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Abstract 15 

The high-order decoupled direct method in three dimensions for particulate matter (HDDM-16 

3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to 17 

enable advanced sensitivity analysis. The major effort of this work is to develop high-order 18 

DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-19 

specific approach has been applied, and the sensitivities of activity coefficients and water 20 

content are explicitly computed. Stand-alone tests are performed for ISORROPIA by 21 

comparing the sensitivities (first- and second-order) computed by HDDM and the brute force 22 

(BF) approximations. Similar comparison has also been carried out for CMAQ sensitivities 23 

simulated using a week-long winter episode for a continental US domain. Second-order 24 

sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium) with respect to domain-25 

wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in 26 

locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis 27 

elucidates pooly understood nonlinear responses of secondary inorganic aerosols to their 28 



 2 

precursors and competing species. Adding second-order sensitivity terms to the Taylor series 1 

projection of the nitrate concentrations with a 50% reduction in domain-wide NOx or SO2 2 

emissions rates improves the prediction with a statistically significance. 3 

 4 

1 Introduction 5 

Airborne particulate matter (PM), or aerosol, is a major pollutant in the atmosphere. Studies 6 

have shown that PM impairs visibility (Watson 2002), may cause harmful effects on 7 

ecosystems (Galloway et al., 2004), and affects human health (e.g., Zanobetti et al., 2000; 8 

Kaiser, 2005). In response, control strategies are designed to lower the concentrations of 9 

anthropogenic PM in the atmosphere (U.S. EPA, 2004). Historically, multiple air quality 10 

model simulations using different sets of emissions have been used to evaluate the expected 11 

benefit of different strategies (e.g., Bergin et al., 2008). This approach is resource-intensive 12 

(Dunker, 1984), and the numerical precision of models limits the size of emissions changes 13 

that can be actually evaluated (Hakami et al., 2004). An alternative approach is to use 14 

sensitivity analysis tools integrated in the simulation.   15 

Sensitivity analysis reveals the relationship of model outputs (e.g., pollutant concentrations) 16 

to model input parameters (e.g., emissions rates, initial or boundary conditions, and chemical 17 

reaction rates). Several different sensitivity analysis methods quantitatively express partial 18 

derivatives as the “sensitivity coefficients”. One approach is the brute force (BF) 19 

approximation; using central finite difference approximation, first- and second-order 20 

sensitivities are expressed as: 21 
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where (1),BF

ijS  and (2),BF

ijjS  represent the brute force first-order and second-order sensitivities, 1 

respectively of species i with respect to parameter pj (e.g., emissions, initial or boundary 2 

conditions, or reaction rates). Ci represents the concentration of species i. jp , j jp p , and 3 

j jp p  represent the values of the input parameter at which the concentrations are evaluated. 4 

Computational requirements for BF sensitivity analysis scale with the number of parameters 5 

investigated. Obviously, BF becomes resource-intensive with an increasing number of 6 

parameters of interest or with increasing order (e.g., second order or higher) of sensitivities. In 7 

addition to being computationally inefficient, the BF sensitivities are prone to considerable 8 

numerical noise. One reason for the numerical noise is the truncation errors, which are 9 

introduced by omitting the higher-order terms when deriving Eqs. (1) and (2) from the Taylor 10 

series expansion. The truncation error is a function of both the perturbation size ( p ) and the 11 

magnitude of higher-order sensitivities. If the system is highly nonlinear, even a small 12 

perturbation can cause sizable truncation error (Hakami et al., 2004). Another reason for the 13 

numerical noise of BF is due to the modeling accuracy and precision. For example, 14 

incomplete convergence in iterative solvers will cause such errors. Both types of errors for 15 

second-order BF sensitivities are amplified compared to first-order BF sensitivities. Actually, 16 

as the order of sensitivities increase, BF approximations become significantly less accurate 17 

(Hakami et al., 2004).  18 

An alternative approach to BF is the decoupled direct method in three dimensions (DDM-3D). 19 

This method operates integrally within a chemical transport model (CTM) and simultaneously 20 

computes local sensitivities of pollutant concentrations to perturbations in input parameters 21 

(Dunker, 1984; Yang et al., 1997; Cohan et al., 2005; Napelenok et al., 2006, Cohan et al., 22 

2010). DDM-3D sensitivities are calculated by solving sensitivity equations that are the 23 

derivatives of the partial differential equations governing the CTM. DDM-3D is 24 
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computationally efficient for three or more sensitivity parameters and is subject to 1 

considerably less numerical noise than BF. The difference in numerical cost has been studied 2 

by Napelenok et al. (2006). CPU time required by the two approaches to compute the same 3 

set of sensitivities is compared, with the number of sensitivity parameters ranging from 1 to 8. 4 

The CPU time needed by BF is almost twice that needed by DDM-3D if two or more  5 

parameters are considered. For 8 sensitivity parameters, the CPU time for BF is 27 minutes 6 

and DDM-3D 15 minutes. DDM-3D has been implemented in CTMs (e.g., CMAQ (Byun and 7 

Schere, 2006), CAMx (ENVIRON, 2005), URM (Boylan et al., 2002)) to conduct source 8 

impact analysis for ozone and PM (Yang et al., 1997; Mendoza-Dominguez and Russell, 2000; 9 

Odman et al., 2002; Napelenok et al., 2006; Koo et al., 2007). Initially, DDM-3D was applied 10 

to calculate first-order sensitivities, which are the locally linear responses of pollutant 11 

concentrations to changes in model inputs and parameters (e.g., emissions, and initial and 12 

boundary conditions) at the conditions currently modeled.  13 

DDM-3D has been extended to calculate high-order sensitivities of gaseous species by 14 

Hakami et al. (2003) within the Multiscale Air Quality Simulation Platform (MAQSIP) 15 

(Odman and Ingram, 1996). They calculated second- and third-order sensitivities using DDM-16 

3D and showed that the approach could accurately capture the nonlinear response of ozone 17 

concentration to NOx and VOC emission changes. They also investigated the efficiency of 18 

DDM-3D in calculating high-order sensitivities. An important outcome of that work was that 19 

higher than second order sensitivities are not necessary for the majority of potential 20 

applications. More recently, the high-order approach for gaseous species has also been 21 

implemented in the Community Multiscale Air Quality (CMAQ) model (Cohan et al., 2005) 22 

and the Comprehensive Air Quality with extensions (CAMx) (Koo et al., 2010). High-order 23 

sensitivity calculations of gaseous species have been applied to source apportionment and air 24 

quality model uncertainty analysis (Cohan et al., 2005; Tian et al., 2010). Although nonlinear 25 
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effects of aerosol precursors on aerosol concentrations have been of concern in the past 1 

decade (Ansari and Pandis, 1998; West and Pandis, 1999), developing HDDM for PM has not 2 

yet been undertaken due to the discontinuous, highly nonlinear solution surface of the 3 

inorganic aerosol thermodynamics.  Only now has the challenging task of extending high-4 

order, direct sensitivity analysis to particulate matter species been accomplished. HDDM-5 

3D/PM is implemented in the Community Multidimensional Air Quality model, version 4.5 6 

(CMAQ4.5). 7 

 8 

2 Model Description 9 

CMAQ is an Eulerian air quality model (Byun and Schere, 2006) that simulates emissions, 10 

deposition, transport and chemical transformation of atmospheric species primarily by solving 11 

the advection-diffusion-reaction equations: 12 
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where iC is the concentration of the i
th

 species, u the fluid velocity, K the turbulence 14 

diffusivity, iR  the net chemical reaction rate of all chemical reactions that affect the 15 

concentration of the i
th

 species, and iE  the emission rate for the i
th

  species (Seinfeld and 16 

Pandis, 2006). The chemicals species can be in gas phase or aerosol form. 17 

In the modal treatment of aerosol in CMAQ, aerosol species are tracked based on their size 18 

using three modes: Aitken, accumulation, and coarse. The two smaller modes (noted as 19 

Aitken and accumulation modes, respectively) approximately represent PM2.5, aerosols 20 

smaller than 2.5μm in aerodynamic diameter. CMAQ includes modeled processes of 21 

secondary inorganic aerosol (i.e., sulfate, nitrate, ammonium), anthropogenic secondary 22 

organic aerosol (SOA), and biogenic SOA formation as well as primary emissions of 23 
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elemental carbon and sea salt in the Aitken and accumulation modes. PM2.5 changes in 1 

response to new particle production from vapor phase precursors, coagulation of particles, 2 

growth by condensation from gaseous species, transport and deposition of particles, and 3 

emissions (Byun and Schere, 2006). The concentration of PM2.5 is highly dependent on gas 4 

phase species concentrations because of the significant fraction of secondary aerosol in this 5 

size range. CMAQ4.5 assumes the secondary inorganic aerosols are in thermodynamic 6 

equilibrium with surrounding gases, and uses ISORROPIAv1.7 (Nenes et al., 1998a; 7 

Fountoukis et al., 2007) to simulate their condensation and evaporation. A dynamic 8 

equilibrium approach has also been used by CMAQ4.7+ to simulate the chemical interactions 9 

between coarse particles and gas-phase pollutants (Kelly et al., 2010). CMAQ4.5 partitions 10 

SOA between gas and condensed phase based on the two-product model of Odum et al. (1997) 11 

using empirically derived coefficients from chamber experiments (Schell et al., 2001). The 12 

algorithm to compute SOA concentrations is similar to that of photochemical reactions. 13 

Studies show that the thermodynamic coupling between SOA and the inorganic species can 14 

impact the total aerosol water content and the aerosol nitrate concentrations (Ansari and 15 

Pandis, 2000). This would result in a greater sensitivity of aerosol water content and nitrate 16 

concentrations to SOA precursors (e.g., monoterpenes and xylene). However, such a coupling 17 

is not parameterized in CMAQ4.5, so DDM sensitivities do not reflect these effects. Thus, 18 

this work mainly focuses on the sensitivities of inorganic aerosol species to SO2, NOx, and 19 

NH3.  The SOA representations in CMAQ are being updated (Edney et al., 2007 and Carlton 20 

et al., 2010), and further interactions between inorganic and organic aerosol fractions are 21 

likely to be included in future updates. The implementation of HDDM and DDM sensitivity 22 

analysis can be modified accordingly. 23 

ISORROPIA assumes that equilibrium exists between gas phases and aerosol species and uses 24 

thermodynamics to calculate the composition of inorganic aerosols and concentrations of 25 
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surrounding gases. Inputs to ISORROPIA include the total (gas and aerosol) concentrations of 1 

five inorganic precursor species (i.e., sulfate, nitrate, ammonium, sodium, and chloride), 2 

temperature, and relative humidity.  To determine the aerosol composition at equilibrium, 3 

ISORROPIA first identifies the solution regime of the given system based on sulfate ratio (i.e., 4 

the ratio of total ammonium and sodium to total sulfate). Then, the appropriate set of 5 

equilibrium and mass and charge conservation relationships are solved to calculate the phase 6 

state and equilibrium concentrations (Table 1). Each of ten subcases has its own solution 7 

procedure and a distinct set of possible species at equilibrium.  8 

 9 

3 Development of HDDM-3D/PM 10 

HDDM-3D/PM directly computes the high-order DDM sensitivity coefficients of PM 11 

concentrations to input parameters, such as emissions rates, and initial or boundary conditions, 12 

by solving derivatives of the original equilibrium and conservation equations. First- and 13 

second-order sensitivity coefficients are defined as 14 

(1) i
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where 
(2)

ijks denotes second-order sensitivity of species i to parameters j and k; Ci denotes the 17 

ambient concentration of species i; and jp  and kp denote any two input parameters of interest.  18 

HDDM-3D/PM calculates semi-normalized sensitivity coefficients, expressed in the same 19 

units as concentration and which allows for easier interpretation and application:  20 
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where j  and k  are relative perturbations in parameters jp  and kp , and they are related to 2 

the absolute perturbation of a parameter by 
p

p


  . 3 

The fundamental steps to obtain high-order DDM-3D sensitivities for PM from CMAQ are 4 

similar to those for the gaseous species. Taking second-order derivatives of the governing 5 

equation results in a similar equation which can be solved for second-order sensitivity of PM: 6 
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(2)

ijkS is the second-order sensitivity of species i with respect to parameters jp  and kp ; (1)

ijS and 8 

(1)

ikS  are first-order sensitivities of species i to parameters jp  and kp , respectively; iJ  is the 9 

i
th

 row of Jacobian matrix defined as /ik ik kJ R C   . k is the k
th

 species in the concentration 10 

vector. 
(2)

jkS  is the vector of second-order sensitivity coeffiients. f is a function primarily of iC , 11 

(1)

ijS , and (1)

ikS . It can also be related to u , K , iR , and iE , depending on the types of 12 

sensitivity parameters. Details of  f can be found in Eq. (9) in Hakami et al. (2003). 13 

Equation (8) can be directly propagated through most of the processes associated with the 14 

formation and transport of PM species, such as the oxidation of reactive organic gases and the 15 

gas/particle partitioning of organic compounds (Schell et al., 2001). However, the secondary 16 

inorganic aerosol species are strongly coupled as they are assumed to be in thermodynamic 17 

equilibrium with their precursors (i.e., NH3, HNO3, and HCl). The equilibrium is assumed to 18 

be reached instantaneously, so the direct use of Eq. (8) is not appropriate. Thus, a different 19 
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treatment for inorganic aerosol species is necessary to implement HDDM-3D/PM when using 1 

ISORROPIA. 2 

The implementation of HDDM in ISORROPIA involves differentiation of the equilibrium 3 

reactions that are involved in determining the concentrations of each species. For example, 4 

the equilibrium reaction for the balance between nitric acid gas ( 3,( )gHNO ) and nitrate ion 5 

(
3NO ) is 6 

3,( ) 3gHNO H NO                                                                                             (9) 7 

The corresponding equilibrium expression is 8 

3
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where  K  is the equilibrium constant; [A] denotes the molar concentration of A; 
H

  and 
3NO

   10 

are the activity coefficients of H  and 3NO ; 
3HNOP is the partial pressure of  3HNO  gas; 

2H Ow  11 

is the water content.  12 

Since 
3 3

2
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where 
3HNO is the mean activity coefficient of H  and 

3NO ; R is the universal gas constant; 15 

and T is temperature. Taking the logarithmic derivative of Eq. (11) with respect to the first 16 

parameter of interest (p1, where for brevity, T is assumed constant) leads to the expression of 17 

first-order sensitivity equation: 18 
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Differentiating Eq. (12) with respect to the second parameter of interest (p2) gives the 2 

equation for second-order sensitivity: 3 
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Repeating the same process with the other equilibrium reactions involved in the system gives 5 

similar expressions to Eq. (13). Combining them with mass and charge balance equations 6 

leads to a system of linear equations (Table 1) with which second-order sensitivities can be 7 

calculated. In this implementation, the available options for the two parameters jp  and kp  are 8 

emission rates, reaction rate constants, initial conditions, and boundary conditions. The 9 

approach can be extended to parameters in ISORROPIA such as equilibrium coefficients, 10 

which would require minor modification to the right hand side of Eqs. (12) and (13). 11 

Calculating second-order DDM-3D sensitivities depends on the corresponding first-order 12 

sensitivities, so second-order sensitivities are computed sequentially following the first-order 13 

sensitivities in the same model run. Comparing Eqs. (12) and (13), identical coefficient terms 14 

multiplying the sensitivities are found on the left-hand sides, which reduces computational 15 

cost by allowing the two systems of linear equations to share the same coefficient matrix. 16 

Overall, the computational cost of second-order sensitivities is very close to that of first-order 17 

because the main computing processes (mainly transport) are the same for each sensitivity.  18 

In ISORROPIA, the mean activity coefficients are determined by Bromley’s formula 19 

(Bromley, 1973). Sensitivities of the mean activity coefficients, 
3 1

(1)

,HNO p
S


 and 
3 1 2

(2)

, ,HNO p p
S


in Eqs. 20 
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(12) and (13), are calculated by directly differentiating Bromley’s formulas. As the activity 1 

coefficients are functions of the ion concentrations, their sensitivities are finally expressed as 2 

the combinations of sensitivities of relevant ion concentrations.  3 

The liquid water content of aerosols is computed by the Zdanovskii-Stokes-Robinson (ZSR) 4 

relationship (Stokes and Robinson, 1966): 5 

 2
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where iE is concentration of the i
th

 electrolyte in the multicomponent solution; 0im  is the 7 

molality of a solution with only the i
th

 electrolyte and the same water activity as the 8 

multicomponent solution. Sensitivities of the liquid water content are obtained by 9 

differentiating Eq. (14). Because the concentrations of electrolytes are calculated from the 10 

equilibrium ion concentrations, both first- and second-order sensitivities of liquid water 11 

content can be ultimately expressed as a function of ion sensitivities: 12 
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where Aj represents the j
th

 ionic species in the system. 15 

ISORROPIA uses different algorithms to treat neutralized and acidic aerosol, so this work 16 

applied a case-specific approach when implementing HDDM-3D sensitivity analysis. 17 

Depending on the acidity of the aerosol, each subcase has its own solution routine and 18 

assumptions. For example, the neutralized aerosol algorithm assumes that bisulfate ions are 19 

minor species, and its concentration is adjusted after solving the equilibrium reactions of 20 

nitrate, nitric acid gas, ammonium, and ammonia gas. Alternately, the acidic algorithm 21 
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assumes that either ammonia or nitric acid gas is a minor species and resolves its final 1 

concentration after determining aerosol concentrations of their counterparts. This feature was 2 

usually neglected in previous implementations of DDM in ISORROPIA, which caused 3 

discrepancies between BF and DDM sensitivites. The problem is now solved by the case-4 

specific approach, which exactly follows the treatment of ISORROPIA for different aerosols 5 

during HDDM implementation. 6 

4 Results and Discussion 7 

The performance of HDDM-3D/PM is evaluated in both the stand-alone ISORROPIA and the 8 

CMAQ model for inorganic species. In the stand-alone ISORROPIA, the HDDM-3D/PM 9 

sensitivities were compared to brute-force sensitivities (first- and second- order) calculated by 10 

Eqs. (1) and (2), using a relative perturbation of 1%. The input concentrations of total sulfate, 11 

ammonium, and nitrate range from 0.1 to 10 -3μmol m  with an incremental of 0.1 -3μmol m . 12 

The input concentrations of total sodium and chloride are 0.5 and 1 -3μmol m , respectively 13 

(Table 2). These inputs are consistent with the typical chemical composition of inorganic 14 

aerosols (Nenes et al., 1998b) and are also over a wide range allowing each subcase in 15 

ISORROPIA to be tested. The inorganic aerosol species are assumed to be in metastable state 16 

in CMAQ4.5, so the aerosols with the same chemical composition but different relative 17 

humidities are treated using the same algorithm. Therefore, we used a fixed relative humidity 18 

of 95% for stand-alone testing. 19 

We first compared the first-order DDM-3D and BF sensitivities of the five major ions (i.e., 20 

H  , 4NH  , 2

4SO  , 4HSO , 3NO ) with respect to input total concentrations of sulfate, 21 

ammonium, and nitrate  (Fig. 1). Good agreement is found between first-order BF and DDM 22 

sensitivities for all species (slope = 1 and R
2
 = 0.99), which is essential for evaluating the 23 
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second-order sensitivities due to the dependence of second-order DDM-3D and BF 1 

sensitivities on the first-order counterparts. 2 

The same comparison was conducted for second-order BF and DDM-3D sensitivities (Fig. 2). 3 

Although most of the points fall on the one-to-one line (slope = 1, R
2
 = 0.95), discrepancies 4 

were found for some second-order sensitivities (Fig. 2). This is due to the noisy behavior of 5 

BF. As mentioned above, as the order of sensitivity coefficients increases, the two types of 6 

errors of BF approximations can become significantly larger. In other words, a lower degree 7 

of agreement between DDM-3D and BF are expected for second-order sensitivities. Our 8 

investigation into the noisy behavior of second-order BF sensitivities shows that second-order 9 

BF sensitivities vary dramatically with various sizes of perturbation ( p ) and the 10 

convergence criteria of the ISORROPIA solution algorithm (  ) (Fig. 3). This has also been 11 

demostrated by Capps et al. (2012). Further investigation into the charge balance for second-12 

order BF and DDM-3D sensitivities revealed that the charge balance for BF sensitivities is not 13 

satisfied when they exhibit a noisy behavior. On the other hand, the charge balance is satisfied 14 

for DDM-3D sensitivities. These results strongly suggest that the HDDM-3D sensitivity 15 

coefficients are much more stable, while the BF second-order sensitivity coefficients are 16 

subject to significant numerical noise.  17 

HDDM-3D/PM is applied to simulate a winter episode: Jan 1-7, 2004. Winter episodes have 18 

higher nitrate levels, which is a more stringent test of HDDM-3D/PM. The modeling domain 19 

covers the entire continental United States and portions of Canada and Mexico (Fig. 4) using 20 

a 36-km horizontal grid-spacing and thirteen vertical layers extending about 16km above the 21 

ground. The meteorological fields were developed using the Fifth-Generation PSU/NCAR 22 

Mesoscale Model (MM5) (Grel et al., 1994). Emissions were prepared using the Sparse 23 
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Matrix Operator Kernel Emissions (SMOKE) model (CEP, 2003). SAPRC99_AE4_AQ was 1 

selected as the chemical mechanism (Carter, 2000; Binkowski and Roseelle, 2003). 2 

The sensitivities of aerosol sulfate, nitrate, and ammonium to domain-wide SO2, NOx, and 3 

NH3 emissions are studied in this simulation. During a single simulation, HDDM-3D/PM 4 

provides all the sensitivities of interest for each grid at each time step. The spatial patterns of 5 

first- and second-order DDM sensitivities of aerosol sulfate to SO2 show that the most 6 

sensitive area is the Eastern US (Fig. 4); since this region is the area with the highest SO2 7 

emissions, these sensitivities were expected. Spatial distributions of first- and second-order 8 

sensitivities are found to be consistent. The magnitudes of the second-order sensitivities are 9 

smaller, and usually opposite in sign, but still indicate a significant contribution to the total 10 

response. 11 

Comparison of first- and second-order BF and HDDM-3D/PM sensitivities of sulfate, nitrate, 12 

ammonium, and PM2.5 to domain-wide SO2, NOx, and NH3 emissions find similar results to 13 

the stand-alone version (Figs. 5 and  6). First- and second-order BF sensitivities are calculated 14 

using Eqs. (1) and (2) with a 50% reduction of each emission of interest, respectively. A 15 

choice of 50% is made to minimize the impact of noise for BF sensitivities when taking a 16 

small difference between two relatively large concentrations though it is expected that 17 

nonlinearities may be of some importance over this range. Using a smaller reduction leads to 18 

considerably larger error, which has been identified when testing HDDM-3D/PM in the stand-19 

alone ISORROPIA. Most of the DDM-3D and BF first-order sensitivities are in good 20 

agreement with an overall slope of 0.9 and R
2
 of 0.91 (Fig. 5). More statistics are provided in 21 

Table S1. The degree of agreement between DDM-3D and BF sensitivities of PM2.5 to NOx 22 

and NH3 emissions is improved from R
2
 = 0.63 to R

2
 = 0.93 by the case-specific DDM 23 

approach in ISORROPIA. Sensitivity of aerosol nitrate to SO2 emissions is of concern to 24 
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policy makers since the nitrate levels may be increased from SO2 emission controls (West et 1 

al., 1999). A relatively low degree of agreement was found between DDM-3D and BF 2 

sensitivities of nitrate to SO2 (Fig. 5c). However, nitrate concentrations are usually expected 3 

to increase with decreasing SO2 emissions, so the first-order sensitivity should be negative, as 4 

is shown by DDM-3D. The BF, however, is producing a significant amount of positive 5 

sensitivities, which is due to the nonlinear dependence of nitrate on SO2 emissions coupled 6 

with numerical noise. The comparison for sensitivity of sulfate to NOx has two branches that 7 

are slightly off the one-to-one line. These disagreements are caused by cloud processes as 8 

additional testing shows that the discrepancies disappear when the cloud module is turned off. 9 

The disagreement for the sensitivity of sulfate to NH3 also comes from the cloud module 10 

where SO2 is oxidized to sulfate. The oxidation process is highly affected by the pH value, 11 

and the response of sulfate to NH3 is quite nonlinear. BF sensitivities of sulfate to NH3 are 12 

strongly affected by this nonlinearity. Further investigation showed that they change 13 

dramatically with the perturbation sizes as well as the BF approaches (i.e., forward and 14 

central finite difference). Overall, first-order BF and DDM-3D sensitivities compared well. 15 

BF sensitivities become less accurate when the system is quite nonlinear. This also implies 16 

the significance of the monlinear response and the necessarity of performing high-order 17 

sensitivity analysis. 18 

Second-order DDM-3D sensitivities are also evaluated using BF. Good agreement is found 19 

for 
4 2 2

(2)

, ,SO SO SO
S  , 

4

(2)

, ,x xSO NO NO
S  , 

4

(2)

, ,x xNH NO NO
S  , and 

3

(2)

, ,x xNO NO NO
S   (Figs. 6a, 6e, 6f, and 6g) while the 20 

correlations are relatively low for some sensitivities, such as 
3 2 2

(2)

, ,NO SO SO
S   and 

4 3 3

(2)

, ,SO NH NH
S   (Figs. 21 

6c and 6i, Table S2). As mentioned above, second-order BF sensitivities for stand-alone 22 

ISORROPIA are strongly affected by the size of the perturbation. Here, we also investigated 23 

the impact of perturbation size to second-order BF sensitivities. For each second-order 24 
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sensitivity of interest, we compared the BF results with 10% and 50% emission reduction. 1 

The noisy behavior of second-order BF sensitivities is evident (Fig. 7). The two BF scenarios 2 

in particular show little consistency for second-order sensitivity of sulfate to NH3, which 3 

suggests that BF sensitivities directly computed from Eqs. (1) and (2) may not be reliable (Fig. 4 

7g). The plot for second-order sensitivity of nitrate to SO2 also shows that the BF results vary 5 

significantly (Fig. 7c). Thus, BF is not able to accurately approximate second-order local 6 

sensitivities of PM in CMAQ. Given the good performance of HDDM in the stand-alone 7 

ISORROPIA,  and the great scatter between implementing BF with different perturbations, 8 

the direct approach is expected to provide more reliable results. 9 

The average computational cost of calculating one second-order sensitivity of PM is found to 10 

be very close to that of one first-order sensitivity. For one day simulation, the average model 11 

time needed by the aerosol module for one first-order and one second-order sensitivites are 9 12 

and 11 minutes, respectively, given that the second-order sensitivity calculation uses the same 13 

solution algorithm as first-order sensitivity. Therefore, the time required by matrix 14 

factorization and transport-related computations is almost the same for first- and second-order 15 

sensitivities. An indirect cost associated with the second-order sensitivity calculation is that 16 

all relevant first-order sensitivities should also be calculated, which is generally of interest 17 

anyway in any application involving high-order sensitivity (Hakami et al., 2003). On the other 18 

hand, BF needs more than one simulation, and its computational cost increases directly with 19 

the order and the number of sensitivity parameters. HDDM-3D/PM provides an efficient 20 

approach to conduct high-order sensitivity analysis as it computes high-order sensitivities at a 21 

similar computational effort as first-order sensitivities. 22 

HDDM-3D/PM has many practical applications, most of which are based on Taylor series 23 

expansion (Hakami  et al., 2003): 24 
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2
(1) (2)( ) (0) (0) (0) higher order terms

2
C C S S


 


                                     (17) 1 

where (0)C  stands for the pollutant concentration at base case emissions and ( )C   with a 2 

perturbation of   in emissions. With Eq. (17), one can quickly compute the impact of 3 

emission perturbations on the ambient concentrations of pollutants. Including the second-4 

order term (i.e., the third term on the right hand side of Eq. (17)) is expected to reduce the 5 

error between the approximations using Taylor series expansion and the model simulation. 6 

For example, assuming 50% of domain-wide NOx emissions are reduced in the simulation 7 

above, we predicted the concentration of nitrate using first- and second-order Taylor series 8 

expansion (Eq. (17)) and compared them with model simulation (Fig. 8a). Predictions using 9 

second-order Taylor series expansions are closer to the model simulation than those using 10 

first-order Taylor series expansions (Fig. 8a). A similar result is also found for nitrate 11 

concentration with a 50% reduction in SO2 emissions (Fig. 8b). Thus, including the second-12 

order term in Taylor series approximation improves the accuracy of prediction. 13 

Taylor series expansions derived using HDDM sensitivity coefficients enable efficient 14 

evaluation of emission control strategies. One CMAQ-HDDM simulation would be sufficient 15 

to estimate the changes in pollutant concentrations with respect to emission reductions. 16 

Predictions of nitrate concentrations with 20% and 100% reductions in total SO2 emission 17 

using HDDM sensitivities compare well with the CMAQ model simulation. The slope from 18 

linear regression analysis is close to 1 (Figs. 9a and 9b). Predictions driven by BF sensitivities 19 

are close to the CMAQ simulation at 20% reductions and are a little off the one-to-one line 20 

for 100% reductions (Fig. 9b). The BF sensitivities used here are results of a 50% 21 

perturbation. BF sensitivities prepared using a 10% perturbation were also tested (not shown 22 

here), but suffered from more numerical noise. Simulated sulfate concentrations with 20% 23 
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and 100% reductions in total NH3 emissions also exhibit good agreement with model 1 

simulation (Figs. 9c and 9d). 2 

The reduction in concentrations that would occur if the sources of interest did not exist is 3 

called the zero-out source contribution (ZOC) (Cohan et al., 2005). The advantage of using 4 

Eq. (17) to calculate ZOC is that it is based on an air quality model with relevent physical and 5 

chemical processes included. Indirect effects, such as source contributions of SO2 emissions 6 

to nitrate and NH3 emissions to sulfate (Figs. 9b and 9d), can be reasonablely evaluated. The 7 

ZOC can also be applied to a combination of source emissions. Consider two emission 8 

sources ( jp  and kp ) that are perturbed simultaneously. The expression of ZOC of species i  9 

( iZOC ) can be obtained from Eq. (17) with multiple sensitivity parameters: 10 

(1) (2) (1) (2) (2)

, , , , , , , ,( , ) ( 0.5 ) ( 0.5 )i j k i j i j j i k i k k i j kZOC p p S S S S S                                             (18) 11 

The cross sensivitity, the last term on the right-hand-side of Eq. (18), is able to quantify the 12 

interactions between the two emissions.  13 

5 Conclusions 14 

The high-order decoupled direct method in three dimensions for particulate matter (HDDM-15 

3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model. 16 

The implementation of HDDM-3D/PM into ISORROPIA applied a case-specific approach 17 

and explicitly computes the sensitivity of activity coefficients. Comparisons of the results 18 

with the traditional BF approach generally give good agreement. The BF sensitivities are 19 

found to be dependent on the perturbation sizes and the model accuracy, which leads to noisy 20 

behavior, especially for high-order sensitivities (Figs. 3 and 7). The direct assessment of 21 

second-order sensitivities with HDDM-3D/PM avoids the apparent pitfalls of the BF 22 

approach that cause this noise. 23 
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 1 

HDDM-3D/PM has similar computational cost to the previous DDM-3D/PM. The CPU time 2 

required by the aerosol module to conduct a one-day simulation with one first-order and one 3 

second-order sensitivity parameter are 9 and 11 minutes, respectively. This is another 4 

advantage over the BF approach, for which computational time increases more with the order 5 

of the sensitivities computed. 6 

 7 

The implementation of HDDM-3D/PM provides a powerful extension to the CMAQ model, 8 

as allowing efficient assessment of control strategy effectiveness, source contribution 9 

quantification, and model uncertainty analysis. Initial studies show that Taylor series 10 

expansions with the second-order term predict the model response to various emission levels 11 

very well. HDDM-3D/PM can be easily implemented into other versions of CMAQ, as well 12 

as other chemical transport models that already include DDM. 13 
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Table 1. Equilibrium Reactions, Mass and Charge Balance of ISORROPIA 1 

 Equilibrium Reactions                                                      Equilibrium Constants 

  2

44 SOHHSO                                                         
2
4

24

2

4

1

4

[ ][ ]

[ ]

H SO

H OHSO

H SO
K

HSO w

 



 



 


  

3( ) 2 ( ) 4g aqNH H O NH OH                                         4

3 2

4

2 2

[ ][ ]
NH OH

NH w H O

NH OH
K

P a w

  

 

  

( )gHCl H Cl                                                             

2

3 2

[ ][ ]
H Cl

HCl H O

H Cl
K

P w

  

 

  

3 ( ) 3gHNO H NO                                                        3

3 2

3

4 2

[ ][ ]
H NO

HNO H O

H NO
K

P w

  

 

  

2 ( )aqH O H OH                                                         4

2

2

[ ][ ]
NH OH

w

w H O

H OH
K

a w

  

 

  

2

2 4( ) 42sNa SO Na SO                                                  2
24

2 2 2 3

5 4[ ] [ ] H ONa SO
K Na SO w  

    

4 ( ) 3sNH Cl NH HCl                                                     HClNH PPK
36   

2

4 2 4( ) 4 4( ) 2sNH SO NH SO                                           2
24 4

2 2 2 3

7 4 4[ ] [ ] H ONH SO
K NH SO w  

    

( )sNaCl Na Cl                                                                   
2

2

8 [ ][ ] H ONa Cl
K Na Cl w  

    

3( ) 3sNaNO Na NO                                                      
23

2

9 3[ ][ ] H ONa NO
K Na NO w  

    

4 3( ) 3 ( ) 3 ( )s g gNH NO NH HNO                                        
3310 HNONH PPK   

2

4( ) 4sNaHSO Na HSO                                                
24

2 2

11 4[ ][ ] H ONa HSO
K Na HSO w  

    

4 4( ) 4 4sNH HSO NH HSO                                             
24 4

2

12 4 4[ ][ ] H ONH HSO
K NH HSO w  

    

2

4 3 4 2( ) 4 4 4( ) ( ) 3sNH H SO NH HSO SO                                
2

4 4 4

2

3 2 3

4 4 4

13 5

[ ] [ ][ ]
NH HSO SO

H O

NH HSO SO
K

w

    

  

  

 

 Mass Balance  

2 4 3 4[ ] [ ] 2[ ] [ ] [ ] [ ]tNa Na Na SO NaCl NaNO NaHSO       

])()[(2][])[(][][][][][ 2434444244424

2

44 SOHNHHSONHSONHNaHSOSONaHSOSOtSO    

][][])()[(3][])[(2][][][ 344243444424434 NONHClNHSOHNHHSONHSONHNHNHtNH    

][][][][][ 343333 NONHNaNONOHNOtNO    

][][][][][ 4ClNHNaClClHClClt  
 

 

 Charge Balance  

][][][2][][][][][ 4

2

434

  OHHSOSOClNONHNaH  

All quantities in [ ] denote molar concentrations, the unit is -3mol m air . 2 

3 



 25 

Table 2. Input cases for testing of HDDM-PM using stand-alone ISORROPIA 1 

Parameters Values ( μmol m
-3 

) 

Total Sulfate 0.1 ~ 10  

Total Ammonium 0.1 ~ 10  

Total Nitrate 0.1 ~ 10  

Total Sodium 0.5  

Total Chloride 1.0             

Relative Humidity 95% 

Temperature 298K 
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 1 

Figure 1. Comparison of first-order DDM and BF sensitivity coefficients of the five major 2 

ions (i.e., H , 

4NH , 2

4SO , 

4HSO , and 

3NO ) to the change of total sulfate (TS), total 3 

ammonia (TA), and total nitrate (TN) in the stand-alone ISORROPIA. Each plot corresponds 4 

to the comparison of one sensitivity coefficient that is labeled on the upper left of the plot. For 5 

example, (a) shows the comparison of first-order sensitivity of hydrogen ion ( H ) to total 6 

sulfate predicted by DDM and BF. The overall slope (i.e., correlation of DDM sensitivities 7 

with stand-alone ISORROPIA BF first-order sensitivities) is 1, and the overall coefficient of 8 

determination (R
2
) is 0.99. The dashed line is the one-to-one line for reference of perfect 9 

agreement. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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 1 

Figure 2. Comparison of second-order DDM and BF sensitivity coefficients of the five major 2 

ions (i.e., H , 

4NH , 2

4SO , 

4HSO , and 

3NO ) to the change of total sulfate (TS), total 3 

ammonia (TA), and total nitrate (TN) in the stand-alone ISORROPIA. Each plot corresponds 4 

to the comparison of one sensitivity coefficient that is labeled on the upper left of the plot. For 5 

example, (a) shows the comparison of second-order sensitivity of hydrogen ion ( H ) to total 6 

sulfate predicted by DDM and BF. The overall slope (i.e., correlation of HDDM sensitivities 7 

with stand-alone ISORROPIA BF second-order sensitivities) is 1, and the overall coefficient 8 

of determination (R
2
) is 0.95. The dashed line is the one-to-one line for reference of perfect 9 

agreement. 10 
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 12 

 13 

 14 

 15 
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 1 

Figure 3. Second-order sensitivity coefficients of aerosol nitrate to total sulfate in stand-alone 2 

ISORROPIA calculated by (a) BF and (b) HDDM under three conditions: 1) base case, where 3 

the perturbation used by BF ( p ) = 1% and the convergence criteria of ISORROPIA (  ) = 4 

101 10 ; 2) control case 1 (blue squares) with p = 1% and  = 31 10 ; and 3) control case 5 

2 (red diamonds) with p =0.1% and  = 101 10 .  The default value of the convergencee 6 

criteria for ISORROPIA is 61 10 . Results from the two control cases are compared to those 7 

from the base case. The dashed line is the one-to-one line. 8 
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 1 

Figure 4. Spatial distribution of 24-hr averages of a) simulated concentration of sulfate, b) 2 

first- and c) second-order sensitivities of sulfate to SO2 at surface layer on Jan 3, 2004. 3 

 4 

 5 

 6 
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 1 

Figure 5. Comparison of first-order sensitivities of sulfate, ammonium, nitrate, and PM2.5 to 2 

SO2, NOx, and NH3 calculated by HDDM-3D/PM and BF at surface layer on Jan 2, 2004. 3 

ASO4, ANH4, and ANO3 denote aerosol sulfate, aerosol ammonium, and aerosol nitrate, 4 

respectively. Each plot represents one sensitivity coefficient that is labeled on the upper left of 5 

the plot. The dashed line is the one-to-one line indicating perfect agreement. 6 
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Figure 6. Comparison of second-order sensitivities of sulfate, ammonium, nitrate, and PM2.5 2 

to SO2, NOx, and NH3 calculated by HDDM-3D/PM and BF at surface layer on Jan 2, 2004. 3 

ASO4, ANH4, and ANO3 denote aerosol sulfate, aerosol ammonium, and aerosol nitrate, 4 

respectively. Each plot represents one sensitivity coefficient that is labeled on the upper left of 5 

the plot. The dashed line is the one-to-one line indicating perfect agreement.  6 
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Figure 7. Comparison of second-order BF sensitivities calcualted with 10% and 50% 2 

perturbation in emissions using CMAQ simulation on Jan 2, 2004 at surface layer. ASO4, 3 

ANH4, and ANO3 denote aerosol sulfate, aerosol ammonium, and aerosol nitrate, 4 

respectively.  5 
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Figure 8. Comparisons of model simulation and predictions using Taylor series expansions 2 

for concentrations of nitrate at 16:00 EDT on Jan 2, 2004, with (a) a 50% reduction in NOx 3 

and (b) a 50% reduction in SO2. The solid lines reflect the linear regression of the Taylor 4 

series predictions against the CMAQ simulation results; the dotted lines represent the area of 5 

perfect agreement. 6 
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Figure 9. Comparisons of model simulation and predictions using Taylor series expansions 2 

with HDDM and BF sensitivities for concentrations of nitrate with (a) 20% and (b) 100% 3 

reductions in domain-wide SO2 emissions rates and concentrations of sulfate with (c) 20% 4 

and (d) 100% reductions in domain-wide NH3 emissions rates at 16:00 EDT on Jan 2, 2004. 5 

BF sensitivities are from a 50% perturbation. The solid lines reflect the linear regression of 6 

the Taylor series predictions against the CMAQ simulation results; the dotted lines represent 7 

the area of perfect agreement. 8 


