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Summary. Induced polarization (more precisely the magnitude and the phase of the 23 

impedance of the subsurface) is measured using a network of electrodes located at the 24 

ground surface or in boreholes. This method yields important information related to the 25 

distribution of permeability and contaminants in the shallow subsurface. We propose a new 26 

time-lapse 3D modeling and inversion algorithm to image the evolution of complex 27 

conductivity over time. We discretize the subsurface using hexahedronal cells. Each cell is 28 

assigned a complex resistivity or conductivity value. Using the finite-element approach, we 29 

model the in-phase and out-of-phase (quadrature) electrical potentials on the 3D grid, 30 

which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet 31 

boundary conditions are used at the boundary of the domain. The calculation of the 32 

Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion 33 

is to determine the change in the complex resistivity of each cell of the spatial grid as a 34 

function of time. Each model along the time axis is called a "reference space model". This 35 

approach can be simplified into an inverse problem looking for the optimum of several 36 

reference space models using the approximation that the material properties vary linearly in 37 

time between two subsequent reference models. Regularizations in both space domain and 38 

time domain reduce inversion artifacts and improve the stability of the inversion problem. 39 

In addition, the use of the time-lapse equations allows the simultaneous inversion of data 40 

obtained at different times in just one inversion step (4D inversion). The advantages of this 41 

new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the 42 

simulation of a salt tracer test in an heterogeneous random material described by an 43 

anisotropic semi-variogram.  44 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1. Introduction 46 

Electrical resistivity is sensitive to salinity, porosity, saturation, pore shape, 47 

temperature, clay content, and biological activity (e.g., Waxman & Smits, 1968; Revil et 48 

al., 1998; Atekwana et al., 2004). Variability in any of these parameters can have an 49 

influence on resistivity and can be monitored by time-lapse electrical resistivity 50 

tomography (TL-ERT). In the recent literature, TL-ERT has started to be a popular method 51 

to monitor dynamic processes occurring in the shallow subsurface (typically the first 52 

hundred meters, see Legaz et al., 2009, Müller et al., 2010 and references therein). TL-ERT 53 

imaging, often involving permanent electrode installations, has proven to provide 54 

information complementary to in situ geochemical measurements. Applications of TL-ERT 55 

include monitoring of subsurface flow (e.g., Daily et al., 1992; Ramirez et al., 1993; Park, 56 

1998; Daily & Ramirez, 2000; Nimmer et al., 2007), characterization of solute transport 57 

(e.g., Slater et al., 2000; Kemna et al., 2002; Singha & Gorelick, 2005; Looms et al., 2008), 58 

saturation and temperature (Legaz et al., 2009), and mapping of salt-water intrusion in 59 

aquifers (e.g., Nguyen et al., 2009; Ogilvy et al., 2009) just to cite few applications. 60 

In an effort to extract more information about the subsurface geology (e.g., shale 61 

versus brine-saturated sands), the distribution of permeability, and the distribution of 62 

contaminants or to observe change in the precipitation of metallic particles (resulting from 63 

changes in the redox conditions) during bioremediation, resistivity measurements can be 64 

extended in the frequency domain, typically in the range from 1 mHz to 1 kHz in the 65 

laboratory and 10 mHz to 100 Hz in the field (e.g., Olhoeft, 1985, 1986; Borner et al., 66 

1996; Lesmes & Morgan, 2001; Kemna et al., 2004; Vanhala, 2007; Nordsiek & Weller, 67 

2008; Williams et al., 2009; Flores-Orozco et al., in press). Such a geophysical method is 68 

called complex resistivity, complex conductivity, (time-domain or frequency-domain) 69 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induced polarization, or low-frequency dielectric spectroscopy in the literature. In 70 

frequency-domain induced polarization, an alternating current is injected and retrieved into 71 

the ground using two electrodes A and B. Both the resulting magnitude and the phase of the 72 

voltage between two potential electrodes M and N are measured and used to define an 73 

impedance, which once corrected for the position of the electrode is used to define an 74 

apparent complex resistivity. This method was originally developed for the exploration of 75 

ore bodies (see Pelton et al., 1978, Seigel et al., 2007). The sensitivity enhancement of 76 

modern equipment has increased the measurement resolution of the phase lag between the 77 

current and the voltage (typically 0.1 mrad in the laboratory up to 100 Hz and 0.4 mrad in 78 

the field with a 24 bit acquisition card, see discussion in Vaudelet et al., 2011a, b and G. 79 

Olhoeft, personal communication, 2010). This instrumentation has made possible the use of 80 

the induced polarization method in environmental investigations (for which the phase lag is 81 

usually very small, <20 mrad) such as the detection of organic and inorganic contaminants 82 

(Olhoeft, 1985, 1986; Börner et al., 1993; Schmutz et al., 2010) and the determination of 83 

permeability (e.g., Börner et al., 1996; Binley et al., 2005; Hördt et al., 2007; Kemna et al., 84 

2004; Revil & Florsch, 2010).   85 

Recently, Revil and co-workers (Leroy et al., 2008; Leroy & Revil, 2009; Schmutz 86 

et al., 2010; Revil & Florsch, 2010) have also provided a complete theoretical framework 87 

explaining induced polarization measurements in terms of polarization of the electrical 88 

double layer coating the surface of the grains. They followed previous works done by de 89 

Lima & Sharma (1992) and Lesmes & Morgan (2001). However, all these approaches do 90 

not include a description of membrane polarization and a unified model including this 91 

contribution has still to be done. The approach described in Leroy et al. (2008) can be used 92 

to provide a physical explanation for the Cole-Cole model, which is broadly used to 93 

interpret induced polarization measurements in the laboratory or in the field (see Pelton et 94 

al., 1978; Ghorbani et al., 2007; Florsch et al. 2010). 95 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Several single time step inversion algorithms have been proposed to invert induced 96 

polarization data, either involving frequency-domain complex resistivity modeling (Kemna 97 

& Binley, 1996; Shi et al., 1998; Kemna et al., 2000) or time-domain chargeability 98 

modeling (Routh et al., 1998; Loke et al., 2006). The introduction of time into the 99 

inversion of geophysical data sets can be achieved with the use of time-lapse algorithms. In 100 

this case, several strategies are possible to perform such a time-lapse inversion. A standard 101 

approach is to independently invert the measured data acquired at each monitoring step and 102 

to reconstruct time-lapse images (e.g. Daily et al., 1992; Ramirez, 1993; Binley, 1996). As 103 

suggested by several researchers, the independent time-lapse inversion images may be 104 

strongly contaminated with inversion artifacts due to the presence of noise in the 105 

measurements and independent inversion errors. LaBrecque & Young (2001) and Kim et 106 

al. (2009) presented time-lapse algorithms to minimize those artifacts, but as shown by 107 

Karaoulis et al. (2011), these algorithmes may also suppress real changes in the complex 108 

resistivity due to the spurious effect associated with the selection of the time regularization 109 

parameter in the cost function.  110 

In the present work, we describe a new induced polarization time-lapse tomography 111 

algorithm. Forward modeling is presented in Section 2. In Section 3, we present a new 4D 112 

algorithm for induced polarization based on an Active Time Constrained (ATC) approach. 113 

Our work extends the recent work of Karaoulis et al. (2011) for DC resistivity to complex 114 

resistivity in the frequency domain. Time-lapse time-domain IP data could be treated the 115 

same way. In our approach, the subsurface is defined as a space-time model, and the 116 

regularization over time is active where it allows variability between different time steps 117 

depending on the degree of spatial complex resistivity changes occurring among different 118 

monitoring stages (time-steps). As a result, the 4D-ATC algorithm can help in focusing on 119 

the 3D spatio-temporal changes of the complex resistivity. We will present results for a 120 

single-frequency application of the algorithm; however, the extension of the algorithm to 121 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multifrequency time-lapse data can be done with the successive application of the 122 

algorithm to a set of data taken at distinct frequencies.  Along the same lines, the approach 123 

of Kemna et al. (1999, 2000) for “static” spectral data provides information about the 124 

spectral behavior of the subsurface complex resistivity.  Using spectral-induced 125 

polarization data, a relaxation model such as the Cole-Cole model can be fitted for each 126 

cell and the evolution of the Cole-Cole parameters can be followed over time. 127 

 128 

2. Forward Modeling 129 

 130 

In the frequency domain, we denote ω = 2 π f the angular frequency, f the frequency 131 

(in Hertz), and  the imaginary unit. The magnitude of the conductivity  and the 132 

phase lag  between the excitation current and the resulting electrical field are 133 

related to the real (in-phase) and imaginary (out-of-phase or quadrature) components of the 134 

complex conductivity σ*,  and , respectively, (expressed in S m-1), by  135 

.     (1) 136 

In this equation,  and  represents frequency dependent 137 

amplitude and phase of conductivity, respectively. Induced polarization is usually 138 

displayed as a resistivity (or conductivity) magnitude  (in ohm m) and a phase 139 

lag  (in rad) or alternatively as an in-phase conductivity  and a quadrature 140 

conductivity , respectively. The complex conductivity is related to the complex 141 

resistivity ρ* by,  142 

,     (2) 143 

where . In practice, an alternating current is used to perform spectral or frequency-144 

domain IP measurements. For a given current, both the amplitude of the voltage and the 145 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phase lag between the current and the voltage are measured. The impedance can be 146 

multiplied by the same geometrical factor as used for DC-resistivity (e.g. Kemna, 2000) in 147 

order to provide the amplitude of the apparent electrical conductivity at each frequency. 148 

The phase lag is however independent of the geometric factor.  149 

 In the forward modeling of the induced polarization problem, the electric potential 150 

can be expressed expressed as a complex number (e.g., Kemna, 2000):  151 

.     (3) 152 

The amplitude of the voltage and the phase lag are given by, 153 

,    (4) 154 

.      (5) 155 

In the following, we will neglect electromagnetic coupling effects, which is a good 156 

approximation at low frequencies (<100 Hz, see e.g. Kemna, 2000).  157 

The relation between the complex conductivity and the complex potential is given 158 

by (Weller et al., 1996) 159 

,    (6) 160 

where  is the position vector and I(ω) is the injected current (in Ampere) at frequency ω 161 

represented as a point source at position xS, where δ represents a delta function. 162 

Equation (6) is a Poisson equation, which can be solved for given boundary 163 

conditions using the finite-element method (Kemna, 2000). The basic concept of the finite-164 

element method is to subdivide the investigated domain into 
 
elements in which the 165 

unknown potential V(ω) is approximated by means of discrete values at the nodes of the 166 

elements. Assuming homogeneous and isotropic elements, the solution of the Poisson 167 

equation can be obtained in discrete form by solving a system of linear equations: 168 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,      (7) 169 

where the kernel matrix  ( ) consists of individual element matrices of each 170 

element; these are the same as for the real-valued (DC) problem since all terms are related 171 

only to the nodal coordinates, and the multiplication with the complex resistivity 172 

transforms the system into a relationship involving complex numbers. The explicit form of 173 

this matric for the hexahedron elements used below is given in Tsourlos (1999). The vector 174 

V contains the nodal values of the complex potential, and the vector F (n elements) 175 

contains the current sources.  176 

In this work we use mixed boundary conditions, which can be implemented in the 177 

complex case analogous to the DC case (Kemna, 2000). A Neumann boundary condition is 178 

imposed at the ground surface (there is no current flow normal to this boundary), and a 179 

finite value is set on the half-space boundaries, which is determined via the asymptotic 180 

behavior of the potential for a homogeneous half-space (Dey & Morrison, 1979). 181 

 182 

3. Time-Lapse Inversion 183 

 We present now the 4D algorithm used to perform the time-lapse inversion. Kim et 184 

al. (2009) defines the subsurface as a space-time model, which encompasses all space 185 

models during the entire monitoring period. The entire monitoring data are defined as a 186 

data vector in the space-time domain as well. The space-time model is assumed to change 187 

continuously along the time-axis, which allows the change of the subsurface material 188 

property distribution during the measurement of the geophysical datum. Assuming a model 189 

that is sparsely sampled at pre-selected times, the 4D subsurface model  for all the time 190 

steps of the monitoring data is expressed as  where Xi is the reference 191 

space model, a matrix of complex elements describing the complex resistivity distribution, 192 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for the ith time step and t denotes the number of monitoring times. The data misfit vector is 193 

defined in the space-time domain by  194 

.    (8) 195 

In Eq. (8),   denotes the data vector defined in the 4D coordinate system by 196 

, where di is the data from time step i expressed as a complex number 197 

describing the alternating potential,  denotes the forward modeling response, and 198 

 is the model perturbation vector, i.e. , and the 199 

superscript k denotes the iteration number.  200 

Since both the data and the model are defined using space-time coordinates, the 4D-201 

ATC algorithm is able to adopt two regularizations, in both the time and space domains, to 202 

stabilize the inversion. Consequently, we are looking to minimize the following objective 203 

function T (Zhang et al., 2005; Kim et al., 2009), 204 

,      (9) 205 

where Ψ and Ξ are the two regularization functions/ penalty terms. The function Ψ is used 206 

for smoothness regularization in space and the function Γ is used for smoothness 207 

regularization in time. The two parameters λ and α are the regularization parameters (also 208 

called the Lagrange parameters in the literature). Regarding the smoothness in the space 209 

domain, a second-order differential operator is applied to the model perturbation vector 210 

. In the time domain, Kim et al. (2009) applied a first-order differential operator to the 211 

model vector . This assumption is consistent with the idea that the change over time of 212 

the material properties is smaller compared to their changes in space. Therefore, in our 213 

approach, the subsurface structure remains nearly the same throughout the entire 214 

monitoring period. Following these principles, the two regularization functions in the cost 215 

function, Eq. (9), Ψ and , are defined as 216 

,      (10) 217 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,      (11) 218 

respectively, where M (  elements) is a square matrix. Only the diagonal and one sub-219 

diagonal element of this matrix have non-zero values, 1 or -1, in order to add constrains for 220 

the same parameters in adjacent time-steps.  221 

 In our approach, the space-domain Lagrangian is expressed as a diagonal matrix 222 

(  elements) because the active constraint balancing (ACB) is adopted for the 223 

space-domain regularization (Yi et al., 2003). The time-domain Lagrangian is expressed as 224 

a diagonal matrix A (Karaoulis et al., 2011) which offers flexibility to describe relatively 225 

rapid time changing phenomena. In particular, by allowing the time-Lagrangian multiplier 226 

to change in both space and time domain, the matrix A is a diagonal matrix with 227 

dimensions (  elements), where n is the number of the parameters of a space model at 228 

each reference time. Therefore, A can take discrete values for every space parameter of 229 

every time-step making the time-related regularization active. Obviously, if A is a zero 230 

matrix, then the 4D-ATC equation is transformed into independent inversions. From Eqs. 231 

(9) to (11), the final objective function T to be minimized is therefore given by: 232 

,   (12) 233 

where the matrix  (  elements) denotes a diagonal matrix for the active constraint 234 

balancing (ACB) in the space domain (Yi et al., 2003), , where Λi is 235 

the ACB matrix for the model at time i.. 236 

 Minimizing the objective function given in Eq. (12) with respect to the model 237 

perturbation vector yields the following normal equations (Kim et al., 2009): 238 

,      (13) 239 

.  (14) 240 



11 
 

In Eq. (14),  (  elements) denotes the sensitivity matrix (or Jacobian) and nm the 241 

number of measurements from each time step. We consider that during the record of a 242 

single time-step data set di, the changes of the conductivity of the subsurface can be 243 

neglected,  can be expressed as a block diagonal matrix (Kim et al., 2009): 244 

,    (15) 245 

for a number t of distinct times. The matrix Ji denotes the sensitivity matrix at time i. For 246 

the definition and computation of the complex-valued sensitivity for the complex 247 

conductivity problem using the adjoint technique, we refer the readers to Kemna (2000). 248 

When the subsurface conductivity changes during each data acquisition, the assembled 249 

sensitivity matrix is no longer a block diagonal matrix as explained in Kim et al. (2009). 250 

The matrix  is the differential operator in the space domain. It is given 251 

by , where Ci is the differential operator for the space-model of time 252 

i (Oldenburg et al., 1993).  253 

The active time Lagrangian, expressed with the matrix A, controls the time-related 254 

changes. Effectively, such a scheme should vary the time normalization between the 255 

parameters of different time steps proportionally to the spatial resistivity changes occurring 256 

among different monitoring locations. The determination of the time regularization 257 

parameter may depend on the spatio-temporal characteristics of the process, which is 258 

controlling the changes in the complex resistivity. Ideally, matrix entries associated with 259 

areas of significant property changes must be assigned low time regularization values and 260 

vice-versa. Two methods are proposed to assign the appropriate values to the time 261 

regularization parameter: one based on a fast pre-estimation of the first independent 262 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inversion iteration and one, more accurate, after a full inversion (Karaoulis et al., 2011). In 263 

this work we used the accurate calculation of the time Lagrange matrix. 264 

The creation of the matrix A is similar to the DC (real values) problem with one 265 

exception. In the induced polarization case, two models must be considered, one for time-266 

lapse changes in the amplitude and one for the time-lapse changes of the phase. Note that 267 

the resistivity and the phase can change over time independently from each other (see 268 

Vaudelet et al., 2011a, b, for laboratory examples). The values of the Lagrangian 269 

parameters should be low for areas that show time-lapse changes in amplitude and/or 270 

phase. 271 

To perform this task, we follow the following steps: (1) We generate a time-related 272 

distribution of values for the Lagrangian parameter as a function of the difference in 273 

amplitude between two sequential time-steps, (2) we generate a time-related distribution of 274 

values for the Lagrangian parameter from the difference in phase between two sequential 275 

time-steps and, (3) we combined these two time-related Lagrangian value distributions in 276 

one scheme (e.g., for a specific sub-region use as final value, the minimum value between 277 

amplitude and phase distributions). Trial-and-error testing showed that for our numerical 278 

examples the two time-related Lagrangian values must be between 0.01 and 0.1.  279 

 280 

4. 3D Synthetic Test 281 

The 4D-ATC algorithm is going to be tested with synthetic data and compared to the 282 

prediction of using independent inversion tomographies (performed independently at each 283 

time step). In the case of field data, it is expected that the artifacts associated with the 284 

presence of noise in the data is significant and independent inversion must be therefore 285 

avoided. In order for the comparison between the two approaches to be objective, all 286 

algorithms were based on the same 3D finite element forward modeling and inversion 287 

platform, the principles of this platform having already been discussed in Section 2 above. 288 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Note that the same homogeneous half-space was used as the starting model for all the 289 

tested techniques, and that all the synthetic data are considered as measured simultaneously 290 

for each time step. In the present paper, the phase and amplitude are shown (it is implicit 291 

that the phases have negative values). The data misfit was smaller than 5% for the two 292 

examples discussed below. 293 

 294 

4.1 Synthetic model and Time-Lagrangian distribution 295 

Modeled data obtained for 5 different time steps representing a hypothetical time-lapse 296 

induced polarization change are depicted in Figures 1 and 2. A total of 225 surface electrodes 297 

were used to obtain surface dipole-dipole data (inter-electrode spacing a=1 with maximum 298 

intra-dipole spacing dn = 7). The pseudosection comprises a total of 945 measurements for 299 

each time-step. In this specific example, the synthetic data are taken noise-free. The 300 

background model had an amplitude of 10 Ohm m for the amplitude of the resistivity and 5 301 

mrad for the amplitude of the phase.  302 

Figures 1 and 2 show the modeled evolution of both the amplitude of the resistivity 303 

and the amplitude of the phase. The grey cubes show the changes (in both amplitude and 304 

phase), that remain stable through time. Red cubes reveal the modeled changes in both the 305 

amplitude of the resistivity and the amplitude of the phase between two sequential time 306 

steps. For instance, the red cube shown in time step 1 in amplitude, remains stable from 307 

time step 2 on (so it is denoted as grey in all later time steps), where a new red cube is 308 

introduced, which shows the modeled change between those two time steps. 309 

As discussed in Section 4, the 4D-ATC technique requires a priori information on the 310 

expected time related changes, so the matrix A could be formulated. Figure 3 shows the 311 

distribution of the time Lagrangian values used as a priori information. The A matrix must 312 

consider time related changes in both amplitude and phase, in order to adjust appropriate 313 

weight. Cold colors, i.e. low values on the time-related Lagrangian, indicate areas with 314 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expected changes in both amplitude and phase, and hot colors (large time-related 315 

Lagrangian values) areas with no time changes. Therefore, Figure 3 shows, with gray 316 

cubes, the actual changes in both amplitude and phase in the same figure. The relation 317 

between low time-related Lagrangian values with the actual changes is quite good, even 318 

considering the fact that the estimation seems to be spread. Note that the A matrix is just a 319 

pre-estimation of where the expected change is located between two time steps. The A 320 

matrix was calculated using the full independent inversion of each data set. In Figures 4 321 

and 5, the first series of images (upper part) shows the difference in amplitude between two 322 

sequential time steps; in Figures 6 and 7, the first series of images (upper part) denotes the 323 

difference in the phase. A combination of the amplitude and phase time-related changes is 324 

then used to create the matrix A (Figure 3). 325 

 326 

4.2 Inversion results 327 

The second rows of Figures 4 to 7 show the difference inversion images produced 328 

using the 4D-ATC technique. Grey cubes represent the modeled time changes. Generally, 329 

when compared with the independent inversion, inversion artifacts are reduced, and at the 330 

same time, the actual change is shown in a clearer way. The areas of the actual changes, 331 

when using the 4D-ATC technique, are represented in a more compact form, and as 332 

discussed in Section 4, the partial unsuccessful choice of pre-estimation when creating the 333 

matrix A, does not affect the final difference images. Custom A matrices, based on more 334 

geological information than resistivity data, can significantly reduce artifacts and help 335 

focus on the real changes. Both techniques create an artifact of reduced phases between 336 

time-steps 3 and 4, which indicate the difficulties obtaining information when time-related 337 

changes are robust. In those cases, higher orders of time-specific regularization should be 338 

used.  339 



15 
 

Figure 8 shows the percentage RMS (root mean square) fit between the original (true) 340 

model and the final inversion result for every time step. 4D-ATC exhibits the smaller 341 

percentage model RMS misfit (real number), in all cases, except at time-step #1. The 342 

percentage error misfit regarding the magnitude of the phase is significantly larger than for 343 

the amplitude of the resistivity. This is due to the small expected values of the phase when 344 

compared to the amplitude (e.g., Kemna, 2000). This problem can be partially addressed 345 

using inversion techniques like final phase improvement (see Kemna, 2000) for which 346 

additional iterations are used only for the phase. Figures 9 and 10 show the final inversion 347 

models using the 4D-ATC technique. The grey cubes denote the modeled change. We 348 

observe that the inversion models are in good agreement with the true models.  349 

 350 

5. ATC-based Tomography of a Salt Tracer Test 351 

 To investigate the effect of heterogeneity in the Earth’s subsurface on the time-352 

lapse ATC technique, a 2D stochastic model was used to simulate a salt tracer test 353 

injection.  This stochastic model was used to generate a realistic synthetic dataset of the 354 

Earth subsurface to test the inversion algorithm.   355 

5.1. Stochastically Generated Heterogeneous Aquifer 356 

 An heterogeneous aquifer with a stochastic distribution of the transport parameters 357 

was generated using the Stanford Geostatistical Modeling Software package (SGeMS, see 358 

Remy et al., 2009).  Several stochastic models were realized with the sequential Gaussian 359 

simulation algorithm (SGSIM, see Remy et al., 2009, p. 135) on a 2D, 500 x 100 Cartesian 360 

grid, h(x, z), using an asymmetric semi-variogram for simple kriging defined as, 361 

,     (16) 362 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where  is a nugget effect with constant  = 10-3 and an anisotropic spherical Gaussian 363 

semi-variogram  with major, medium, and minor ranges of 75, 50, and 25, 364 

respectively, and a null (longitudinal) azimuth, dip, and rake. A single realization m was 365 

chosen to define the heterogeneous parametric distribution for the finite element 366 

simulations of the salt tracer test described below. 367 

This geostatistical model was normalized and scaled as both linear and logarithmic 368 

distributions, such that m belongs to the interval (0, 1) for linearly distributed parameters 369 

and the logarithm (in base 10) of m belongs to the interval (0, N) for log-distributed 370 

parameters where N is the number of decades spanned by a given parameter.  These models 371 

are shown in Figure 11. Parameters were mapped into the geostatistical model space by 372 

scaling m by a range of parameter values.  For linearly distributed parameters (like the 373 

porosity ), we use the following function, 374 

,     (17) 375 

where  is the mapped parameter distribution,  is the lower limit of a given 376 

parameter i, and n is scalar defined as .  For log-distributed parameters, we 377 

use, 378 

.      (18) 379 

For example, the permeability  is estimated to comprise values ranging from  to 380 

; hence, permeability is mapped to the model space with Eq. (18) using  = 381 

10-17 m2 and N = 5. 382 

The constitutive equations are Darcy’s law for the Darcy velocity u (in m s-1), a 383 

generalized constitutive equation for the flux density of the salt  (in kg m-2 s-1) and 384 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including an advective tern in addition to the diffusion/dispersion term (Fick's law), and 385 

Ohm's law for the current density j (in A m-2), 386 

,      (19) 387 

,     (20) 388 

where v is the mean velocity of the pore water (m s-1), D (in m2s-1) is the hydrodynamic 389 

dispersion tensor, p is the pore fluid pressure (in Pa), Cm is the solute mass fraction 390 

(dimensionless), and  is the dynamic viscosity of the fluid (in Pa s), and ρf  is the mass 391 

density of the pore water (in kg m-3). In addition to the constitutive equations, we have to 392 

consider two continuity equations for the mass of the pore water and for the mass of the 393 

salt, 394 

,     (21) 395 

,    (22) 396 

where  is the solute mass fraction of the salt in the source term, and  is a volumetric 397 

hydraulic source term for the injection/abstraction of water (in s-1). The effect of the salt 398 

concentration on the mass density and viscosity are neglected. In the so-called Fickian 399 

model, the hydrodynamic dispersion tensor is described by 400 

,    (23) 401 

where Dm is the molecular (mutual) diffusion coefficient of the salt (in m2 s-1) (for a NaCl 402 

solution, Dm is 1.60x10-9 m2 s-1 at infinite dilution and 1.44x10-9 m2 s-1 at high salinities at 403 

25°C), I3 is the unit 3x3 tensor, ,  represents the tensorial product between two 404 

vectors a and b,  and  are the longitudinal (along v) and transverse (normal to v) 405 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dispersivities (in m), and the product between the formation factor and the connected 406 

porosity represents the tortuosity of the pore space, which controls the macroscopic 407 

diffusion coefficient D = Dm / Fφ (Revil, 1999) where F is the formation factor.  408 

 The finite element model is composed primarily of a single rectangular domain 409 

(100 m long by 20 m deep) defined as a function of the porosity φ, permeability k, and 410 

molecular diffusion coefficient D (see Table 1). The longitudinal and transversal 411 

dispersivities will be considered constants.  412 

 The in-phase and out-of-phase (quadrature) surface conductivities are determined 413 

from the model developed by Revil & Florsch (2010) and Revil & Skold (submitted to GJI, 414 

2011). The mean grain diameter d0 is computed from the permeability and the porosity d0 = 415 

(24 F3 k)0.5 and F = φ-1.5 (Revil & Florsch, 2010). The salinity dependence of  is taken 416 

into account using the model developed by Revil & Florsch (2010, their Figure 12). 417 

Longitudinal αL and transverse αT dispersivities are related as αT = 0.2-0.01 αL where αL is 418 

commonly assumed between 0.01 m and 0.1 m (see Bear, 1972). For our simulation, we 419 

use αL = 1 cm and αT = 0.1 cm. The effect of the salinity upon the electrical conductivity of 420 

the brine σf is accounted for by using the Sen & Goode (1992) model, which is valid from 421 

dilute concentrations to saturation in salt. When the induced polarization response is given 422 

by the model described in Revil & Florsch (2010) and when the surface conductivity term 423 

is small with respect to the pore water conductivity in the in-phase conductivity, the in-424 

phase and quadrature conductivities are independent on the conductivity of the diffuse 425 

layer and the in-phase conductivity is nearly frequency independent.  426 

 A pressure differential is established across the domain by setting Dirichlet 427 

conditions at the inlet and outlet boundaries. The steady-state flow condition is on the order 428 

of u = 0.1 m s-1 across the domain. The geometry is shown in Figure 11. The injection of a 429 

high salinity brine ρf  = 500 kg m-3 (salt saturation of the solution, 1000 times the 430 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background salinity of 0.5 kg m-3) is simulated for a duration of 7 minutes in an upstream 431 

well at a bottom hole depth of 5 m (Figure 12).  The total resultant flux of the salt within 432 

the model is simulated for 60 minutes.  The resultant synthetic data comprises the transient 433 

amplitude and phase of the complex conductivity response computed at 1 Hz (see Figure 434 

12). These data are inverted using the time-lapse ATC technique as described above in 435 

Section 3. 436 

 437 

5.2.Modeling and Inversion Results 438 

The inversion results are shown in Figure 13 and 14. We consider 48 electrodes with 2 439 

meters spacing forming a total of 1422 dipole-dipole measurements per time-lapse data set. 440 

We assume that the time needed to take the data is short with respect to the characteristic 441 

time associated with the transport of the salt (true snapshots). In the field, the duration of an 442 

acquisition is not necessarily small with respect to the resistivity changes and this limitation 443 

will need to be investigated in a future work. The data RMS error for the time-lapse data 444 

set (difference between observed and calculated data) after 5 iterations was approximately 445 

6%. Model RMS error varied from 6% up to 70%, depending on the complexity of the true 446 

model. It is important to note that the model RMS error in a stochastically generated model 447 

is expected to have high values, similarly to real data, since no inversion scheme can find 448 

both the actual values of amplitude and phase in each cell. This being said, the tomograms 449 

compare fairly well with the true resistivity and phase distribution both in correctly 450 

localizing the anomalies and reproducing the amplitudes. Note that the shape of the 451 

resistivity and phase anomalies are, however, not completely reproduced, mainly because 452 

the stochastic model uses quite anisotropic distributions of the permeability and porosity 453 

(i.e., a much larger correlation length in the horizontal direction than in the vertical 454 

direction). In turn, this implies that the change in brine concentration is also quite 455 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anisotropic. It is likely that better results could be achieved if a borehole would be used to 456 

assess the correlation length for the vertical resistivity distribution and this information 457 

would be used in the cost function.  458 

 459 

6. Conclusions 460 

The independent inversion of time-lapse induced polarization data may produce 461 

significant errors because of both errors in the measurements and errors in the inversion. 462 

These errors can lead to misleading interpretations of the monitored process. The 4D-ATC 463 

approach presented above reduces these errors while allowing relatively abrupt resistivity 464 

time-related changes in the areas where there are significant indications of these changes. It 465 

removes a good fraction of the artifacts associated with noise in the data that is 466 

uncorrelated over time. The 4D-ATC algorithm requires a pre-estimation of the position of 467 

the changing area. A method to estimate where those changes occur is to use the difference 468 

in the tomograms obtained from the independent inversions of the measurements at each 469 

time-step. It may be useful to use higher-order time-related regularizations in the 4D-ATC 470 

scheme. Numerical tests show that our approach works well on both a simple 3D synthetic 471 

case study and on a 2D simulation of a salt tracer transport in an heterogeneous synthetic 472 

aquifer. It is important to note, that although inversion convergence was in all cases less 473 

than 5%, the model misfit is always larger. This observation is due the fact that inversion is 474 

an ill-posed problem, and we cannot expect to find the exact complex conductivity values 475 

in each cell. In our work, the following assumptions were made: (i) the material properties 476 

vary linearly in time between two subsequent reference models, (ii) the acquisition time of 477 

a single time-step is neglected (the time considered to take a snaphot is instantaneous, 478 

which for SIP data acquisition is generally untrue) and (iii) the effect of the salt 479 

concentration on the mass and viscosity were neglected in the second numerical test. 480 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It could be interesting to perform a joint inversion of complex resistivity data with the 481 

self-potential data for salt tracer injection tests. Self-potential monitoring has been shown 482 

recently to be very useful to follow salt tracer tests (Martínez-Pagán et al., 2010; Revil & 483 

Jardani, 2010). However, the inversion of self-potential data is an ill-posed and 484 

underdetermined geophysical problem too. Because the sensitivity maps of self-potential 485 

and induced polarization data are however quite different, these two types of geophysical 486 

data are naturally suited for a joint inversion problem to better follow salt tracer tests and 487 

then to use the results to invert the permeability and dispersivity tensor distributions in the 488 

subsurface.  489 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 661 

Table 1. Stochastic parameters used in the geostatistical model used for the simulation of 662 

the salt tracer test. 663 

Parameter   n, N 

Porosity, φ (−) 0.25 0.35 0.1 

Permeability, k (m2) 10-17 10-12 5.0 

Diffusion coefficient D (m2 s-1) 1 10-12 10-9 3.0 

1. Defined as the ratio between the molecular diffusion coefficient of the salt in water by 664 

the tortuosity, which is obtained by the product of the formation factor with the connected 665 

porosity) 666 

 667 

668 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668 

 669 

 670 

 671 

Figure 1. The 4D induced polarization model used in this work showing the changes in 672 

amplitude through time (five time-steps). The grey cubes denote the synthetic model used 673 

in the previous time-step. The red cubes show the change in that time-step with respect to 674 

the previous time-steps. The background model has a constant resistivity amplitude of 10 675 

Ohm m. 676 

677 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 677 

 678 

 679 

Figure 2. Same as Figure 1 for the phase lag. The background model has a phase of -5 680 

mrad.   681 

 682 

683 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 683 

 684 

 685 

Figure 3. The distribution of lagrange parameters based on the independent inversion as a 686 

prior information used in the ATC approach. The cold colors indicate areas with significant 687 

changes. These areas are characterized by low values of the Lagrange parameters. The hot 688 

colors indicate areas with no changes, i.e., areas characterized by high values of the 689 

(Lagrange) regularization parameters. The grey cubes show the position of the true changes 690 

in the synthetic model. 691 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 693 

 694 

 695 

Figure 4. Difference images for the synthetic model of resistivity presented in Figures 1 696 

and 2. The 4D-ATC (lower row) and independent inversion (upper row) difference 697 

amplitude images are shown for time steps 2-1 (left side) and 3-2 (right side), respectively. 698 

The grey cube shows the position of the true change according to the synthetic model. 699 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 700 

 701 

 702 

Figure 5. Difference images for the synthetic model presented in Figures 1 and 2. The 4D-703 

ATC (lower row) and independent inversion (upper row) difference amplitude images are 704 

shown for time steps 4-3 (left side) and 5-4 (right side), respectively. The grey cube shows 705 

the localization of the true change from the synthetic model.  706 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Figure 6. Same as Figure 4 for the phase.   710 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Figure 8. Same as Figure 5 for the phase.  714 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716 
Figure 8. Percent model misfit for independent and 4D-ATC inversion (amplitude and 717 

phase). Note the lower RMS error associated in general with the ATC-based approach, in 718 

both the amplitude and phase. The lower % model misfit error between the inversion 719 

methods is an indication that the 4D-ATC approach produces a more realistic model. 720 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Figure 9. 4D-ATC inversion model showing the amplitude of each model time-step. The 726 

grey cube shows the true change in the amplitude of the resistivity. 727 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Figure 10. 4D-ATC inversion model of the phase at different time-steps. The grey cubes 730 

show the localization of the true changes in the phase.  731 

732 



38 
 

 732 

 733 

 734 

 735 

 736 

Figure 11. Geostatistical 2D model used for the simulation of the salt tracer test injection. 737 

This synthetic aquifer is generated with a horizontal correlation length that is stronger than 738 

the vertical correlation length. The water flows from the left to the right. Each cell is 739 

characterized by an isotropic frequency-dependent resistivity. The injection point for the 740 

salt injection is located at x = 5 m and z = 5 m. Only a subset of this domain is used for the 741 

time-lapse induced polarization test. The flow is from left to right.  742 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Figure 12. Result from the forward finite element modeling of the salt tracer test in terms 751 

of resistivity and phase at five different time steps (five snapshots). The phase accounts for 752 

both the effect of the resistivity and the influence of the salinity upon the quadrature 753 

conductivity through the dependence of the Stern layer surface conductivity on the salinity. 754 

The injection point for the salt is located at x = 5 m ad z = -5 m. 755 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 761 

Figure 13. Comparison between the true resistivity changes from the forward model and 762 

the resistivity changes resulting from the time-lapse inversion of the apparent resistivity 763 

data collected from the top surface of the aquifer and contaminated with some noise.  The 764 

results of the inversion are biased because we have assumed no prior knowledge of the 765 

anisotropy of the resistivity distribution of the medium.  766 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Figure 14. Comparison between the true changes of the phase (from the forward modeling 773 

associate with the simulation of the salt dispersion/advection problem) and the changes in 774 

the phase resulting from the time-lapse inversion of the apparent resistivity data and phase 775 

lags collected at the surface of the aquifer and contaminated with noise. The results of the 776 

inversion are biased because we have assumed no prior knowledge of the anisotropy of the 777 

resistivity distribution of the medium. 778 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