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Abstract 

Concentrations of 13 organic source markers (10 polycyclic aromatic hydrocarbons and 3 

hopanes) are reported from time-integrated samples (24-hr and sub-daily) collected near a 

highway in Las Vegas, NV. Sample selection for assessing source impacts from the roadway was 

completed using the wind regression model Air Pollution Transport to Receptor model (EPA 

APTR 1.0). The model uses a kernel smoothing method for estimating source sectors (sector 

apportionment) of chemicals across wind speeds and wind directions. The model was applied 
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using semi-continuous (5-min averaging time) pollutant data (black carbon (BC), CO, NO2, and 

NOx) and meteorological data. Using simple screening criteria to identify source impacts (>30% 

sector apportionment from the roadway and errors in the estimated sector apportionment <30%), 

sector apportionment results were consistent with organic source marker concentrations 

representative of motor vehicle exhaust (e.g., benzo(g,h,i)perylene and hopane). Results 

demonstrated the use of APTR to identify source-impacted time intervals when compared with 

filter samples analyzed for organic source markers. 

 

1. Introduction 

Numerous studies have shown an association between roadway traffic and health effects 

(McConnell et al., 2006; Gauderman et al., 2005; Heinrich et al., 2005; Peters et al., 2004; 

Janssen et al., 2003; Brauer et al., 2002; Buckeridge et al., 2002; Brunekreef et al., 1997). 

Although studies have reported concentrations of bulk components such as carbon monoxide 

(CO), nitrogen oxides (NOx), and particulate matter (PM) size fractions in near roadway 

environments, well-established relationships between PM mass (e.g., PM2.5 and PM2.5-10) and 

health endpoints are unlikely to consistently reflect roadway exposures given its relatively minor 

effect on PM mass levels. For example, Zhu et al. (2006) reported an approximately five-fold 

decrease in near roadway particle number concentrations (30–300 m) in Los Angeles during 

daytime, while PM2.5 and PM2.5-10 concentrations varied by only a few percent for the same 

sampling locations (Zhu et al., 2002). 

Improved understanding of specific PM size fractions and/or chemical components is 

needed to better establish links between roadway emissions and health endpoints. Source tests 

can provide detailed chemical information for the vehicles and operating conditions tested. For 

example, exhaust from gasoline-powered motor vehicles (Schauer et al., 2002) and medium-duty 
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trucks (Schauer et al., 1999) have been reported to consist of >50% organic and elemental carbon 

(% of PM2.5 mass). Numerous particle-phase organic compounds have been identified and 

quantified (e.g., polycyclic aromatic hydrocarbons, alkanes, alkenes, hopanes, and steranes), and 

hopanes have been widely used in source apportionment studies (e.g., Schauer and Cass, 2000). 

Because source tests are limited to a small subset of the vehicle population, roadway tunnel 

measurements (McGaughey et al., 2004; Fraser et al., 2003; El-Fadel and Hashisho, 2001) have 

also been used to represent a composite vehicle fleet. 

Although source tests can provide valuable information on chemical emissions, detailed 

PM speciation is not always possible at the microenvironmental level due to mass limitations. 

Traditionally, source apportionment studies have used longer sampling composites (e.g., monthly 

or even quarterly) to represent general trends in an urban airshed. Lower time resolution results 

in less variability in source signatures among different samples, potentially obscuring source 

impacts. The effect of sampling duration on resolving source types has been described previously 

for factor analysis methods (Lioy et al., 1989). Recent studies have reported organic 

concentrations at the lower mass concentrations typically seen at the microenvironmental level 

(Brinkman et al., 2009; Olson et al., 2008), but source apportionment efforts with lower PM 

concentrations will likely depend on a much larger percentage of samples that are near or below 

analytical detection limits. 

The aim of this paper is to use wind regression results from semi-continuous pollutant 

and meteorological data to evaluate source impacts near roadways. The wind regression model 

Air Pollution Transport to Receptor (EPA APTR 1.0) was recently developed to estimate sector 

apportionment (% of a given pollutant from a specific wind speed and wind direction). Time-

integrated filter samples were collected near a highway in Las Vegas, NV, and resulting organic 
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source marker concentrations were then compared to the sector apportionment results to test the 

validity of using wind regression to assess source impacts. 

 

2. Methods 

2.1. Site Description 

Semi-continuous and time-integrated measurements were collected at Fyfe elementary 

school, which is adjacent to a highway in Las Vegas, NV (Figure 1). U.S. Highway 95 (US-95) 

is a limited access highway consisting of five lanes each direction and carrying an average traffic 

volume of approximately 175,000 vehicles/day during the sampling period. Both semi-

continuous and time-integrated samples were collected approximately 18 m from the soundwall 

from January 5–28, 2008. 

Semi-continuous data (5-min averaging time) were collected for the following pollutants: 

black carbon (BC) using an Aethalometer; CO using a Thermo-Electron Model 48i carbon 

monoxide analyzer; and NO2 and NOx using a Thermo-Electric Model 42i Chemiluminescence 

NO/NO2/NOx monitor. In addition, meteorological measurements (wind speed, wind direction, 

and wind direction variability sigma theta) were collected using a RM Young AQ 5305-L 

monitor.  

Time-integrated filter samples were collected daily from 5:00 to 9:00 AM, 9:00 to 11:00 

AM, 11:00 AM to 5:00 PM, 5:00 PM to 5:00 AM Pacific Standard Time (PST); 24-h samples 

were collected daily starting at 5:00 AM. The intent of this sampling strategy was to enable 

inclusion of both sub-daily samples (consistent with commuting patterns) and daily samples 

(consistent with epidemiological studies and routine monitoring) for subsequent analyses. Based 

on results using wind regression analysis (described below), a subset of time-integrated filter 

samples (n = 27) were selected for subsequent laboratory analysis for organic source markers. 
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Traffic data were collected along US-95 at the Torrey Pines overcrossing (approximately 

1 mile from Fyfe Elementary) using a Wavetronix SmartSensor HD model 125. The Wavetronix 

detectors use microwave radar to detect vehicles entering and exiting a detection zone, with a 1-

minute resolution of speed and volume by lane; 1-minute data were aggregated to hourly values 

across all lanes. Data were internally consistent throughout the January 5–28 sampling period, 

e.g., with no sudden shifts in traffic counts that could indicate an instrument malfunction. 

Additional measurements were also collected at Fyfe and three other nearby schools and 

are discussed elsewhere (Vedantham et al., 2011). 

 

2.2. Sample Collection  

PM2.5 samples were collected at a flow rate of 68 m3/hr using a high-volume sampler 

with a PM2.5 cyclone inlet. Quartz filters (8” x 10”, Pall Life Sciences, TISSUQUARTZ 

2500QAT-UP) were pre-baked in a muffle furnace (550 ºC) for 12 hours. All filter samples were 

stored in a laboratory freezer (-80 ºC) after sample collection. 

 

2.3. Analytical Methods 

Quartz filters were extracted in a solvent mixture of hexane, methanol, and 

dichloromethane (1:1:1) (GC2 grade, Burdick and Jackson) using a Dionex ASE 200 Accelerated 

Solvent Extractor. Chromatographic grade nitrogen was used to concentrate samples to a final 

volume of 300 µL. A gas chromatograph (GC, Hewlett-Packard 6890N) and inert mass selective 

detector (MSD, HP 5973N) was used and chromatographic separation was completed using a 30-

m, 0.25-mm i.d. with 0.25-µm film thickness capillary column (DB-5MS, Part No. 122-5532, 

J&W Scientific). The GC was operated as follows: injector temperature of 315 ºC; column flow 

of 1 mL/min; pressure pulse of 25 psi for 0.5 minutes; initial GC oven temperature initially set at 
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35 ºC, ramped at 20 ºC/min until reaching 160 ºC, ramped at 2 ºC/min until reaching 315 ºC. The 

MSD was operated under selective ion monitoring (SIM) mode. Recovery, precision, limits of 

detection and quantitation, blank levels, calibration linearity, and agreement with certified 

reference materials for compounds analyzed in this study are given elsewhere (Turlington et al., 

2010). 

External calibration curves (5–500 pg/µL) using authentic standards (Absolute Standards, 

Accustandards, and Chiron) were determined for all analytes. Deuterated surrogate standards 

(50–200 pg/µL) (n-C26-d54, n-C30-d62, n-C36-d74, chrysene-d12, benz(b)fluoranthene-d12, 

indeno(1,2,3-cd)pyrene-d12 and coronene-d12) and deuterated internal standards (1000 pg/µL) 

(n-C20-d42, n-C25-d52, n-C28-d58, n-C32-d66, benz(a)anthracene-d12, benzo(e)pyrene-d12, 

dibenzo(a,h)anthracene-d14 and dibenzo(a,i)pyrene-d14) were used for all samples 

 

2.4. Wind Regression Analysis 

Wind regression analysis has been recently developed as a means of using semi-

continuous (e.g., sub-hourly time resolution) meteorological and pollutant data to estimate the 

percent of a given pollutant originating from a specific wind sector (hereafter referred to as 

sector apportionment). All sector apportionment data used in this study were grouped using the 

same sampling intervals as the time-integrated filter samples. For this paper, model results (S in 

Equation 3 below) were developed using the same sampling periods as filter samples. 

Wind regression analysis was performed using the Air Pollution Transport to Receptor 

model (EPA APTR 1.0) (U.S. Environmental Protection Agency, 2009), which is described in 

detail elsewhere (Vedantham et al., 2011; Henry et al., 2009). Briefly, this analysis used the local 

scale wind analysis with the Sustained Wind Incidence Method (SWIM). The SWIM is similar to 

Non-parametric Wind Regression (NWR) as described by Henry et al. (Henry et al., 2009), a 
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kernel smoothing method for apportioning mean pollutant concentrations using highly time-

resolved meteorological and concentration data. Using wind speed, wind direction and ambient 

concentration, the method provides a likelihood type output. The SWIM for estimating the 

expected concentration of a pollutant for each wind direction and wind speed pair (θ, u) is given 

by: 
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where Ci, Ui, and Wi are the observed concentration of a particular pollutant, resultant wind 

speed and directional standard deviation, respectively, for the i-th observation at time ti; N is the 

total number of observations; K1 and K2 are smoothing kernels; θ is the wind direction; u is the 

wind speed; and σ and h are smoothing parameters for wind direction and wind speeds, 

respectively. Smoothing parameters have been set at values of 20º and 2 m/s for this study. 

The dimensionless weighting term is defined in the SWIM method by the following: 
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The first part of Equation 2 describes wind flux while the second part describes the effect of 

sustained wind. This weighting is intended to be proportional to wind fluxes (CiUi) and inversely 

proportional to variation in wind direction (σθi). The term ( )iσθ  was calculated using the median 

of standard deviations in wind direction, a reasonable assumption given that a Gaussian type 

distribution was observed for the wind direction data in this study. 

The conditional probability of pollutant concentration (Equation 1) is then weighted by 

wind frequency using a joint probability of wind speed and wind direction, resulting in the 
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following expression the mean value of the pollutant concentration associated with winds from 

the sector defined by the intervals U and θ (hereafter referred to as sector apportionment): 
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where the joint probability of wind speed and wind direction (f) is calculated using a kernel 

density estimate:  
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The uncertainty is the sector apportionment S(Θ, U) is estimated as: 
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Additional details on smoothing functions, weighting procedures, and error estimation are 

given elsewhere (Vedantham et al., 2011; Henry et al., 2009). 

 

2.5. Data Analysis 

Data processing and descriptive statistics were performed using SAS v.9.1 (SAS Institute, 

Cary, NC). In addition to APTR wind regression results, meteorological data (wind speed, wind 

direction) and semi-continuous (5-min) chemical data were each evaluated for data quality. 

Statistical distributions were used to describe these data for all sampling intervals used in this 

study, including inter-quartile range, differences between 95th and 5th percentiles, and 

differences between 90th and 10th percentiles. In addition, the root mean square error associated 

with exponential smoothing (Brown, 1961; Brown and Meyer, 1961) of each sample interval was 

used as an indicator of time series discontinuities. These analyses were completed so that 
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integrated samples selected for laboratory analysis represented a range of wind speeds and wind 

directions. 

 

3. Results and Discussion 

3.1. Assessing Source Impacts using the APTR Wind Regression Model.  

Example model results using APTR are shown in Figure 2, where estimated 

concentrations of CO are given as a function of wind direction. The center of the circle indicates 

the receptor location and the radial length of each sector represents the estimated contribution of 

CO from that range of wind directions (i.e., E(C|θ) in Equation 1, integrated across all wind 

speeds from that particular range of wind directions). Figure 2 illustrates two different sector 

apportionment results, one that is more uniformly distributed and one that is predominately from 

the southwest. Because US-95 runs in a predominately east-west direction near the sampling 

location, sectors used throughout this study were separated by cardinal wind directions (0º, 90º, 

180º, 270º). In other words, source sectors were estimated using Equation 3, integrated across all 

wind speeds, and integrated from wind directions 0-90º, 90-180º, 180-270º, and 270-360º. 

Similar results were seen from the other semi-continuous pollutants measured during this study 

(BC, NO2, and NOx), where sector apportionment results were well-correlated between 

pollutants (r2 > 0.9 between all compounds, see Figures S1-S3, Supporting Information).  

An objective to this paper is determining whether APTR results can be used to predict 

sampling intervals that are more indicative of source impacts from the roadway. An example 

using all samples that were analyzed for organic source markers is given in Figure 3, where 

sector apportionment concentrations for CO is given as a function of benzo(g,h,i)perylene 

concentration. Previous research has shown that benzo(g,h,i)perylene is an indicator of traffic 

contributions of PAHs (Nielsen, 1996) and along with indeno(1,2,3-cd)pyrene and hopanes have 
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a strong influence on vehicle exhaust source apportionment (Fujita et al., 2007). Concentrations 

of all organic source markers measured in this study (10 PAHs and 3 hopanes), average BC, and 

average CO are listed in Table 1. The weak relationships between high-time resolution data and 

time-integrated samples (e.g., r2 < 0.2 between hopane and average BC and between hopane and 

average CO) illustrates the need for better approaches to identify source impacts from time-

integrated samples. Figure 3 shows results for all samples analyzed for organic markers as well 

as for samples classified as source-impacted samples. An initial designation for source-impacted 

samples was constrained to samples having >30% CO sector apportionment from the south and 

errors in the estimated sector apportionment <30%. An example of a source-impacted sample is 

given in Figure 3b. Although these criteria for source impacts were prescribed in this example, 

Figure 3 clearly shows an improved indication of source impacts using the APTR sector 

apportionment results. Also noteworthy is that even for source-impacted samples with lower 

sector CO concentrations (e.g., <50% CO from the south), these samples have correspondingly 

lower concentrations of benzo(g,h,i)perylene. In other words, source identification using APTR 

is not limited to samples where predicted concentrations are exclusively from a single sector, 

meaning that the approach can be used for typical time-integrated samples that may consist of a 

variety of wind speeds and wind directions. In addition, error estimates (2σ/µ) from the source-

impacted samples (average error = 20%) were less than those for the remaining samples (48%). 

Utilizing higher frequency data to better resolve time-integrated samples have also been shown 

using multiple time resolution models (e.g., Zhou et al., 2004; Ogulei et al., 2005). 

This example is extended for all sampling periods included in this study as shown in 

Figure 4. The BC sector from the south (calculated using APTR) and the average BC 

concentration is shown by sampling date. Sector apportionment results for BC range from 0 to 

95%, although for most samples days results are between 30 and 60%. The poor relationship 
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shown in Figure 4 between sector apportionment and average BC further illustrates that 

concentrations alone are not necessarily indicative of near-source impacts. 

Further evidence validating the use of APTR to attribute source impacts is shown in 

Figure 5 as a function of total traffic counts averaged over each sampling period. Figure 5a 

shows total hopane concentration as a function of traffic counts, while Figure 5b shows the 

predicted hopane concentration from the south (i.e., sector contribution of hopane predicted 

using APTR). Data in Figure 5 were limited to samples collected during morning rush hour 

(9:00-11:00 AM) as they were expected to be more indicative of commuter highway traffic. 

While a detailed statistical analysis of the data shown in Figure 5 is not warranted given the 

smaller number of samples, results in Figure 5b clearly indicate that sector apportionment results 

for a commonly-used organic source marker (hopane) is well-correlated with traffic data (r2 = 

0.72). 

 

3.2. Estimating uncertainties in wind regression results. 

The difference in error estimates between source and non-source samples of CO suggests 

that APTR model diagnostics could be a useful screening tool for source effects. Among semi-

continuous wind speed, wind direction, and CO data used in this study, wind speed appeared to 

be the best indicator of sector apportionment uncertainty. This pattern is shown graphically in 

Figure 6, where error percent estimates from the south sector are plotted as a function of median 

wind speed for all sampling intervals where filter samples were collected. The highest estimated 

errors were associated with lower median speeds. In fact, all error estimates >30% occurred 

between median wind speeds of approximately 0.7–1.1 m/s. Similar patterns were seen for 

statistical distribution parameters (interquartile range, difference between 95th and 5th 

percentile, etc.), where the highest errors were associated with the lowest wind speeds. 
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This pattern where lower wind speeds have the highest relative error is especially 

pertinent as previous research (e.g., Charron and Harrison, 2005) has reported higher PM2.5 

concentrations at lower wind speeds. A pattern of decreasing BC with increasing wind speed has 

also been noted previously for urban areas (e.g., Wang et al., 2011). Thus, quality of the sector 

apportionment estimate and not just the highest mass level is an important consideration for 

assessing source impacts. This pattern may also be a result of higher relative variability often 

present at lower wind speeds. For example, the average relative error in wind speeds (2σ/µ) 

using the sample intervals in this study was 89% for median wind speeds <1.5 m/s, while all 

remaining samples had an average error of 69%. 

 

4. Conclusions 

Detailed chemical information is often needed to gain better understanding of PM sources 

in an urban airshed. While numerous chemical marker species have been proposed for various 

sources of PM (e.g., motor vehicle, wood smoke), measurement of those same chemicals at the 

microenvironmental level can be difficult owing to greater uncertainty associated with lower 

mass concentrations. Increased sample mass achieved with coarser time resolution can minimize 

this limitation, but may result in the inability to resolve transient sources that vary at finer time 

scales (e.g., motor vehicles). The results in this study demonstrated the use of the wind 

regression model APTR to identify source-impacted time intervals when compared with filter 

samples analyzed for organic source markers using GC-MS. Given both the time and cost 

constraints of completing detailed PM speciation for organic source markers, focused laboratory 

analysis of source-impacted samples should be a consideration for future study design. Thus, 

identifying samples most indicative of source impacts using highly time-resolved data can be an 

effective approach in bridging the gap from source profiles to microenvironmental samples. 
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Figure captions 

Figure 1. Map of sampling site. 

Figure 2. Example SWIM model results showing (a) CO sector apportionment with 

contributions from multiple directions (time period January 11–17) and (b) CO 

sector apportionment mainly from the southwest indicating a source-impacted 

sample (24-hr sample on January 6). 

Figure 3. Sector apportionment of CO from the south of as a function of 

benzo(g,h,i)perylene concentration for (a) all organic source marker samples and (b) 

all source-impacted samples. 

Figure 4. Sector apportionment of BC from the south and average BC concentration as a 

function of sample date; all data in time series are for a 24-h sampling period. 

Figure 5. Hopane concentrations as a function of average hourly traffic counts for (a) total 

hopane concentration and (b) predicted hopane concentration from the south. Data 

were restricted to morning rush hour samples. 

Figure 6. Percent error in CO sector apportionment from the south (2σσσσ/µµµµ) as a function of 

median wind speed. Percent errors and median wind speeds are both plotted as five-

point moving averages. 

 

 


