measurements Data

Table 1 presents a summary of 10 articles of studies that collected children’s environmental
measurements data for pyrethroids from 2000 to 2007 [6,7,9,12,13,15-17,20-21]. These studies were
conducted within several different states including California, Georgia, Massachusetts, North Carolina,
Ohio, Washington, and Florida. Except for PETCOT [20] and CPES [9], all studies were cross-
sectional having environmental measurements collected by field staff and/or participants over a 24-h or
48-h monitoring period at children’s residences. For the PEPCOT, the children’s duplicate diet
samples were collected over a single 24-h monitoring period annually for three consecutive years
(2003-2005). CPES collected one 24-h duplicate food sample consisting of all of the children’s
consumed nonorganic fruits, fruit juices, and vegetables in two different seasons in two states
(Washington and Georgia). In these studies, the children’s ages ranged from 5 months to 17 years of
age, and the total number of participating children by study varied from 9 to 257. In general, the media
collected, the types of methods used to collect each type of medium (i.e., floor wipes, floor dust,
duplicate diet, and air), and pyrethroids analyzed by medium varied among the studies. The
pyrethroids that were measured in the above media in any of these studies were cis-and trans-allethrin,
bifenthrin, cyfluthrin, J-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin,
imiprothrin, cis- and frans-permethrin, phenothrin, prallethrin, resmethrin, and tetramethrin (Figure 1).
The CTEPP (main study) [7] analyzed all media expect for the vacuum dust bags which were analyzed
by Starr et al. [16]. In addition, the CTEPP (main) study data are reported in the results section by state
(North Carolina (NC) and Ohio (OH)).

2.2 Urinary Biomonitoring Data

Table 2 presents a summary of five articles of studies that collected children’s urinary
biomonitoring measurements between 1999 and 2004 [5,7,8,1 7-19]. CPES (summer) and CPES (year)
represent the same study population, however, summer season results are reported in Lu et al. [5] and
12 month period results, including summer season, are reported in Lu et al. [18]. A total of 203
children participated in the JAX-BIO [19], a biomonitoring screening study selected in an area
(Jacksonville, Florida) “previously determined to have elevated rates of pesticide use”. In addition, a
subset of nine of the JAX-BIO children also participated in the JAX-EXP [17], a pilot-scale
observational exposure measurement study conducted at homes with known pesticide use. NHANES
[8] is a nationally representative biomonitoring study while the other four studies were conducted
within three states including Ohio (CTEPP), Florida (JAX-BIO and JAX-EXP), and Washington
(CPES). All of these studies were cross sectional, except CPES which was a longitudinal study
conducted over a 15-day period over four consecutive seasons. Spot urine voids were collected in each
study, however NHANES, JAX-BIO and JAX-EXP collected one void per child, CTEPP-OH collected
up to 6 urine voids for each child over a 48-h monitoring period, and CPES collected two urine voids
daily (morning and bedtime) each sampling day per child. The number of children varied from 9 to
580 by study, and their ages ranged from 2-11 years of age. Only non-adjusted urine (ng/mL) data are
presented since creatinine correction of urine may not be a reliable adjustment measure for children
[22,23].
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132 Figure 1. Chemical structures of the pyrethroids measured in environmental media.

133 Parentheses denote first generation (A) or second generation (B) pyrethroid.
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Figure 2. Pyrethroid metabolites and their corresponding parent pyrethroid(s) that were
measured in children’s urine samples.

Urinary Metabolite Parent Pyrethroid
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Environmental samples and urine samples were collected concurrently in the CPES,
CHAMACOS-QEA, CTEPP-NC, CTEPP-OH, PEPCOT, and JAX-EXP. However, only CPES,
CTEPP-OH and JAX-EXP have published data on the levels of pyrethroids in environmental media
and urinary pyrethroid metabolites in children to date.

Up to five urinary pyrethroid metabolites were measured in children’s urine samples from the
above published studies (Figure 2). These urinary metabolites include 3-phenoxybenzoic acid (3-
PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-
dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (rans-DCCA), 4-fluoro-3-phenoxybenzoic


priggsbe
Rectangle


166
167
168
169

170

171
172

173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

12

acid (4F-3-PBA), and cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-
DBCA). The urinary pyrethroid metabolites, 3-PBA, cis-DCCA, and trans-DCCA are nonspecific and
confirm exposure to one or more pyrethroids [24,25]. 4-F-3-PBA and cis-DBCA are specific and
confirm exposure to cyfluthrin and deltamethrin, respectively [25].

3. Results and Discussion

Reported here are the levels of pyrethroids measured in environmental or biological media that
could be compared among three or more of the studies listed in Tables 1 and 2.

3.1. Levels of Pyrethroids in Environmental Media

CTEPP-NC, CTEPP-OH, CTEPP-VAC, CHAMACOS-QEA, HPHI, and PDLHS used the
standardized vacuum method [26] known as the high-volume small surface sampler (HVS3) to collect
dust samples (ng/g) from 0.76 — 2 m? areas of carpeted floors from various areas inside homes (living-
rooms, main play areas, and couches), except CTEPP-VAC and HPHI. CTEPP-VAC collected existing
vacuum bags from participants, while the HPHI used a 9 A Eureka Mighty-mite vacuum cleaner to
collect dust from carpets and sofas in living rooms. Surface loading measurements (ng/cm?) for
pyrethroids in floor dust were also calculated in the CTEPP-NC, CTEPP-OH, and PDLHS. Dust
concentrations (ng/g) are often used for source characterization purposes or in the estimation of
ingested doses of a pesticide in health risk assessments where as surface loading measurements
(ng/cm?) are more suitable for use in human exposure assessments [27]. Up to 12 different pyrethroids
(allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, imiprothrin,
permethrin, phenothrin, prallethrin, and tetramethrin) were detected in floor dust samples collected at
residences from several states including North Carolina, Ohio, California, and Massachusetts
(Supplemental Information; Table S-1). Permethrin was detected in > 85% of the floor dust samples in
all six studies. Besides permethrin only a few other pyrethroids, namely, allethrin (PDLHS), cyfluthrin
(CTEPP-OH), and cypermethrin (HPHI and PDLHS), were detected above 50% in the floor dust
samples. The median levels of cis-permethrin and frans-permethrin in floor dust samples varied
substantially by study and ranged from 150 — 804 ng/g and 230 — 711 ng/g, respectively (Figure 3). In
particular, the median levels of cis- and frans-permethrin were at least three times higher in homes
(804 and 629 ng/g) in CTEPP-NC (North Carolina) than homes (150 and 230 ng/g) in CHAMACOS-
QEA (California) which may reflect geographical differences in permethrin usage. For studies with
reported dust surface loadings, median levels of cis- and trans-permethrin were 1,030 and 853 ng/crn?‘
(CTEPP-NC), 447 and 295 ng/cm” (CTEPP-OH), and 768 and 1620 ng/cmz, (PDLHS, California),
respectively. These above data show that permethrin was frequently detected in floor dust samples, and
that the levels of permethrin in dust (amount and loadings) at residences varied greatly by geographical
region.

The method for collecting floor wipe samples varied among the studies (CTEPP-NC, CTEPP-OH,
JAX-EXP, CFW, CHAMACOS-QEA, and HPHI); however, all studies used a Johnson & Johnson
SOF-WICK pad (58 to 100 cm”) wetted with 2 to 10 mL of 2-propanol to wipe a designated area of
hard floor surface inside homes. As the collection methods were vastly different among the studies, the
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Figure 3. Box-and-whisker plots of the levels of cis- and trans-permethrin in floor

dust samples across the studies.
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levels of pyrethroids measured in the wipe samples were likely influenced by such factors as the
amount of 2-propanol used on the wipe, location of wipe collection, wiping method, and pesticide
usage at home [28]. Up to 11 different pyrethroids (allethrin,' bifenthrin,cyfluthrin, cyhalothrin,
cypermethrin, deltamethrin, esfenvalerate, permethrin, phenothrin, resmethrin, and tetramethrin) were
detected in floor wipes collected in the six studies from California, Florida, North Carolina,
Massachusetts, Ohio, and Virginia (Table S-2). Only cypermethrin (JAX-EXP and HPHI, only) and
permethrin (all six studies) were detected > 50% of the floor wipe samples. The median levels of
cypermethrin in the floor wipe samples were 0.38 ng/cm” in the HPHI and 0.7 ng/cm’ in the JAX-EXP.
The median levels of cis-permethrin and frans-permethrin ranged from 0.01 — 0.10 ng/cm” and 0.01 —
0.23 ng/em’, respectively, among these studies. However, the median levels of cis- and trans-
permethrin were about three and five times greater, respectively, in floor wipes samples from
CHAMACOS-QEA than CTEPP-NC, CTEPP-OH, and JAX-EXP. CHAMACOS-QEA children lived
in an agricultural area (Salinas Valley, CA) which may have contributed to the higher levels of
permethrin in their floor wipe samples.

CHAMACOS-QEA, CPES, CTEPP-NC, CTEPP-OH, JAX-EXP, and PEPCOT measured the
levels of selected pyrethroids in duplicate diet samples that were composited over a 24-h or 48-h
monitoring period. Duplicate amounts of foods and beverages consumed by each child were collected
in separate containers, respectively, in all studies except CPES. CPES collected duplicate amounts of
all individual fruits, vegetables, and fruit juices consumed by each child. Individual food items that
weighed greater than 50 g were analyzed separately (60%), and food items less than 50 g were
composited together within the same meal and then analyzed. Both an older and younger sibling from
the same household participated in the PEPCOT (PEPCOT-O and PEPCOT-Y). Pyrethroids were not
frequently detected (<20%) in the liquid food samples. In contrast, up to seven different pyrethroids
(bifenthrin, cyfluthrin, cypermethrin, deltamethrin, permethrin, phenothrin, and tetramethrin) were
detected in the children’s composited duplicate solid food samples (Table S-3). Only cis- and trans-
permethrin were detected in > 50% of the samples from the JAX-EXP, PEPCOT-O, and PEPCOT-Y.

'Cypermethrin was detected in > 50% of the samples only in the JAX-EXP. The median levels of cis-

and trans-permethrin were fairly similar for JAX-EXP (0.29 and 0.22 ng/g), PEPCOT-O (0.15 and
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0.14 ng/g) and PEPCOT-Y (0.10 and 0.09 ng/g), respectively. However, the median levels of cis- and
trans-permethrin were about three times higher in children’s duplicate diet samples in JAX-EXP (0.29
and 0.22 ng/g) compared to CTEPP-NC (both <0.08 ng/g). Geographical and demographic factors
(e.g., socioeconomic status and ethnicity) can influence children’s food choices and may have
contributed to the higher dietary exposures of JAX-EXP children to permethrin than CTEPP children
[29]. Permethrin was not detected in CHAMACOS-QEA, but this was likely due to the much higher
limit of detection (4.5 ng/g) compared to the other above studies (< 0.5 ng/g). For the three-year
longitudinal PEPCOT study conducted in North Carolina, the median levels of cis- and trans-
permethrin in solid food samples were fairly similar between the older siblings (range 0.07 - 0.26 and
0.07 - 0.37 ng/g) and younger siblings (range 0.06 — 0.15 and 0.06 — 0.16 ng/g) by year. This
information suggests that PEPCOT siblings in the same household likely consumed similar types of
foods and where probably exposed to similar levels of pyrethroids in their diets over a three-year
period. In the CPES, 29% of the individual food items had detectable levels of pyrethroids. Pyrethroids
were measureable in strawberries (bifenthrin), cherries (esfenvalerate), apples (permethrin), and
broccoli (permethrin). These findings are similar to results obtained in the Food and Drug
Administration’s Total Diet Study (1991-2003) which also detected measureable levels of bifenthrin,
cypermethrin, esfenvalerate, and permethrin residues in certain types of foods purchased at local
supermarkets and grocery stores in four different geographical regions (West, North Central, South and
Northeast) of the U.S. [30]. The foods that had the highest maximum levels of residues were collards,
spinach, and strawberries (bifenthrin), spinach and collards (cypermethrin), collards and apricots
(esfenvalerate), and spinach and collards (permethrin). This suggests that children are likely being
intermittently exposed to pyrethroids in consumed foods, particularly when eating certain types of
fruits and vegetables.

The levels of pyrethroids were measured in both indoor and outdoor air samples over a 24-h or 48-
h monitoring period using various methods at residences in CTEPP-NC, CTEPP-OH, JAX-EXP, and
CHAMACOS-QEA. In these studies, the frequencies of detection for up to seven pyrethroids
(allethrin, bifenthrin, cyfluthrin, i-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, permethrin,
phenothrin, resmethrin, and tetramethrin) were < 31% in the outdoor air samples in all studies except
for JAX-EXP (Table S-4). For JAX-EXP, cis- and trans-permethrin were both detected in 100% of the
outdoor air samples with median concentrations of 2.1 and 2.5 ng/m’, respectively. There were also
low frequencies of detection (< 34%) for these pyrethroids in indoor air samples, except for
permethrin. The frequencies of detection for cis- and trans-permethrin in indoor air samples varied
greatly among the studies. The frequencies of detection for cis- and frans-permethrin were both higher
for CTEPP-NC (> 65%) than for CTEPP-OH (< 23%). However, this was probably due to the higher
limit of detection for permethrin in indoor air samples from CTEPP-OH (0.3 ng/m’) than for CTEPP-
NC (0.09 ng/m®). The frequencies of detection in CHAMACOS-QEA were higher for cis-permethrin
(40%) compared to frans-permethrin (16%). For JAX-EXP, cis- and trans-permethrin were both
detected in 89% of the indoor air samples with median levels of 2.0 and 3.1 11g/m3, respectively. These
data suggest that children in JAX-EXP were likely exposed to higher levels of permethrin in both
indoor and outdoor air than children in the other studies. As permethrin is considered to have low
volatility, it is unclear why the JAX-EXP indoor and outdoor air samples had much higher levels of
this insecticide compared to the other studies, and more research is needed.
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Pesticide products containing pyrethroids are commonly manufactured as either a single isomer
(e.g., cis-deltamethrin) or a mixture of isomers (e.g., cis- and trans-permethrin) [25,31]. Cis- and
trans-isomers of pyrethroids have the same molecular formula, but a different spatial orientation of
atoms, and these isomers can have different physical properties and insecticidal and mammalian
toxicities [3, 31,32]. In these children’s studies, the cis- and trans-isomers of allethrin and permethrin
were measured in several environmental media, however only the cis- and trans-isomers of permethrin
were frequently detected (> 40%). Isomeric ratios of permethrin in commercial products are generally
manufactured as a mixture with typical cis/trans-ratios of 0.3 or 0.7 [5,33]. Across these children’s
studies, the median cis/trans-ratios of permethrin ranged from 0.4 to 1.0, 0.6 to 1.4, 0.7 to 1.6, and 1.1
to 1.3 in the floor wipe, floor dust, indoor air, and duplicate diet solid food samples, respectively. This
information suggests that these two isomers are likely degrading at various rates in environmental
media at residences. Research has indicated that isomeric degradation rates are likely influenced by
environmental factors such as temperature, sunlight, microbial degradation, and location
(indoors/outdoors) [34,35].

Previous research has indicated that pesticide metabolites used as urinary biomarkers of exposure
are also measureable in environmental media [36,37]. The CTEPP-VAC and PEPCOT studies
concurrently measured the levels of pyrethroids and their common environmentally-degraded
metabolite(s) in environmental media [16,38]. Starr et al. [16] measured for 13 parent pyrethroids and
their five environmentally-degraded pyrethroid metabolites (3-PBA, 4F-3-PBA, cis-DCCA, trans-
DCCA, DBCA, and CA (3-(2-2-dimethylvinyl)-2,2-dimethylcyclopropane-1-carboxylic acid)) in
vacuum dust samples collected at 80 children’s homes (and 5 child day care centers) [16]. CA can be a
metabolite of allethrin, imiprothrin, phenothrin, prallethrin, resmethrin, and tetramethrin. Of the 13
pyrethroids measured in CTEPP-VAC, all but cis- and trans-permethrin were detected in less than
37% of the vacuum dust samples. These two permethrin isomers were both detected in 85% of the
vacuum dust samples with median levels of 666 and 711 ng/g, respectively. The metabolites 3-PBA,
DCCA, DBCA, 4F-3-PBA, and CA were also detected in 67%, 81%, 39%, 8%, and 67%, respectively,
of the dust samples. The median levels of 3-PBA, DCCA, DBCA, 4F-3-PBA, and CA were 38, 154, <
5, <3, and 29 ng/g, respectively. Wilson et al. [38] also reported median concentrations of 3-PBA of
13.6 ng/g, 0.003 ng/cm’, and 0.5 ng:’m3 in carpet dust, hand wipes, and indoor air samples,
respectively, collected at 50 PEPCOT children’s homes in North Carolina [7,38]. These studies have
provided evidence of the co-occurrence of pyrethroids and their environmentally-degraded metabolites
of pyrethroids in several environmental media. These data are important as these same
environmentally-degraded metabolites are also used as urinary biomarkers of exposure and could
possibly overinflate children’s exposure estimates for pyrethroids.

3.2. Urinary Concentrations of Pyrethroid Metabolites

Table 3 presents the detection frequencies and distributions for five pyrethroid metabolites (cis-
DCCA, trans-DCCA, 4-F-3-PBA, DBCA, and 3-PBA) measured in children’s spot urine samples in
available studies (CPES (summer and year), CTEPP-OH, JAX-BIO, JAX-EXP, and NHANES). 3-
PBA was the most frequently detected (> 67%) pyrethroid metabolites in children’s urine samples
among these studies suggesting that the majority of the children were exposed to one or more of the
pyrethroids. The NHANES [8], a U.S. representative population survey that included 468 children
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(1999-2000) and 580 children (2001-2002) ages 6 to 11 years, reported that frequencies of detection
were below 48% for all five of these pyrethroid metabolites, except for 3-PBA (> 71%). Among these
studies, the children’s median urinary 3-PBA concentrations in the JAX-BIO (1.9 ng/mL), JAX-EXP
(2.2 ng/mL), and CPES (year; 1.2 ng/mL) were at least four times greater than NHANES (0.03 ng/mL)
suggesting that these children were being exposed to higher levels of one or more pyrethroids in
different geographical regions of the U.S. Across these studies (at the 75m percentile), the children’s
urinary trans-DCCA concentrations were between two to four times greater than their urinary cis-
DCCA concentrations. Barr et al. [8] also reported than NHANES urinary trans-DCCA to c¢is-DCCA
ratio varied greatly, but the majority of the ratios were between 3 and 4 [8]. In the body, the urinary
trans-DCCA metabolite is produced from exposure to trans-permethrin, frans-cypermethrin, and/or
trans-cyfluthrin [25]. Likewise, the urinary cis-DCCA metabolite is formed in the body from exposure
to cis-permethrin, cis-cypermethrin, and/or cis-cyfluthrin [25]. Studies have shown human volunteers
orally administered cypermethrin (1:1 cis/trans-ratio), renally eliminated more of the frans-isomer
dose (78%) than the cis-isomer dose (49%) over a 24-h period [39,40]. This information suggests that
these children may have been exposed to higher levels of the frans-isomer compared to the cis-isomer
of one or more of the pyrethroids in their environments and/or had greater urinary excretion of the
trans-DCCA metabolite compared to the cis-DCCA metabolite over a day.

The above urinary pyrethroid metabolite data indicate that these children were likely exposed to
pyrethroids that are primarily metabolized to 3-PBA and DCCA in the body. Barr et al. [8] reported
that NHANES urinary cis- and frans-DCCA concentrations were highly correlated with each other (r =
0.887; p < 0.001) and with 3-PBA (r = 0.766; p = 0.02) suggesting that the NHANES children were
likely exposed predominately to permethrin and cypermethrin. In support of these findings, Lu et al.
[18] reported frequencies of detection above 80% for only the pyrethroid metabolites, 3-PBA and
trans-DCCA, in 706 urine samples of CPES children. The co-occurrence of these two metabolites is
also a likely indicator of exposure to mainly permethrin and/or cypermethrin. These data suggest that
children in these observational exposure measurement studies were likely predominately exposed to
permethrin and cypermethrin between 1999 and 2004 in the U.S.

The variability of urinary pyrethroid metabolites in children was examined in the CPES and
CTEPP-OH [18.,41]. Lu et al. [18] measured the urinary pyrethroid metabolite concentrations in spot
urine samples collected from 23 CPES children, ages 3-11 years, from Seattle, Washington over a year
and showed seasonal differences in the children’s median urinary trans-DCCA and 3-PBA
concentrations. The children’s urinary frans-DCCA and 3-PBA concentrations were at least two and
three times lower, respectively, in the summer as compared to the fall, winter or spring months. In
addition, they reported that seasonality, dietary intake, and reported residential use of pesticides were
significant contributors to the temporal variability of the CPES children’s urinary pyrethroid
metabolite concentrations. Riederer ef al. [42] also showed that diet, but not reperted residential
pesticide use, was a significant predictor of urinary 3-PBA concentrations in 1999-2002 NHANES
children, ages 6-10 years old. The authors suggest that this lack of an association between residential
pesticide use and the children’s urinary 3-PBA in NHANES compared to CPES may be related to
study design differences such as sampling older children, using spot urine samples, and administering
the residential pesticide-use questionnaire a few weeks prior to urine sample collection. Egeghy et al.
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[41] recently showed that spot urine measurements collected over a 48-h period from 13 CTEPP-OH
children living in homes with recent pesticide applications had substantial sample-to-sample variability
and large differences among these children. The reported intraclass correlation coefficient of reliability
(ICC) was 0.69 for the children’s urinary 3-PBA concentrations which indicated that several spot urine
samples were probably needed over the 48-h period to provide a reliable estimate of pyrethroid
exposure among the CTEPP children [41]. This information is important as a number of past children’s
exposure measurement studies have collected only one spot urine sample which is likely not sufficient
to provide a reliable estimate of their exposures to pyrethroids over a day or longer (e.g., season or
year).

Assuming steady-state absorption, the children’s estimated cumulative intake doses of pyrethroids
in these children’s studies ranged from 0.0002 to 0.002 mg/kg/day with the highest intake doses
occurring for JAX-BIO and JAX-EXP (both 0.002 me/ke/dav). The cumulative intake doses were
calculated by multiplying the highest reported uri :ach study
by an estimated daily urine excretion rate of 22.4 mL/kg body weight. As no established cumulative
oral reference dose for exposure to pyrethroids exist in the U.S. EPA Integrated Risk Information
System (IRIS) [43], the children’s cumulative intake doses were compared to single oral reference
doses for permethrin (0.05 mg/kg/day) and cypermethrin (0.01 mg/kg/day) since these insecticides
were the most frequently detected pyrethroids in residential media. The JAX-EXP and JAX-BIO
children’s exposure levels were 25 and 5 times lower than the oral RfDs for permethrin and
cypermethrin, respectively. More research is needed to establish health-based standards for children’s
cumulative exposures to pyrethroids to ensure that their health is adequately protected.

As environmentally-degraded pyrethroid metabolites have been found in residential environments
[16,38], it is unclear whether these same metabolites (e.g., 3-PBA) are substantially absorbed into
children’s bodies and contribute to their urinary pyrethroid metabolite concentrations (e.g., 3-PBA) --
which could overestimate human exposure estimates for pyrethroids. Data are currently lacking on the
toxicokinetics of environmentally-degraded pyrethroid metabolites in exposed humans. However,
Huckle et al. [44] reported that 3-PBA administered orally or by intraperitoneal injection to several
different types of mammalian species (i.e., rats, hamsters, rabbits and guinea pigs) undergoes further
metabolism to other products, and these metabolites were primarily renally eliminated. More research
is needed to determine if humans directly exposed to environmentally-degraded pyrethroid metabolites
are unchanged or are further metabolized to other products in the body.

3.3. Contributions of Pyrethroid Exposure by Route

A few of the children’s exposure measurements studies, CHAMACOS-QEA, CTEPP-OH, JAX-
EXP, and PEPCOT, have collected sufficient data (e.g., environmental, biomonitoring, and activity
pattern) to quantitatively assess the aggregate or cumulative exposures of children to pyrethroids at
home [7.45]. Published data only exist for the CTEPP-OH and the JAX-EXP. Morgan et al. [7]
estimated the aggregate everyday exposures of 57 CTEPP-OH children, ages 2-5 years old, to both cis-
and trans-permethrin through the dietary ingestion, nondietary ingestion, inhalation, and dermal routes
and compared these estimates to excreted urinary amounts of 3-PBA. The children’s estimated median
aggregate absorbed dose to the combined cis- and trans-isomers was 4.4 ng/kg/day, and the primary
exposure route was determined to be dietary ingestion of solid foods, followed by nondietary ingestion
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of dust. About 7% of the solid food samples had much higher levels of the combined permethrin
isomers which suggests these children were probably consuming certain types of foods (e.g., fruits and
vegetables) that contained greater levels of permethrin residues [7]. The children’s estimated median
absorbed dose to the combined isomers accounted for greater than 8§5% of the excreted amount of
urinary 3-PBA (5.1 ng/kg/day) suggesting that they were likely mainly exposed to permethrin
compared to other possible pyrethroids at their homes. Tulve et al [45] recently estimated the
cumulative exposures of the JAX-EXP children, ages 4-6 years old, to several pyrethroids through
dietary ingestion, nondietary ingestion, inhalation, and dermal routes. These children lived in homes
with reported frequent use of pesticide products. The children’s cumulative exposures to pyrethroids
were predicted to be primarily through the dermal route (57%), followed by dietary ingestion route
(33%). Using linear regression analysis, a positive relationship (r"=0.90, P<0.05) was observed
between JAX-EXP children’s estimated dermal exposure and their urinary 3-PBA concentrations;
however, the authors caution that the results are limited due to the small sample size [45]. This
research indicated that dietary ingestion followed by nondietary ingestion were the major exposure
routes for these children, except in homes with frequent pesticide applications then dermal followed by
dietary ingestion were the major exposure routes. The results of these above studies suggest that
children’s exposures to pyrethroids were likely related to their individual eating and activity patterns
and whether pyrethroids were applied at their homes. .

3.4 Limitations

Several limitations should be considered regarding this review of children’s observational exposure
assessment studies. Only the PubMed database was accessed and only U.S. studies conducted between
1999 and 2007 were included. Quantitative comparisons of the data were mainly limited to levels of
pyrethroids in environmental and biological media among the studies due to the diverse types of study
designs (e.g., number of children, locations, race/ethnicities, socioeconomic status, types of samples
collected, and sampling methods). Of these studies, only the NHANES was designed to be
representative of the U.S. general population study; nonetheless, it does not collect urinary
biomonitoring data for children less than 6 years of age or environmental measurements data.

Common study limitations observed across the majority of the studies were use of convenience
sampling approaches, small sample sizes, cross-sectional designs (24-h or 48-h), limited demographics
factors (i.e., ages, races/ethnicities, socioeconomic status), limited types and numbers of environmental
samples collected, collection of no or only one spot urine sample per child, a lack of standard methods
for collection of samples (except for the HVS3), and a lack of validated questionnaires/diaries. It is
recommended that children’s observational exposure measurement studies conducted in the future
adopt a common ontology, particularly developing and using standardized sampling and analytical
methods and validated questionnaires and diaries so better and more extensive quantitative
comparisons of data can be made.

4. Conclusions

Residential use of pyrethroids likely varies across the U.S. and over time [46]. However, retail sales
data and the amount of pyrethroids applied in residential environments are currently not available [46]
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This review indicates that these children were likely exposed to low levels of several pyrethroids, but
primarily to permethrin and cypermethrin, from several sources such as diet, dust, and/or surfaces at
their residences between 1999 and 2007 in the U.S. Dietary ingestion followed by nondietary ingestion
were the major exposure routes for these children, except in homes with frequent pesticide
applications, then dermal followed by dietary ingestion were the major routes. Urinary 3-PBA
concentration data confirm that the majority of the children sampled were exposed to one or more of
the pyrethroids.

Despite the wealth of data and information generated in these studies, data gaps remain. Children’s
exposure assessments could be greatly enhanced by designing future studies to collect additional kinds
of data. These data include:

o Levels of pyrethroids and their environmentally-occurring metabolites in individual food items
for several consecutive days or a week including seasonally as certain types of foods (i.e., fruits
and vegetables) likely contribute to the intermittent dietary exposures of children to current-use
pyrethroids,

o Spatiotemporal variability of pyrethroids and their environmentally-degraded metabolites in
media (i.e., dust and on surfaces) at residences, since pyrethroid levels can vary substantially
within and between rooms, particularly before and after pesticide use,

e Temporal variability of urinary pesticide metabolites over a day and for several consecutive
days as there can be substantial intra-individual and inter-individual variability of pyrethroid
metabolites in children’s urine samples even over a short period of time (e.g., 48-h period). The
volume of the urine void and time of the current and previous urine void should be recorded as
this information can be used to calculate the metabolite excretion rate (ng/h) for a pyrethroid
which is independent of urine volume,

e Toxicokinetics of environmentally-degraded metabolites in humans (e.g., in vitro assays) to
determine whether these metabolites are unchanged or are further metabolized to other
products in the body before urinary elimination.

o Accurate and more descriptive pesticide product use information including active ingredients as
these products can contain single or multiple pyrethroids (including one or more isomers per
pesticide), and

e Accurate and more descriptive daily activity patterns of children as their exposures to
pesticides are highly dependent on their day-to-day activities such as their individual eating
patterns, activity levels, locations they spend their time, hand-to-mouth activity, and object-to-
mouth activity.
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