
 1 

Meteorological modes of variability for fine particulate 1 

matter (PM2.5) air quality in the United States: implications 2 

for PM2.5 sensitivity to climate change 3 

 4 

A. P. K. Tai1, L. J. Mickley1, D. J. Jacob1, E. M. Leibensperger2, L. Zhang1, J. A. 5 

Fisher1, and H. O. T. Pye3 6 

[1]{School of Engineering and Applied Sciences, Harvard University, Cambridge, 7 

Massachusetts, USA} 8 

[2]{Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of 9 

Technology, Cambridge, Massachusetts, USA} 10 

[3]{National Exposure Research Laboratory, US Environmental Protection Agency, Research 11 

Triangle Park, North Carolina, USA} 12 

Correspondence to: A. P. K. Tai (tai@seas.harvard.edu) 13 

 14 

Abstract 15 

We applied a multiple linear regression model to understand the relationships of PM2.5 with 16 

meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 17 

to climate change. We used 2004-2008 PM2.5 observations from ~1000 sites (~200 sites for 18 

PM2.5 components) and compared to results from the GEOS-Chem chemical transport model 19 

(CTM). All data were deseasonalized to focus on synoptic-scale correlations. We find strong 20 

positive correlations of PM2.5 components with temperature in most of the US, except for 21 

nitrate in the Southeast where the correlation is negative. Relative humidity (RH) is generally 22 

positively correlated with sulfate and nitrate but negatively correlated with organic carbon. 23 

GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH 24 

do not arise from direct dependence but from covariation with synoptic transport. We applied 25 

principal component analysis and regression to identify the dominant meteorological modes 26 

controlling PM2.5 variability, and show that 20-40% of the observed PM2.5 day-to-day 27 

variability can be explained by a single dominant meteorological mode: cold frontal passages 28 

in the eastern US and maritime inflow in the West. These and other synoptic transport modes 29 
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drive most of the overall correlations of PM2.5 with temperature and RH except in the 1 

Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly 2 

correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the 3 

dominant meteorological mode. An ensemble of five realizations of 1996-2050 climate 4 

change with the GISS general circulation model (GCM) using the same climate forcings 5 

shows inconsistent trends in cyclone frequency over the Midwest (including in sign), with a 6 

likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate 7 

the need for multiple GCM realizations (because of climate chaos) when diagnosing the effect 8 

of climate change on PM2.5, and suggest that analysis of meteorological modes of variability 9 

provides a computationally more affordable approach for this purpose than coupled GCM-10 

CTM studies. 11 

 12 

1 Introduction 13 

Air pollution is highly dependent on weather, and it follows that climate change could 14 

significantly impact air quality. The pollutants of most public health concern are ozone and 15 

fine particulate matter with diameter less than 2.5 µm (PM2.5). Studies using chemical 16 

transport models (CTMs) driven by general circulation models (GCMs) consistently project a 17 

worsening of ozone air quality in a warming climate (Weaver et al., 2009). This finding is 18 

buttressed by observed correlations of ozone with temperature that are well reproduced by 19 

models (Jacob et al., 1993; Sillman and Samson, 1995; Rasmussen et al., 2012).  By contrast, 20 

GCM-CTM studies of the effect of climate change on PM2.5 show no consistency even in the 21 

sign of effect (Jacob and Winner, 2009). In previous work (Tai et al., 2010), we examined the 22 

observed correlations of PM2.5 and its components in the US with meteorological variables as 23 

a means to understand PM2.5 response to climate change. Here we develop this approach 24 

further to define meteorological modes of variability for PM2.5 and interpret the observed 25 

correlations and modes using the GEOS-Chem CTM. We apply the Goddard Institute for 26 

Space Studies (GISS) GCM to illustrate how the modes enable effective diagnosis of the 27 

effect of climate change on PM2.5. 28 

The uncertainty in assessing climatic effects on PM2.5 reflects the complex dependence of 29 

different PM2.5 components on meteorological variables. Higher temperatures can lead to 30 

higher sulfate concentrations due to faster SO2 oxidation, but to lower nitrate and organic 31 

components due to volatility (Sheehan and Bowman, 2001; Aw and Kleeman, 2003; Dawson 32 
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et al., 2007; Kleeman, 2008). Biogenic emissions of PM2.5 precursors including agricultural 1 

ammonia, soil NOx, and volatile organic compounds (VOCs) increase with temperature and 2 

further complicate the PM2.5-temperature relationship (Pinder et al., 2004; Bertram et al., 3 

2005; Guenther et al., 2006). Higher relative humidity (RH) promotes aqueous-phase sulfate 4 

production and ammonium nitrate formation (Koch et al., 2003; Liao et al., 2006; Dawson et 5 

al., 2007), but inhibits fires, which are important contributors to organic aerosols in many 6 

regions (Park et al., 2007; Spracklen et al., 2009). Changes in precipitation and in planetary 7 

boundary layer (PBL) depth have a consistent effect on PM2.5 components but their 8 

projections in GCMs are highly uncertain (Jacob and Winner, 2009). 9 

Synoptic-scale transport should be an important factor driving the effect of climate change on 10 

PM2.5. Previous studies have used principal component analysis (PCA) to identify important 11 

meteorological modes of variability for PM2.5 air quality (Cheng et al., 2007; Thishan 12 

Dharshana et al., 2010). Thishan Dharshana et al. (2010) found that as much as 30% of PM2.5 13 

daily variability in the US Midwest is associated with passages of synoptic weather systems. 14 

Cold fronts associated with mid-latitude cyclone passages provide the dominant ventilation 15 

pathway for the eastern US (Cooper et al., 2001; Li et al., 2005). A general reduction in the 16 

frequency of these cyclones is expected as a result of greenhouse warming (Lambert and 17 

Fyfe, 2006; Christensen et al., 2007; Pinto et al., 2007), potentially leading to more frequent 18 

and prolonged stagnation episodes (Mickley et al., 2004; Murazaki and Hess, 2006). 19 

Leibensperger et al. (2008) found a strong anticorrelation between summer cyclone frequency 20 

and ozone pollution in the eastern US for 1980-2006, and further showed evidence of a long-21 

term decline in cyclone frequency over that period that significantly hindered attainment of 22 

ozone air quality standards. Tai et al. (2010) projected a PM2.5 enhancement of up to 1 µg m-3 23 

in the Midwest from 2000-2050 climate change due to more frequent stagnation. 24 

In this study, we first apply the GEOS-Chem global CTM to interpret the observed 25 

correlations between PM2.5 components and meteorological variables in the contiguous US. 26 

As we will see, interpretation is complicated by the covariation of meteorological variables 27 

with synoptic transport. To address this issue, we use PCA and regression to determine the 28 

dominant meteorological modes of observed daily PM2.5 variability in different US regions, 29 

and show how spectral analysis of these modes enables a robust estimate of the effect of 30 

climate change on PM2.5 air quality. 31 

 32 
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2 Data and models 1 

2.1 PM2.5 observations 2 

Daily mean surface concentrations of total PM2.5 and speciated components including sulfate, 3 

nitrate, and organic carbon (OC) for 2004-2008 were obtained from the ensemble of sites of 4 

the EPA Air Quality System (EPA-AQS) (http://www.epa.gov/ttn/airs/airsaqs/), shown in Fig. 5 

1. Total PM2.5 data are from the Federal Reference Method (FRM) network of about 1000 6 

sites in the contiguous US. Speciation data are from the State and Local Air Monitoring 7 

Stations (SLAMS) and Speciation Trends Network (STN) of about 200 sites. These sites 8 

measure every one, three or six days. Tai et al. (2010) show maps of the annual mean data for 9 

total PM2.5 (1998-2008) and individual components (2000-2008). We do not discuss 10 

ammonium and elemental carbon (EC) here because ammonium is mainly the counter-ion for 11 

sulfate and nitrate, and the correlation patterns of EC with meteorological variables generally 12 

follow those of OC (Tai et al., 2010). 13 

2.2 GEOS-Chem simulations 14 

We used the GEOS-Chem global CTM to conduct full-year simulations of coupled gas-phase 15 

and aerosol chemistry. GEOS-Chem (http://geos-chem.org) uses assimilated meteorological 16 

data from the NASA Global Earth Observing System (GEOS-5) with 6-h temporal resolution 17 

(3-h for surface variables and PBL depth), 0.5° latitude by 0.667° longitude (0.5°×0.667°) 18 

horizontal resolution, and 47 hybrid pressure-sigma vertical levels. We conducted GEOS-19 

Chem simulations at three different horizontal resolutions: native 0.5°×0.667°, 2°×2.5°, and 20 

4°×5°. The coarser resolutions have been used previously with meteorological fields from the 21 

GISS GCM to investigate effects of climate change on air quality (Wu et al., 2008; Pye et al., 22 

2009; Leibensperger et al., 2011a). For the native resolution simulation we used a nested 23 

continental version of GEOS-Chem over North America (140-40°W, 10-70°N) with 2°×2.5° 24 

resolution for the rest of the world (Chen et al., 2009; Zhang et al., 2011). The native 25 

simulation was conducted for one year (2006) and the 2°×2.5° and 4°×5° simulations for three 26 

years (2005-2007) using GEOS-Chem version 8-3-2. We included a non-local PBL mixing 27 

scheme formulated by Holtslag and Boville (1993) and implemented in GEOS-Chem by Lin 28 

and McElroy (2010). 29 

GEOS-Chem includes a fully coupled treatment of tropospheric ozone-NOx-VOC-aerosol 30 

chemistry (Park et al., 2004; Liao et al., 2007). Gas-aerosol phase partitioning of the sulfate-31 
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nitrate-ammonium-water system is calculated using the ISORROPIA II thermodynamic 1 

equilibrium model (Fountoukis and Nenes, 2007). In-cloud SO2 oxidation uses liquid water 2 

content information from the GEOS-5 archive (Fisher et al., 2011). Secondary organic aerosol 3 

(SOA) formation is computed with a standard mechanism based on reversible gas-aerosol 4 

partitioning of semi-volatile VOC oxidation products (Chung and Seinfeld, 2002). SOA 5 

precursors include isoprene, terpenes, and aromatic hydrocarbons (Henze et al., 2008). 6 

Anthropogenic emissions of sulfur, ammonia and NOx emissions in the US are from the EPA 7 

2005 National Emissions Inventory (http://www.epa.gov/ttn/chief/net/2005inventory.html), 8 

and primary anthropogenic OC and EC emissions are from Cooke et al. (1999). Non-US 9 

anthropogenic emissions are described by Park et al. (2006). Biomass burning emissions of 10 

OC and EC are from the Global Fire Emissions Database (GFED v2) (Giglio et al., 2006). 11 

These emissions are included in the model as monthly averages and do not contribute to day-12 

to-day variability of PM2.5. In contrast, soil NOx emissions (Yienger and Levy, 1995) and 13 

biogenic emissions of isoprene, terpenes, and methylbutenol (Guenther et al., 2006) are 14 

updated locally every three hours as a function of temperature, solar radiation, and 15 

precipitation. Scavenging of PM2.5 by precipitation follows the scheme of Liu et al. (2001). 16 

Dry deposition follows a standard resistance-in-series scheme (Wesely, 1989) as implemented 17 

by Wang et al. (1998). 18 

Maps of annual mean PM2.5 concentrations from our simulation are included in the 19 

Supplementary Materials. Total PM2.5 in GEOS-Chem is taken to be the sum of sulfate, 20 

nitrate, ammonium, OC and EC. Detailed evaluations of the GEOS-Chem simulation of PM2.5 21 

and its components over the US have been presented in a number of publications using 22 

observations from surface sites, aircraft, and satellites (Heald et al., 2006; Park et al., 2006; 23 

van Donkelaar et al., 2006; Heald et al., 2008; van Donkelaar et al., 2008; Fu et al., 2009; 24 

Drury et al., 2010; Leibensperger et al., 2011a; Zhang et al., 2012). These evaluations mainly 25 

focused on seasonal concentrations and showed no prominent biases. Here we will focus on 26 

the ability of the model to reproduce observed correlations of PM2.5 with meteorological 27 

variables. 28 

2.3 Multiple linear regression 29 

We examined the correlations of PM2.5 and its components with meteorological variables for 30 

2004-2008 (EPA-AQS) and 2005-2007 (GEOS-Chem) by applying a standardized multiple 31 

linear regression (MLR) model: 32 
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y(t)! y

sy
= !k

xk (t)! xk
skk=1

8

"          (1) 1 

where y represents the deseasonalized daily PM2.5 concentration (total PM2.5 or individual 2 

component), xk represents the eight deseasonalized meteorological variables from GEOS-5 3 

listed in Table 1, x
k
 and y  are the temporal means of xk and y, sk and sy are their standard 4 

deviations (see Supplementary Materials), βk is the dimensionless, normalized regression 5 

coefficient, and t is time. To compare observed with simulated correlations, we interpolate the 6 

EPA-AQS data onto the GEOS-Chem grid (Tai et al., 2010) and use the interpolated PM2.5 7 

fields for regression.  8 

The MLR model is applied to each individual grid cell for both the observed and simulated 9 

PM2.5 fields. All data (xk and y) are deseasonalized and detrended by subtracting the 30-day 10 

moving averages from the original data so that x
k
 = y  = 0. This allows us to focus on 11 

synoptic-scale variability and avoid aliasing from common seasonal or interannual variations. 12 

The standardized regression coefficients βk allow direct comparisons between the correlations 13 

of different PM2.5 components with different meteorological variables (Kutner et al., 2004). 14 

The original regression coefficients βk* in units of µg m-3 D-1, where D is the dimension of 15 

meteorological variable xk in Table 1, can be recovered by 16 

!k
! =

sy
sk
!k            (2) 17 

The observed coefficients of determination (R2) for the MLR model have values ranging from 18 

0.1 (in the west-central US where data are sparse) to 0.5 (in the Midwest and Northeast), 19 

agreeing with previous studies (Wise and Comrie, 2005; Tai et al., 2010). In addition to the 20 

standardized MLR analysis, we also conducted a stepwise MLR analysis with interaction 21 

terms as described by Tai et al. (2010). The interaction terms were generally found to be 22 

insignificant. 23 

We conducted the MLR analysis for the model at all three resolutions (0.5°×0.667°, 2°×2.5°, 24 

4°×5°) and found the patterns of correlations to be similar. Figure 2 shows as an example (to 25 

be discussed later) the simulated and observed relationships of nitrate with temperature as 26 

measured by the recovered regression coefficient β1* in Eq. (2). In general, 2°×2.5° and 4°×5° 27 

regression results agree well with each other for all meteorological variables and all 28 

components. The native-resolution regression does not show as extensive and significant 29 
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correlations. A likely explanation is that averaging over larger grid cells smoothes out local 1 

effects, yielding more robust correlation statistics. We will use 2°×2.5° resolution for model-2 

observation comparisons in what follows. 3 
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3 Correlations of PM2.5 with meteorological variables 5 

3.1 Correlations with temperature 6 

Figure 3 (left and middle panels) shows the observed and simulated relationships of sulfate, 7 

nitrate, and OC with temperature as measured by the standardized regression coefficient β1 in 8 

Eq. (1). The relationships may reflect both a direct dependence of PM2.5 on temperature and a 9 

covariation of temperature with other meteorological variables affecting PM2.5. To separate 10 

the two effects, we conducted a direct sensitivity analysis with GEOS-Chem by increasing 11 

temperatures by 1 K throughout the troposphere while keeping all other meteorological 12 

variables constant. The resulting sensitivities are shown in the right panels of Fig. 3, 13 

normalized to the standard deviations of deseasonalized concentrations and temperature to 14 

make them directly comparable to the standardized regression coefficients β1 in the left and 15 

middle panels. 16 

Sulfate in the observations shows a positive relationship with temperature over most of the 17 

US. The model is generally consistent with the observations but does not capture the 18 

Southwest maximum. Results from the direct sensitivity analysis, however, show a generally 19 

negative dependence of sulfate on temperature particularly in the West. This contrasts with a 20 

previous CTM sensitivity analysis by Dawson et al. (2007) that found a positive dependence 21 

of sulfate on temperature, though much weaker than the observed relationship (Tai et al., 22 

2010). Dawson et al. (2007) attributed their result to faster SO2 oxidation kinetics at higher 23 

temperature, but we find in GEOS-Chem that this is more than offset by the increased 24 

volatility of H2O2 and SO2, slowing down the in-cloud aqueous-phase production of sulfate. 25 

In any case, it is clear from the model that the observed positive relationship of sulfate with 26 

temperature must reflect covariation of temperature with meteorological variables rather than 27 

a direct dependence. We elaborate on this in Sect. 4. 28 

Nitrate in the observations shows a negative relationship with temperature in the Southeast 29 

but a positive relationship in the North and the Southwest. The model reproduces these results 30 

except for the positive relationship in the Southwest. The negative relationship in the model is 31 
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too strong in the South but the higher-resolution 0.5°×0.667° simulation does not show such a 1 

bias (Fig. 2). The direct sensitivity of nitrate to temperature in the model is negative 2 

everywhere, with magnitude comparable to that found by Dawson et al. (2007), and reflecting 3 

the volatility of ammonium nitrate (Stelson and Seinfeld, 1982). We see from Fig. 3 that this 4 

direct dependence could account for most of the observed negative relationship of nitrate with 5 

temperature in the Southeast, but it is more than offset in the North by the positive association 6 

of temperature with southerly flow importing polluted air. The observed positive relationship 7 

of nitrate with temperature in the Southwest may reflect the temperature dependence of 8 

ammonia and fire emissions; in the model these emissions are specified as monthly means. 9 

OC in the observations shows a positive relationship with temperature throughout the US, and 10 

the same is found in the model although the relationship is steeper. The direct sensitivity 11 

study in the model also shows a positive dependence of OC on temperature. Dawson et al. 12 

(2007) previously found a negative dependence due to OC volatility but did not consider the 13 

temperature dependence of biogenic VOC emissions, which is included in our analysis and 14 

more than offsets the volatility effect. Day and Pandis (2011) similarly found an increase in 15 

OC at higher temperatures mainly due to increased VOC emissions. We see from Fig. 3 that 16 

the direct temperature dependence may be a significant contributor the positive relationship 17 

between OC and temperature in the Southeast, where biogenic emissions are particularly high, 18 

but it has little effect elsewhere. 19 

3.2 Correlations with relative humidity 20 

Figure 4 shows the observed and simulated correlations of sulfate, nitrate, and OC with RH, 21 

expressed as the standardized regression coefficient β2 in Eq. (1). The relationships are 22 

generally positive for sulfate and nitrate both in the observations and the model. The OC-RH 23 

relationship is generally negative with some model biases in the Great Plains and Midwest. 24 

Results from a model perturbation simulation similar to that for temperature are also shown in 25 

Fig. 4, indicating negligible direct dependence of sulfate and OC on RH, but a significant 26 

positive relationship for nitrate due to more favorable ammonium nitrate formation at higher 27 

RH (Stelson and Seinfeld, 1982). The direct positive sensitivity of nitrate in the southeastern 28 

coast is offset by the negative influence from the association of high RH with clean marine 29 

air, leading to the weak overall correlation there. 30 



 9 

3.3 Correlations with precipitation and wind speed 1 

Figure 5 shows the observed and simulated relationships of total PM2.5 with precipitation and 2 

wind speed as measured by β3 and β6 in Eq. (1). Similar effects are found for all individual 3 

PM2.5 components (Tai et al., 2010). The observations show strong negative relationships 4 

reflecting aerosol scavenging and ventilation. These are generally well captured by the model. 5 

The precipitation effect appears to be primarily driven by large-scale rather than convective 6 

precipitation in the US. Fang et al. (2011) similarly illustrated the dominance of large-scale 7 

precipitation in wet scavenging of soluble pollutants. 8 

 9 

4 Major meteorological modes controlling PM2.5 variability 10 

Results from the previous section show that much of the correlation of PM2.5 with individual 11 

meteorological variables is driven by covariance between meteorological variables, with an 12 

apparent major contribution from synoptic transport. To resolve this covariance we turn to 13 

principal component analysis (PCA) of the meteorological variables to identify the 14 

meteorological modes controlling PM2.5 variability. 15 

4.1 Principal component analysis and regression 16 

We conducted a PCA for the 2004-2008 GEOS-5 data by averaging spatially over each region 17 

of Fig. 1 the eight deseasonalized meteorological variables of Table 1. The resulting time 18 

series for each region were decomposed to produce time series of eight orthogonal principal 19 

components (PCs) (U1, …, U8): 20 

Uj (t) = !kj

Xk (t)! Xk

skk=1

8

"          (3) 21 

where Xk represents the regionally averaged GEOS-5 variable, Xk  and sk the temporal mean 22 

and standard deviation of Xk,, and αkj the elements of the orthogonal transformation matrix. 23 

Each PC represents a distinct meteorological regime or mode. We identified the nature of 24 

meteorological mode by examining the values of αkj in Eq. 3. PCs with high |αkj| values (e.g., 25 

greater than 0.3 and topping the other |αkj| values) for geopotential height, pressure tendency, 26 

and wind direction are presumably associated with synoptic-scale weather systems, and can 27 

be referred to as synoptic transport modes. We then followed Uj(t) day by day and visually 28 

examined the corresponding weather maps for multiple months during 2004-2008. From this 29 
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we assigned a generalized meteorological feature for a given PC when the same feature could 1 

be associated with the majority of peaks and troughs of Uj(t). The PCs are ranked by their 2 

variances, usually with the leading three or four PCs capturing most of the meteorological 3 

variability. For instance, in the eastern US, a single mode representing cyclone and cold 4 

frontal passages (discussed further in Sect. 4.2) typically accounts for ~20% of total 5 

meteorological variability. 6 

We then applied a principal component regression (PCR) model to correlate observed and 7 

simulated PM2.5 concentrations with the eight PCs for each region 8 

Y (t)!Y
sY

= ! jU j (t)
j=1

8

"           (4) 9 

where Y represents the regionally averaged PM2.5 concentration, γj the PC regression 10 

coefficients, and Y  and sY the temporal mean and standard deviation of Y. The ratio of 11 

regression to total sum of squares (SSRj/SST) for each PC is calculated by 12 

SSR
j

SST
=

!
j
U

j
(t)!" #$

2

t

%

Y (t)&Y!" #$ sY{ }
2

t

%
          (5) 13 

where the summation is over the entire time series Y(t) and Uj(t). This ratio quantifies the 14 

fraction of variance of PM2.5 that can be explained by a single PC. From Eq. (3) and (4), the 15 

fraction (fk) of the overall correlation of PM2.5 with a given meteorological variable Xk (e.g., in 16 

Fig. 4 through 6) that is associated with a particular PC can be estimated by 17 

fk =
!kj" j
!km"m

m
!

           (6) 18 

where the summation is over the m PCs that have a significant effect on PM2.5 (p-value < 19 

0.01). Here the denominator represents the total effect of Xk on PM2.5 that is equivalent to a 20 

regionally averaged version of βk in Eq. (1). The PCR model was applied to both the full-year 21 

data and to seasonal subsets. 22 

4.2 Dominant meteorological modes of PM2.5 variability 23 

Figure 6 shows as an example the dominant meteorological mode contributing to total PM2.5 24 

variability in the Midwest as determined by the highest SSRj/SST ratio in Eq. (5). Based on 25 
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the PCR model this mode alone explains 29% of the observed PM2.5 variability with a 1 

regression coefficient γj = -0.41. The top panel of Fig. 6 shows the time series of this mode for 2 

January 2006 together with the deseasonalized observed total PM2.5 concentrations, 3 

illustrating strong anticorrelation (r = -0.54). The bottom left panel shows the meteorological 4 

composition of this dominant mode as measured by PC coefficients αkj in Eq. (3), consisting 5 

of low temperature, high precipitation, low and rising pressure, and strong northwesterly 6 

winds. From weather maps we can verify that high positive values of this PC represent the 7 

center of an eastward-propagating mid-latitude cyclone with a precipitating cold front at the 8 

southwest tail end. High negative values indicate the “opposite” regime – warm and dry 9 

stagnant condition at the tail end of an anticyclone. Figure 6 (top and bottom right) shows, for 10 

instance, that as Uj(t) rose from a minimum to maximum between 28 and 30 January 2006 in 11 

the Midwest, a mid-latitude cyclone was approaching and the associated cold front swept over 12 

the region bringing down total PM2.5 by 9 µg m-3. 13 

Figure 7 shows as another example the dominant meteorological mode of PM2.5 variability in 14 

California, demonstrating again a strong anticorrelation between the time series of this mode 15 

and PM2.5 concentrations (r = -0.80). This mode has similar meteorological composition to 16 

that in Fig. 6 except for wind direction. Positive phases of this mode represent ventilation by 17 

cold maritime inflows associated with synoptic disturbances, whereas negative phases 18 

represent warm, stagnant conditions associated with high-pressure systems. The bottom panel 19 

shows, for instance, that between 6 and 8 January 2005, a precipitating maritime inflow 20 

reduced PM2.5 by 16 µg m-3. 21 

The analysis above was conducted for all regions of Fig. 1. Figures similar to Fig. 6 and 7 for 22 

other regions are included in the Supplementary Materials. Table 2 summarizes the 23 

characteristics of the dominant PC controlling PM2.5 variability for five selected regions. In 24 

the eastern US (Northeast, Midwest and Southeast), the observed dominant modes resemble 25 

that for the Midwest described above (Fig. 6). In the Northeast, another mode representing 26 

southwesterlies associated with high pressure over the western North Atlantic is equally 27 

important. In the Pacific Northwest, the dominant mode resembles that for California (Fig. 7). 28 

In general, the PCR results illustrate the importance of synoptic-scale transport in controlling 29 

the observed daily variability of PM2.5. As shown in Table 2, this control appears to be well 30 

represented in GEOS-Chem, supporting the ability of the model to describe the variability in 31 

PM2.5 associated with this transport. 32 
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Using Eq. (6), we find overall that the synoptic transport modes account for more than 70% of 1 

the observed correlations of PM2.5 components with temperature in the Northeast and 2 

Midwest. This reflects the association of elevated temperature with southerly flow and 3 

stagnation. In the Southeast, however, we find that more than 60% of the observed 4 

correlations of nitrate and OC with temperature and RH arise from a single non-transport 5 

mode consisting of low temperature and high RH. Nitrate has a positive dependence on that 6 

mode because of ammonium nitrate thermodynamics, while OC has a negative dependence 7 

reflecting biogenic VOC emissions and the occurrence of fires. The weaker importance of 8 

transport in driving the nitrate-temperature relationship in the Southeast likely reflects the 9 

lower frequency of cold fronts. In California, the transport and non-transport modes are 10 

comparably important in shaping the observed correlations of PM2.5 components with 11 

temperature and RH. 12 
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5 Cyclone frequency as a metric for climate change effect on PM2.5 14 

Mid-latitude cyclones and their associated cold fronts are known to provide the dominant 15 

year-round mechanism for ventilating the US Midwest and Northeast (Cooper et al., 2001; Li 16 

et al., 2005), and they emerge in our analysis of Sect. 4 as the dominant meteorological mode 17 

of PM2.5 variability. Previous studies diagnosing cyclone frequency have relied on identifying 18 

local pressure minima (Mickley et al., 2004; Lambert and Fyfe, 2006; Lang and Waugh, 19 

2011) or used storm tracking algorithms (Geng and Sugi, 2001; Bauer and Del Genio, 2006; 20 

Bengtsson et al., 2006). Here we diagnose cyclone frequency by applying a fast Fourier 21 

transform (FFT) to the time series of the dominant Midwest PC representing cyclone and 22 

frontal passages as shown in Fig. 6. We use 1999-2010 meteorological data from the 23 

NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996; Kistler et al., 2001), which provides a longer 24 

record than GEOS-5. PCA of the NCEP/NCAR data yields essentially the same 25 

meteorological modes as GEOS-5. Figure 8 (gray thin line) shows the FFT spectrum for the 26 

dominant cyclone mode in the Midwest for 1999-2010. The low-frequency structure (with 27 

periods > 20 d) is an artifact of the 30-day moving average applied to the meteorological data 28 

to remove seasonality. We smooth the time series with a second-order autoregressive (AR2) 29 

filter (Wilks, 2006), indicating a median spectral frequency of 52 a-1 (cyclone period of about 30 

7 days). 31 
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We applied the spectral-autoregressive method above to find the median cyclone frequencies 1 

and periods for individual years of the 1999-2010 record. Figure 9 shows the time series of 2 

annual mean anomalies in total PM2.5 concentrations and cyclone periods for the Midwest, 3 

where the correlation is strongest (r = 0.76) corresponding to a PM2.5-to-cyclone period 4 

sensitivity of 0.94±0.43 µg m-3 d-1. Leibensperger et al. (2008) previously found a strong 5 

interannual correlation of summer ozone with cyclone frequency in the Northeast using the 6 

1980-2006 record of NCEP/NCAR data. Our analysis does not show the same for PM2.5 in 7 

this region, possibly because of the short record (12 years) available for PM2.5. Cyclone 8 

frequencies found by Leibensperger et al. (2008) are generally lower, possibly because their 9 

storm-tracking algorithm may neglect weaker cyclones and fronts. 10 

The strong interannual correlation of PM2.5 with cyclone frequency, at least in the Midwest, 11 

encourages the use of cyclone frequency as a metric to diagnose the effect of climate change 12 

on PM2.5. We used for this purpose an ensemble of five realizations of 1950-2050 climate 13 

change generated by (Leibensperger et al., 2011b) with the GISS GCM III (Rind et al., 2007) 14 

applied to the IPCC A1B scenario (Nakicenovic and Swart, 2000) and including time-15 

dependent aerosol radiative forcings. For each realization we examined the change in median 16 

cyclone frequency between the present-day (1996-2010) and the future (2036-2050), by 17 

applying the spectral-autoregressive method to the dominant cyclone PC for each 15-year 18 

time series, and using a Monte Carlo method to diagnose the probability distribution and 19 

significance of the change based on variability of the AR2 parameters. Three out of the five 20 

realizations indicated statistically significant decreases in cyclone frequencies between 1996-21 

2010 and 2036-2050 of -3.2, -3.4 and -1.5 a-1 (p-value < 0.05). One realization showed a 22 

significant increase of 2.7 a-1 and another showed no significant change. Figure 10 shows the 23 

combined probability distribution of cyclone frequency change in the Midwest from all five 24 

realizations and the corresponding responses of annual mean PM2.5 based on the PM2.5-to-25 

cyclone period sensitivity reported above, indicating a roughly 70% probability of reduced 26 

cyclone frequency and elevated PM2.5 in the Midwest by 2050. This corresponds to a mean 27 

decrease in cyclone frequency of -1.1±4.8 a-1 and a resulting increase in annual mean PM2.5 of 28 

0.13±0.60 µg m-3. 29 

Previous GISS-GEOS-Chem GCM-CTM studies of the effects of 2000-2050 climate change 30 

on PM2.5 air quality projected a mean increase of 0.1-0.5 µg m-3 in the Midwest in the 2050 31 

climate based on one GCM realization (Pye et al., 2009; Lam et al., 2011). Their estimates are 32 
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within the range of our projection from the cyclone frequency trend alone. However, the large 1 

variability of the cyclone trends (including in sign) across five realizations of the same GCM 2 

underscores the imperative need for multiple realizations in diagnosing the effect of climate 3 

change on PM2.5 air quality. All GCM-CTM studies in the literature reviewed by Jacob and 4 

Winner (2009) have used single climate realizations and this may partly explain the 5 

inconsistency in their results. 6 

Other climatic factors than cyclone and frontal frequency may also affect future PM2.5 air 7 

quality in the US. Mean temperature increases may be particularly important for the Southeast 8 

as discussed previously. Changes in precipitation and PBL depth are obviously important. As 9 

scavenging within a precipitating column is highly efficient (Balkanski et al., 1993), 10 

precipitation frequency, often modulated by synoptic weather, may be more relevant as a 11 

predictor than climatological mean precipitation. 12 

 13 

6 Conclusions 14 

Projecting the effects of climate change on PM2.5 air quality requires an understanding of the 15 

dependence of PM2.5 on meteorological variables. We used here a multiple linear regression 16 

model to correlate both observed (EPA-AQS) and simulated (GEOS-Chem) daily mean 17 

concentrations of total PM2.5 and its major components with a suite of meteorological 18 

variables in the contiguous US for 2004-2008. All data were deseasonalized to focus on 19 

synoptic correlations. We applied principal component analysis (PCA) and regression to 20 

identify the dominant meteorological modes controlling PM2.5 variability, and showed how 21 

trend analysis for these modes can be used to estimate the effects of climate change on PM2.5. 22 

We observe strong positive correlations of all PM2.5 components with temperature in most of 23 

the US, except for nitrate in the Southeast where the correlation is negative. A temperature 24 

perturbation simulation with GEOS-Chem reveals that most of the correlations of PM2.5 with 25 

temperature do not arise from direct dependence on temperature but from covariation with 26 

synoptic transport. Exceptions are nitrate and OC in the Southeast, where the direct 27 

dependence of ammonium nitrate thermodynamics and biogenic VOC emissions on 28 

temperature contributes significantly to the correlations. RH is generally positively correlated 29 

with sulfate and nitrate but negatively correlated with OC; the correlations also appear to be 30 

mainly driven by covariation of RH with synoptic transport. Total PM2.5 is strongly negatively 31 

correlated everywhere with precipitation and wind speed. 32 
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We find from the PCA and regression that 20-40% of the observed PM2.5 day-to-day 1 

variability in different US regions can be explained by a single dominant synoptic 2 

meteorological mode: cold frontal passages in the eastern US and maritime inflow in the 3 

West. These and other transport modes are found to contribute to most of the overall 4 

correlations of different PM2.5 components with temperature and RH except in the Southeast. 5 

We show that the interannual variability of annual mean PM2.5 in the Midwest for 1999-2010 6 

is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive 7 

analysis of the dominant meteorological mode of variability, with a PM2.5-to-cyclone period 8 

sensitivity of 0.9±0.4 µg m-3 d-1. We conducted an ensemble of five realizations of 1996-2050 9 

climate change using the GISS GCM III with A1B greenhouse and aerosol forcings. Three of 10 

these found a significant decrease in cyclone frequency over the US Midwest, one found no 11 

significant change and one found a significant increase. From this ensemble we derive a likely 12 

increase in annual mean PM2.5 of 0.13±0.60 µg m-3 in the Midwest in the 2050s climate. This 13 

is consistent with previous GCM-CTM studies using the same GCM and suggests that 14 

cyclone frequency may be a major driver of the effect of climate change on PM2.5 air quality. 15 

However, the variability of cyclone trends (including in sign) across multiple realizations of 16 

the same GCM with identical forcings demonstrates the importance of multiple climate 17 

change realizations in GCM-CTM studies because of climate chaos. All GCM-CTM studies 18 

to date have used single realizations because of computational expense, and this may partly 19 

explain the wide inconsistencies in their projections of PM2.5 response to climate change. The 20 

climate trend analysis in this study, using the Midwest as an illustration, is preliminary. A 21 

comprehensive analysis using outputs from various GCMs will be the topic of a future paper. 22 
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Table 1. Meteorological variables used for PM2.5 correlation analysis.a 1 

Variable Meteorological parameter  

x1 Surface air temperature (K) b 

x2 Surface air relative humidity (%) b 

x3 Surface precipitation (mm d-1) 

x4 Geopotential height at 850 hPa (km) 

x5 Sea level pressure tendency dSLP/dt (hPa d-1) 

x6 Surface wind speed (m s-1) b, c 

x7 East-west wind direction indicator cosθ (dimensionless) d 

x8 North-south wind direction indicator sinθ (dimensionless) d 

a. Assimilated meteorological data with 0.5°×0.667° horizontal resolution from the NASA 2 

Goddard Earth Observing System (GEOS-5). All data used are 24-h averages, and are 3 

deseasonalized and detrended as described in the text. 4 

b. At 6 m above the surface (0.994 sigma level). 5 

c. Calculated from the horizontal wind vectors (u, v). 6 

d. θ is the angle of the horizontal wind vector counterclockwise from the east. Positive values 7 

of x7 and x8 indicate westerly and southerly winds, respectively. 8 

9 



 25 

Table 2. Dominant meteorological modes for regional PM2.5 variability. 1 

US Region PM2.5 variability explained a PC regression coefficient γj b Description c 

EPA-AQS GEOS-Chem EPA-AQS GEOS-Chem 

Northeast 17% 21% -0.31 -0.33 Cold front 

associated with 

mid-latitude 

cyclone 

Midwest 29% 25% -0.41 -0.38 

Southeast 31% 15% -0.42 -0.29 

Pacific NW 36% 45% -0.35 -0.39 Synoptic-scale 

maritime inflow California  26% 13% -0.28 -0.21 

a. From Eq. (5). 2 

b. From Eq. (4). 3 

c. For positive phases of the dominant PC. 4 

5 
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Figures 1 

 2 

 3 

Figure 1. US regions used to study the correlations of PM2.5 with meteorological modes of 4 

variability. Also shown are the EPA Air Quality System (AQS) PM2.5 monitoring sites in 5 

2006, including total PM2.5 monitors using the Federal Reference Method (FRM) and 6 

chemical speciation monitors from the SLAMS + STN networks. 7 
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 1 

Figure 2. Simulated (2005-2007) and observed (2004-2008) relationships of nitrate PM2.5 with 2 

surface air temperature, as measured by the multiple linear regression coefficient β1* in Eq. 3 

(2) with units of µg m-3 K-1. Simulated relationships are shown for three different GEOS-4 

Chem model resolutions: 0.5°×0.667°, 2°×2.5° and 4°×5°. Observations are averaged over the 5 

2°×2.5° grid. Values are for deseasonalized and detrended variables and are only shown when 6 

significant with 95% confidence (p-value < 0.05). 7 
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 1 

Figure 3. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 concentrations with 2 

surface air temperature. The left and middle panels show the observed (2004-2008) and 3 

simulated (2005-2007) standardized regression coefficients β1 in Eq. (1). Values are for 4 

deseasonalized and detrended variables and are only shown when significant with 95% 5 

confidence (p-value < 0.05). The right panels show the direct effects of temperature on 6 

sulfate, nitrate and OC as determined by applying a global +1 K temperature perturbation in 7 

the GEOS-Chem simulation, and normalizing the results to the standard deviations of 8 

deseasonalized concentrations and temperatures to allow direct comparison to β1. 9 
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 1 

Figure 4. Same as Fig. 3 but for relative humidity (RH). The right panels show the direct 2 

effects of RH as determined by applying a global -1 % RH perturbation in the GEOS-Chem 3 

simulation. 4 
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 1 

Figure 5. Relationships of total PM2.5 concentrations with precipitation and wind speed, 2 

expressed as the standardized regression coefficients β3 and β6, respectively. The left panels 3 

show observations (2004-2008) and the right panels model values (2005-2007). Values are for 4 

deseasonalized and detrended variables and are only shown when significant with 95% 5 

confidence (p-value < 0.05). 6 
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 1 

Figure 6. Dominant meteorological mode for observed PM2.5 variability in the Midwest 2 

inferred from the principal component analysis. Top panel: time series of deseasonalized 3 

observed total PM2.5 concentrations and the dominant meteorological mode or principal 4 

component (PC) in January 2006. Bottom left: composition of this dominant mode as 5 

measured by the coefficients αki in Eq. (3). Meteorological variables (xk) are listed in Table 1. 6 

Bottom right: synoptic weather maps from the National Center for Environmental Prediction 7 

(NCEP) (http://www.hpc.ncep.noaa.gov/dailywxmap/) for 28 and 30 January, corresponding 8 

to maximum negative and positive influences from the principal component. The Midwest is 9 

delineated in orange. 10 
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Figure 7. Same as Fig. 6 but for California. 2 
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 1 

Figure 8. Frequency spectrum of the daily time series of the dominant meteorological mode 2 

(cyclone/frontal passages) in the US Midwest (Fig. 1) for 1999-2010 using NCEP/NCAR 3 

Reanalysis 1 data. The thin line shows the fast Fourier transform (FFT) spectrum and the 4 

thick line shows the smoothed spectrum from a second-order autoregressive (AR2) model. 5 

The vertical dashed line indicates the median AR2 spectral frequency used as a metric of 6 

cyclone frequency. 7 

  8 



 34 

 1 

Figure 9. Anomalies of annual mean PM2.5 concentrations and median cyclone periods for the 2 

US Midwest (Fig. 1). 3 
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 1 

Figure 10. Probability distribution for the change in median cyclone frequency in the US 2 

Midwest between 1996-2010 and 2036-2050, and the corresponding change in annual mean 3 

PM2.5 concentrations. Results are from five realizations of the NASA Goddard Institute for 4 

Space Studies (GISS) GCM III applied to the IPCC A1B scenario of greenhouse gas and 5 

aerosol forcings. 6 


