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Abstract: Longitudinal data are important in exposure and risk assessments, especially 

for pollutants with long half-lives in the human body and where chronic exposures to 

current levels in the environment raise concerns for human health effects. It is usually 

difficult and expensive to obtain large longitudinal data sets for human exposure studies. 

This paper reports a new simulation method to generate longitudinal data with flexible 

numbers of subjects and days. Mixed models are used to describe the variance-covariance 

structures of input longitudinal data. Based on estimated model parameters, simulation 

data are generated with similar statistical characteristics compared to the input data. 

Three criteria are used to determine similarity: the overall mean and standard deviation, 

the variance components percentages, and the average autocorrelation coefficients. Upon 

the discussion of mixed models, a simulation procedure is produced and numerical results 

are shown through one human exposure study. Simulations of three sets of exposure data 

successfully meet above criteria. In particular, simulations can always retain correct 

weights of inter- and intra- subject variances as in the input data. Autocorrelations are 

also well followed. Compared with other simulation algorithms, this new method stores 

more information about the input overall distribution so as to satisfy the above multiple 

criteria for statistical targets. In addition, it generates values from numerous data sources 

and simulates continuous observed variables better than current data methods.  This new 

method also provides flexible options in both modeling and simulation procedures 

according to various user requirements.      

Key words: longitudinal data, simulation, mixed models, variance-covariance structure, 

autocorrelation 
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1. INTRODUCTION 

Longitudinal data on the intensity of time-varying sources of exposures are extremely 

important for epidemiological studies, environmental exposure modeling and risk 

assessment since they possess variance and covariance structures that cross-sectional data 

lack. However, it is very difficult and expensive to track human activities, environmental 

measurements and other information for the same subject through extended periods of 

time to obtain observed longitudinal data. Some studies do provide longitudinal data but 

with small sample size and short duration, such as the Harvard Southern California 

Ozone Exposure Study (1), PM2.5 Panel Studies (2) and the Detroit Exposure and Aerosol 

Research Study (3). This lack of data restricts the applicability of observed longitudinal 

data for studies of broader spatial or temporal scope.  

Computer simulations could help overcome the above limitation. In this paper, we first 

build statistical models for available observed longitudinal data, and then develop an 

algorithm to generate large amounts of longitudinal data with flexible numbers of 

exposure days and close overall distribution with the observed data. Three criteria are 

used to evaluate this simulation method. First, the overall mean and standard deviation 

(SD) should be close to those from observed data. Second, the variances due to factors 

such as inter-, intra- subject, seasonal and other characteristics of the simulated data 

should be similar to the corresponding variances of the observed data. Third, 

autocorrelations should be consistent between the simulated and observed data.  When 

these three criteria are met, the generated simulation data can avoid misclassification of 

variance components and be used for various models, such as SHEDS-Multimedia 
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(Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway 

Pollutants) (4,5,6,7,8). 

The challenge of above approach lies in how to model and simulate the complicated 

variance-covariance structures of observed input data. In longitudinal data, there is 

variation among subjects. Moreover, there are both variation and correlation within each 

subject. Traditional methods usually generate all data independently, so that the 

correlations within subjects are ignored. In statistics, mixed models are developed to 

make this issue clear. In mixed models, total data variance is divided into that between 

subjects (inter-subject) and that within subjects (intra-subject). Then, we can model 

several types of correlations within each subject as necessary, in order to accurately 

simulate the variance-covariance structures in the observed data. In this paper, we will 

present the use of mixed methods, and the simulation procedure based on them. Then we 

evaluate this new method with some observed exposure data and provide simulation 

results. We also compare this new method with other simulation methods to demonstrate 

its features.   

 

2. MIXED MODELS AND SIMULATION METHODS 

2.1. Basic Mixed Models 

Traditional simulation methods for longitudinal data are usually based on the following 

model under assumption of independence:  

                                                      yij = µ + εij, εij ~ N(0, σ2)                                              (1)  
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where yij is the jth observation of the ith subject; µ is the mean of all observations; εij is 

the random term including variation among subjects, variation over time, and variation 

due to measurement error. In this model, random terms are assumed independent and 

normally distributed among and within subjects. The normal distribution issue will be 

discussed later in this section. 

As a modified version of (1), mixed model separates inter-subject and intra-subject 

variances, by splitting εij into two terms:  

                                           yij = µ + bi + eij, bi ~ N(0, σb
2), eij ~ N(0, σe

2)                          (2) 

where bi  is the random effect of subject i, and eij is the random term for other variation   

in its jth observation. Here, bi's are assumed to be independent among subjects, and eij's 

are assumed to be independent among and within subjects. In this way, observations from 

subject i share a common term bi to retain their correlation, and meanwhile possess their 

own random terms eij's to quantify intra-subject variability. Take an example in which 

every subject has observations for four consecutive days. Under the assumptions in (2), 

the variance-covariance matrix of one's 4-day series (4×1 random vector) is:   
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                                                                                                                                          (3)                                

where  

                                                            ω = σb
2 / (σb

2 + σe
2)                                              (3a) 

is the ICC (intra-class correlation coefficient) in statistics (9) and exposure studies (10) . 

The SAS procedures PROC MIXED or PROC GLM can provide estimates of the 

parameters µ, σb
2, σe

2 in model (2). (11) To simulate an n-day series for subject i, bi is 

generated first for the subject. After that, ei1, ... , ein are generated independently and 

added to bi for day 1 through day n. This two-stage simulation procedure maintains both 

variation and correlation within each subject, as well as the variation among subjects. 

Finally, we can add the constant µ to every bi + eij to meet the overall mean and obtain the 

simulation longitudinal data set.  

 

2.2. Mixed Models with Autocorrelation 

In the basic mixed model (2) and its variance-covariance matrix (3), random terms ei1, ... , 

ein are assumed to be independent. This means any two sets of days from one subject 

have equal ICC of σb
2 / (σb

2 + σe
2). However, sometimes this is not true. For example, 

some high level exposures tend to occur consecutively. If so, data from two closer days 

are likely to have higher correlations. This property is called autocorrelation in 

longitudinal data. As a result, random term eij in model (2) is no longer entirely 

independent with others. Instead, it partially depends on its preceding term ei,j-1. For this, 
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we further separate eij into two terms: one is determined by ei,j-1, and the other is 

independent from all: 

                                                         eij = ρei,j-1 + sij                                                         (4a) 

where ρ is the autocorrelation coefficient between two consecutive days, or lag-one 

autocorrelation,  -1 < ρ < 1. Then model (2) is modified to the following: 

                                       yij = µ + bi + ρei,j-1 + sij,  sij  ~ N (0, (1- ρ2) σe
2) ,                         (4) 

where sij is independent from all. Its re-scaled variance (1- ρ2) σe
2 is to keep total variance 

within one subject equal to σe
2. Under this assumption, the variance-covariance matrix 

becomes (11) : 
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(5)                   

Among the two matrices in (5), the first one defines inter-subject variances equivalently 

as in (3), and the second one allows observations with a k-day lag to have a correlation 

coefficient of ρk. This is closer to reality in some cases, compared with covariance matrix 

(3) which requires observations from any two days have equal correlations.    

For our simulations, we need to estimate parameter ρ in (4), besides σb
2, σe

2 in (2). For 

input data over short time period, SAS PROC MIXED can estimate all parameters 

directly by the maximum likelihood method. For input data over long time periods, say, 

more than 10 days, that algorithm can fail due to large computation loads. Instead, we can 
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use PROC GLM first to get estimates of µ, σb
2, σe

2 and save all residuals eij
 . PROC 

ARIMA can be used on residuals ei1, ... , ein to calculate the autocorrelation in subject i. 

The average of all subjects' autocorrelation coefficients is a reasonable estimate for ρ in 

the population. 

 

2.3. Mixed Models with Classification Variables 

The mixed models discussed above are for longitudinal data with only subject and time 

information. Oftentimes, some classifications for subjects and observation periods are 

desired. For example, subjects can be classified by groups according to gender, age, or 

living district. Similarly, observation days can be classified by treatments applied in 

various month, season, or different categories. It could be important to study how much 

variance is attributed to these classification effects. In mixed models, these classifications 

are modeled as fixed effects, distinct from random effects such as bi . Suppose a subject k 

belongs to the group i, and its lth observation is taken under treatment j (for example, the 

jth season). Then, this observation, labeled as yijkl, can be modeled as following: 

                                     yijkl = µ + αi + βj + (αβ)ij + bk(i) + ρeijk,l-1 + sijkl ,                         (6a) 

or equivalently,  

                                                 yijkl = µij + bk(i) + ρeijk,l-1 + sijkl ,                                       (6) 

where µij = µ + αi + βj + (αβ)ij is the mean of all data from group i and under treatment j ; 

bk(i) is the random effect of the subject k from group i; ρeijk,l-1 + sijkl  is the random  term of  

that observation. This model is referred as the Split-Plot model in statistics (12) .  



9 
 

Estimates of µij can be obtained using SAS PROC MIXED or PROC GLM. For our 

simulations, we first build variance structures bk(i) + ρeijk,l-1 + sijkl as described in the above 

sections. Then, we assign classification levels (for example, four seasons, two genders) 

according to their frequency percentages in the input data. Finally, we add up the 

corresponding µij by assigned classification levels to build the fixed effects. If the input 

data set contains classification structures not as typical as in model (6), we can always 

convert it to satisfy (6). When there is no group classification in input data, we can 

simply establish a dummy variable (all zero values) as a virtual group effect (αi = 0). If 

there are two treatment effects, we can incorporate their information into one virtual 

effect to fit the model (6).  For example, suppose we are not only interested in which 

season the observations belong to (4 levels treatment effect), but also interested in 

whether they are observed on a weekday or weekend (2 levels treatment effect). We can 

combine both of them into one virtual treatment effect with 2×4=8 levels, and then send 

it to the simulation module as βj in model (6).  After simulation data are generated, we 

can separate this virtual effect back to the original season effect and weekday/weekend 

effect according to the combining rules. By repeating this combine-and-separate 

procedure, we can even handle more complicated classification information in input data. 

This technique will considerably broaden the applicability of model (6), without any 

modification on the core simulation program. 

 

2.4. Transforms on Input Data 
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In the mixed models above, all random terms bi and eij are assumed normally distributed. 

This is the basic assumption of mixed model theory, as well as the requirement of the 

SAS procedures we used.  That means input data yij or yijkl also roughly follow normal 

distributions. If they are not normally distributed, we can apply some mathematical 

transforms on input variables yij or yijkl to re-scale them. For example, some exposure data 

empirically follow a log-normal distribution. Thus, we can take logarithms of input data, 

and then build model (6) on the transformed data: 

                                    log (yijkl)= µ + αi + βj + (αβ)ij + bk(i) + ρeijk,l-1 + sijkl ,                  (7) 

However, sometimes we find that after the logarithm transform, residuals bk(i) or eijkl still 

fail to fit a normal distribution. That may cause some biased simulation results, such as a 

higher or lower overall standard deviation than the target level of input data. One 

alternative is to use a broader family of transforms, called the Box-Cox transforms (13), of 

which the logarithm transform is only one special case:  

ሺఒሻݕ                                               ൌ ൜ ሺݕఒ െ 1ሻ/ ߣ  ݂݅            ߣ ് 0
    logሺݕሻ ߣ  ݂݅                   ൌ 0                                    (8)                                  

When λ approaches to zero, the Box-Cox transform is almost the logarithm transform, 

since  lim஛՜଴
௬ഊିଵ

஛
 ൌ logሺݕሻ. When λ = 1, the Box-Cox transform just shifts all data 

down by one unit, without changing the variance-covariance structures of input data. 

With (8) implemented, model (7) can be generalized to the following: 

                                      yijkl
(λ) = µ + αi + βj + (αβ)ij + bk(i) + ρeijk,l-1 + sijkl ,                       (9) 
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The optimal Box-Cox transform can be automatically completed by SAS PROC 

TRANSREG. This module goes through all possible λ values (for example, from -3 to 3 

by 0.1) and evaluates each likelihood for model (9). Then, the λ value with maximum 

likelihood is selected. In this way, this “smart” Box-Cox transform can determine 

whether the input data yijkl already meet the normal assumption (λ=1 selected), or whether 

the logarithm should be taken (λ=0 selected), or another transform (λ≠0, 1 selected) 

should be applied. 

Although the Box-Cox transform can make input data closer to a normal distribution, 

there are some cases it cannot help with, such as heavy tails or outliers in input data. In 

these cases, transformed data may not conform to the assumptions of mixed models, 

resulting in certain bias in the simulation.    

 

2.5. Simulation Procedure 

We now formulate a complete procedure to simulate longitudinal data based on mixed 

model (9) by SAS: 

Step 1: Observed input data. Compute target statistics: overall mean and standard 

deviation, variance components percentages, average lag-one autocorrelation coefficient. 

Step 2: If input data have more classifications than model (6), combine them into one 

group effect and one treatment effect as in (6), and then keep the percentages of all levels 

of groups and treatments. 

Step 3: Find the optimal Box-Cox transform as in (9) by SAS PROC TRANSREG. 
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Step 4: Estimate all model parameters in (9) by SAS PROC GLM and PROC MIXED. 

Step 5: Input required numbers of subjects and days in simulation data, generate that 

amount of bk(i) , ρeijk,l-1 , sijkl from corresponding normal distributions, organize and sum 

up as in (2) and (4).  

Step 6: Assign group and treatment levels as their percentages in Step 2. Add up proper 

means µij = µ + αi + βj + (αβ)ij for data in each level.  

Step 7: Transform obtained simulation data yijkl
(λ) back to original scale yijkl , as inverse of       

Step 3.  

Step 8: Restore group and treatment effects as in input data, as inverse of Step 2. 

Step 9: Check simulation results. Compute three aspects of statistics from simulation data 

and compare with the targets set up in Step 1. 

Figure 1 is a flow chart of this procedure from step 1 to step 9: 
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Figure 1. Flow chart of simulation of longitudinal data by the complete mixed model (9). The left side 

①~④ include modeling steps, and the right side ⑤~⑨  include simulation steps. 

 

 

3. RESULTS 

The PM2.5 (particulate matter less than 2.5 micrometers in diameter) Panel Studies (2) 

took observations on personal, indoor and outdoor PM exposure data and other variables 

of interest from 37 participants over four seasons from June 2000 to June 2001. The 

involved subjects came from two socioeconomic cohorts living in Raleigh and Chapel 

Hill, respectively, both in North Carolina. Each subject was expected to be monitored on 

seven consecutive days in each season.  Due to missing data, there are 23 observations 

per subject on average.  
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We conducted simulation experiments on three input variables: personal PM, indoor PM, 

and outdoor PM. We present results of outdoor PM as an example to test four models as 

described above in a tiered order: the independence model (1), the basic mixed model (2), 

the mixed model with lag one autocorrelation (AR(1)) as in (4), and the complete model 

using Box-Cox transformed data as in (9). For a better comparison with (9), we took 

logarithms on input data for the first three models.  

                                                      log (yijkl) = µij + εijkl                                                   (10a)                                             

                                                      log (yijkl) = µij + bk(i) + eijkl                                        (10b)                         

                                                      log (yijkl) = µij + bk(i) + ρeijk,l-1 + sijkl                           (10c)  

                                                            yijkl
(λ) = µij + bk(i) + ρeijk,l-1 + sijkl                          (10d)    

In Table I, the first row in bold labeled “Observed” shows target statistics associated with 

the input data. Below that, the simulation results from the four models are presented in 

order. The shaded vertical comparisons show how certain target statistics are improved 

by upgrading the above model to the one below. From the independence model, we see 

that the inter-subject variance percentage is almost diminished to zero, whereas the intra-

subject variance percentage is much higher than its target. When the basic mixed model 

is used, these two variance components immediately get closer to their target percentages. 

These two are discussed more at the end of this section. When the mixed model is further 

modified with autocorrelation, we see that the autocorrelation coefficient is raised to 

0.37, comparable to the observed value of 0.39. Finally, when we improve the logarithm 

transform to the optimal Box-Cox transform, the simulation overall standard deviation is 

slightly adjusted from 11.0 to 9.5.  



15 
 

Table I. Simulation results of outdoor PM by four models (10a)-(10d) with 1000 subjects over 300 days, 

compared with target statistics set by actual observed data. Shaded vertical comparisons show how 

simulation results are improved by each model refinement. In row of (10b), variance components inter- and 

intra- percentages are corrected when mixed model is used. In row of (10c), observed autocorrelation 

coefficient is approached when AR(1) is added to model. In row of (10d), overall standard deviation (SD) 

is adjusted when Box-Cox transform is used to replace logarithm transform.         

 

Method 

Overall Scale 

(μg/m3) 

Variance Components Percentages (%) AR(1) 

ρ 

Mean SD Inter Intra Cohort Season 

Observed 20.0 9.5 13.5 75.9 0.5 8.9 0.39 

(10a)   Independent 20.2 11.0 0.3 89.7 0.4 9.6 0.10 

(10b)   Mixed 20.3 11.1 8.1 82.4 0.5 9.0 0.10 

(10c)   Mixed + AR(1) 20.2 11.0 8.1 82.2 0.3 9.4 0.37 

(10d)   Mixed + AR(1)   

+ Box 

20.0 9.5 10.2 79.5 0.4 9.9 0.40 

 

Parallel simulations for personal PM and indoor PM gave similar results as in Table I: 

simulations by the last model “Mixed + AR(1) + Box” work well to approach observed 

targets in all aspects. When fixed effects such as cohort and season take very few 

percentages in observed data (less than 1%), they can be considered insignificant and 

omitted in the simulation.   

We also studied the trend of autocorrelation for increasing simulation time periods in 

Figure 2. The observed outdoor PM data contains much larger autocorrelation (ρ = 0.40) 

than the observed personal PM data (ρ = 0.08). From Figure 2, both simulation 
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Table II, we add the corrected targets in parentheses after observed targets for all three 

variables and compare simulation results with them. When simulations are run based on 

entire observed data, the inter- and intra- results successfully approach the corrected 

target values. Moreover, it is interesting to test how the simulations perform if fewer 

sample data are available. We use half of the observed data (last two seasons, 13 days) to 

run our simulations, and find that simulation results on inter- and intra- subject   

variances percentages have larger relative errors to the corrected targets. Results for the 

other targets are similar to Table I. Simulations based on even shorter samples (less than 

10 days) are not recommended because large biases in the inter- and intra- variances 

percentages would appear. These results also agree with a previous study (14) which 

reported that at least ten days of observations are needed to capture a reliable ICC. 

 

Table II. Simulation inter- and intra- subject variances percentages compared with observed targets and 

corrected targets (in parentheses) for three input variables. Simulation relative errors to corrected targets are 

also provided below. The top results are from a 300-day simulation using the entire input observations (23 

days); the bottom results are from a 150-day simulation using half of input observations (winter and spring, 

13 days). Each simulation includes 1000 subjects. 

 

Data 

PM_Personal PM_Indoor PM_Outdoor 

Inter % Intra % Inter % Intra % Inter % Intra % 

Entire Obs. (23d) 26.1 (23.0) 71.6 (74.7) 29.9 (27.0) 66.5 (69.3) 13.5 (10.3) 75.9 (79.1) 

Simulation (300d) 

Relative Error (%) 

21.6 

6.3 

75.8 

1.5 

26.9 

0.4 

69.6 

0.4 

10.2 

1.0 

79.5 

0.5 

Half Obs. (13d) 26.7(21.4) 67.2(72.5) 30.1 (25.2) 62.6 (67.5) 15.0 (9.6) 67.6 (72.9) 
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Simulation (150d) 16.6 77.8 26.5 64.8 9.3 73.5 

Relative Error (%) 25.3 7.1 5.0 4.1 3.2 0.8 

 

4. DISCUSSION 

This paper reports a new simulation method for longitudinal data. A series of mixed 

models are applied to describe variance-covariance structures of input longitudinal data. 

As outlined in Figure 1, input longitudinal data are analyzed first to estimate model 

parameters, and then these parameters are used to generate output longitudinal data with a 

distribution closely following the input data. The output distribution is checked from 

aspects of overall mean, standard deviation, variance components percentages, and 

autocorrelation. Three data sets from the PM2.5 Panel Studies are used to test this new 

method. Most simulation experiments yield accurate and robust results in approaching 

input data targets. 

Compared with other simulation methods, this new method has the following features. 

The first feature is the crucial role of mixed models. Most of our efforts were focused on 

model refinement to describe the input data accurately and comprehensively. If one 

model can fit input longitudinal data very well, simulations using that model should 

produce good results. From this point, this simulation method first serves as a data 

modeler and then as a data generator. Through the modeling process, this method stores a 

lot of sample information, so that it can simultaneously satisfy several targets to closely 

replicate the input distribution. In contrast, other simulation methods are mostly designed 

from only one or two statistical aspects. There are advantages and disadvantages of other 
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methods and ours. Our method has the relatively stricter requirements on the input data 

imposed by mixed models.  

The second feature is the simulation data source. Current simulation methods usually 

sample data from available data pools either by random draw methods or more 

sophisticated drawing algorithms such as Glen’s method (10). That means simulation data 

can only take limited values existing in pools. When the simulation size is much larger 

than the pool size, sampling methods can result in forced repetitions of limited available 

values, and make the simulation data appear discrete. However, observed exposure data 

are usually continuously distributed. Our new method can emulate this property, because 

it starts by generating random numbers from the standard normal distribution, which is 

actually an infinite data pool. In long simulations, new values will always be produced in 

the output data set, and make simulation data closer to a continuous distribution.  

The third feature is the flexibility in simulation practice. This method has been coded in 

SAS Macro language. The user only needs to input a longitudinal data set, and specify 

how many subjects and days to generate. Then, both modeling and simulation steps in 

Figure 1 run automatically until a simulation data set is output and a comparison table 

like Table I is displayed. The user has options to specify which variable to simulate, what 

classification factors to involve, whether the autocorrelation is considered or not, and 

what kind of transforms to apply on input variable. The user can also simulate a subset of 

input data with particular properties if necessary.      

There are certain requirements to apply the technique to assemble the longitudinal data 

such as continuous measurements, normal distributions required by mixed model, and 
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estimated variance-covariance structures. It is important to take co-occurrence into 

consideration when the technique is used in modeling cumulative exposures for multiple 

chemicals.    

There are possible extensions for our simulation method in future studies.  First, some 

generalized linear mixed model tools have been recently developed for response variables 

that are not normally distributed. Using these, we could potentially fit the observed data 

more accurately and obtain better simulation results.  Second, continuous variables could 

be added into current models as covariates, such as air exchange rates that affect indoor 

pollution levels, in addition to the classification variables already included. Third, related 

input variables could be simultaneously modeled as a group to maintain inherent 

correlations among them. These extensions would generalize our method significantly 

and are well within current-day practices.  

 

5. CONCLUSIONS 

The new technique presented in this paper uses variance-covariance structure and 

autocorrelation coefficients from limited longitudinal data to simulate unlimited 

longitudinal data. Inter- and intra- personal variances and autocorrelation are close to the 

observed longitudinal data.  

The new method will be important for exposure models such as EPA’s SHEDS-

Multimedia, since it can be used to simulate a series of important input variables by 

keeping their variance-covariance structure with more accurate prediction of the variance 
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and high percentiles of exposure output by the models. This could be valuable for linking 

environmental pollutants with chronic adverse health effects. 
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Appendix A 

We provide a figure about daily personal PM2.5 profiles of one given individual from 
observed data (28 days) and simulated data (365 days). 

Figure A1.    

 

Appendix B 

We provide some SAS codes for core simulation steps 4-6 as in Figure 1. We used the 
version of SAS 9.2 TS Level 1M0. 

Suppose we are going to simulate one variable from the input longitudinal data set. We 
run the following macro to estimate the model parameters as in step 4.   

/********************************************************************** 
 Function: Estimate key model parameters for variance and means; 
 Input : sample: objective_sample 
         y: interested variable; 
 Output: sigma_b, sigma_e, rho: parameters defined in mixed model 
         means: data set to keep classification means, i.e., means of     
                each group*trt classification;  
**********************************************************************/ 
%macro model_parameters (sample, y); 
%global sigma_b sigma_e rho; 
title 'Estimate Mean and ANOVA parameters'; 
proc mixed data = &sample; 
   class group trt subject; 
   model &y = group|trt / s; 
   random subject(group); 
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   lsmeans group*trt; 
   ods output covparms = sigma lsmeans = means; 
run; 
data sigma_2 (keep = sigma_b sigma_e); 
   array a(2) sigma_b sigma_e; 
   do _N_ = 1 to 2; 
      set sigma; 
   a(_N_) = estimate; 
   end; 
run; 
data _n_; 
   set sigma_2; 
   call symput ('sigma_b', sigma_b); 
   call symput ('sigma_e', sigma_e); 
run; 
title 'Estimate AR(1) on Residues'; 
proc glm data = &sample; 
   class group trt subject;   
   model &y = group trt subject(group); 
   output out=residual r = residual p = predicted; 
run;  
* Note: in model, rho is defined by correlation of random errors, so 
below rho is calculated upon residues, instead of raw data; 
%ar_1(sample = residual, y = residual, sub = subject); 
proc print data = ar_mean; run; 
data _n_; 
   set ar_mean; 
   call symput ('rho', autocorrelation); 
run; 
%put &sigma_b &sigma_e &rho; 
%mend; 

Then we can run the following macro for simulation steps 5 and 6. We need to input 
n_sub and n_day to specify the size of simulation data set. We also input the model 
parameters obtained from above. The output is the simulation data set.  

/********************************************************************** 
Function: Main step of R_A method, generate simulation data set. See   
          more details step by step below.  
Input:  n_sub, n_day: how many subjects and days to be simulated 
        sigma_b, sigma_e, rho: key model parameters to build variance- 
                               covariance structure 
        n_group, n_trt: numbers of group levels and treatment levels 
        p_group, p_trt: percentage of each group level and each     
                        treatment level 
        means: classification means of each group*treatment level;     
Output: simulation: simulation data set;  
**********************************************************************/ 
%macro r_a (n_sub, n_day, sigma_b, sigma_e, rho, n_group, n_trt, 
p_group, p_trt, means); 
 
* First, build basic model with proper variance-covariance structure; 
data simulation;  
   do i = 1 to &n_sub; 
      b = rannor(0)*sqrt(&sigma_b); 
   do j = 1 to &n_day; 
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      subject = i; 
   day = j; 
   b = b; 
      if j = 1 then  
           do; e = rannor(0)*sqrt(&sigma_e); s = 0; output; end; 
      else do; 
              s = rannor(0)*sqrt((1-&rho*&rho)*&sigma_e); 
        e = &rho*e+s; 
        output; 
        end; 
       end; 
    end;  
run; 
 
* Second, modify into complete model by assigning classification levels 
and level means; 
* Assign group number;  
%assign (sample = simulation, 
         var_1 = subject, 
         n_1 = &n_sub, 
    var_2 = group, 
         n_2 = &n_group, 
         proportion = &p_group); 
* Assign treatment number; 
%assign (sample = simulation, 
         var_1 = day, 
    n_1 = &n_day, 
         var_2 = trt, 
         n_2 = &n_trt, 
         proportion = &p_trt); 
* Distribute classification means according to assigned levels; 
%do i = 1 %to &n_group; 
   %do j = 1 %to &n_trt; 
   data select; 
      set &means; 
      if group = &i and trt = &j; 
      keep estimate; 
   run; 
   data _Null_; 
      set select; 
      call symput ('mean',estimate); 
   run; 
   %put &mean; 
   data simulation; 
      set simulation; 
      if group = &i and trt = &j then mu = &mean; 
   run;  
   %end; 
%end; 
 
* Last, add up above terms following model; 
data simulation; 
   set simulation; 
   y = mu + b + e; 
run; 
%mend; 
 


