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ABSTRACT

Background: In spite of substantial attention toward environmental tobacco smoke (ETS)
exposures and health risks, studies to date have not provided adequate information to
apply broadly within community-scale risk assessments.

Objectives: Our study aims to estimate residential concentrations of particulate matter
(PM) from ETS in sociodemographic and geographic subpopulations in the United States
for the purpose of screening-level cumulative or comparative risk assessment.

Methods: We developed regression models to estimate residential cigarette smoking
using data from the 2006-7 Current Population Survey — Tobacco Use Supplement and
linked this model with models of air exchange using housing data from the 2007
American Housing Survey. Using repeated logistic and log-linear models (n=1000), we
investigated whether household demographic and geographic variables available from the
2000 U.S. Census can be used to predict the likelihood of residential exposure to ETS
and the concentration of ETS-PM in exposed households.

Results: We estimated a mean concentration of residential ETS-PM of 16 pg/m’ among
the 17% of homes with non-zero cxposure (3 ,ug/m3 overall), with substantial variability
in exposures among homes. The highest likelihood of residential ETS exposure was
found in the South and Midwest regions, in rural populations, and in low-income
households. ETS-PM concent:ra‘tions in exposed households were highest in the South
and demonstrated a non-monotonic association with income, partly related to air
exchange rate patterns.

Conclusions: We provide estimates of ETS-PM concentration distributions for different

demographic and geographic subpopulations in the United States, providing a useful



starting point for communities interested in characterizing aggregate and cumulative

health risks from indoor air pollutants.
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exchange rate, sociodemographic factors, fine particulate matter



INTRODUCTION

Environmental Tobacco Smoke (ETS) is an indoor air pollutant of great interest and
concern for agencies including the U.S. Environmental Protection Agency (EPA) and the
Centers for Disease Control and Prevention (CDC), among others (USEPA, 1992). The
CDC in its 2006 Surgeon General’s report estimated between 24,300 and 69,600 excess
deaths per year from cardiovascular disease and between 3,423 and 8,866 excess deaths
from lung cancer attributable to ETS nationwide (CDC, 2006). In its risk assessment and
subsequent analyses, the California EPA estimated that health effects in children
nationwide include more than 200,000 episodes of childhood asthma per year (new cases
and exacerbations); and between 150,000 and 300,000 cases of lower reépiratory illness,

among other adverse health outcomes (CA EPA, 1997).

While these studies clearly indicate that the public health burden of ETS exposure is
substantial, the health risk assessments have multiple limitations. These national risk
estimates use a crude surrogate of ETS exposure, based on survey data indicating whether
or not individuals live with smokers. This exposure metric was chosen to correspond with
the epidemiological studies applied in these national risk assessments, as quantitative
measurements of ETS concentrations and exposure have not been available for all
participants in these studies (CDC, 2006). Such an approach does provide reasonable
estimates of national-scale health risks, albeit with some uncertainties, but the reliability
of this surrogate measure may vary across demographic subpopulations, and the approach

lacks sufficient resolution to identify potentially meaningful community differences in



ETS exposure. The smoking literature has shown significant sociodemographic and
geographic variation of smoking prevalence and intensity (Shavers et al., 2005; Shavers
et al., 2006; Datta et al., 2006; Osypuk et al., 2006); furthermore, housing characteristics
such as home volume and air exchange rate will significantly influence the exposure
implications of indoor smoking (Klepeis and Nazaroff, 2006). Demo graphic factors
correlated with smoking activity may also be correlated with housing characteristics of
interest, influencing the patterns of ETS concentrations and potentially increasing within-

community and between-community variability.

There is a growing interest in quantifying ETS exposure at the community level because
of its ubiquity in indoor environments and its association with multiple health outcomes
of concern as described above. Community organizations, local governments, and federal
agencies have cited ETS as an environmental issue of concern within the context of
community-based cumulative assessment of indoor pollutants such as particulate matter
(PM) associated with asthma (Zartarian and Schultz, 2009). However, national-scale
analyses lack sufficient resolution for the above-mentioned reasons and rarely are local

data available on ETS exposure (USEPA, 1992).

A substantial number of published studies have provided insight about ETS
concentrations in indoor microenvironments or biomarkers of ETS exposures, but none
have generated the data that would be needed to characterize exposure systematically at a
community level across the U.S. Studies conducted prior to the widespread introduction

of smoking restrictions in commercial and recreational facilities directly measured



concentrations of ETS-PM using personal monitors, but the evidence from these studies
cannot be used directly to construct exposure models in residential settings (Repace,
2004; Repace et al., 2006; Jenkins et al., 1996; J enkiﬁs et al., 2001). Given increasing
indoor smoking restrictions in public places including workplaces as well as retail,
hospitality, and commercial venues, the majority of the exposure and risk burden may
shift to the residential environment, but no study to date has developed broad-based and
generalizable models of ETS exposure inside homes. Previous residential studies have
either characterized ETS contributions to residential exposures within hypothetical
simulation models or using measurements but without a nationally generalizable model
framework (Dockery and Spengler, 1981; Leaderer, 1990; Ozkaynak et al., 1996; Klepeis
and Nazaroff, 2006; Myatt et al., 2008). It is therefore unknown how variability in
smoking patterns correlates with housing characteristics that influence indoor
concentrations of ETS, necessary in determining variability in residential ETS
concentrations and risk. Studies using cotinine as a biomarker of ETS exposure among
children have demonstrated significant associations with parental education,
race/ethnicity, income, and home size, but did not yield models directly applicable to all
locations at fine geographic resolution and had challenges in separating predictors of

exposure from factors that could influence metabolism (Mannino et al., 2001; Max et al.,

2009; Marano et al., 2009).

The aim of this study is to develop a model that can be used to systematically estimate
residential ETS concentrations in demographic and geographic subpopulations using

publicly available data across the U.S. for the purpose of screening-level cumulative or



comparative risk assessrhent. We develop and apply regression models based on national
datasets to estimate residential cigarette smoking and air exchange rate patterns in order
to characterize the distribution of PM concentrations from ETS in U.S. homes. We
investigate whether household demographic and geographic variables that are widely
available at fine geographic resolution can be used to predict (1) the likelihood of
residential exposure to ETS-PM and (2) concentration levels of ETS-PM in exposed

households.
METHODS

Study Population

The study population for the ETS model consisted of 98,329 individuals residing in
39,107 homes for which occupant interviews were conducted in the 2007 National
American Housing Survey (AHS) (U.S. Department of Housing and Urban Development,
2009). The AHS is a nationally representative survey of the housing stock in the U.S.
Information collected during the survey included occupants’ demographic characteristics,
which we used to model the likelihood of smoking; and housing characteristics, which we
.used to model resulting ETS concentrations. Table 1a summarizes the steps conducted to
estimate and model variability in ETS concentrations. Table 1b provides a summary of
parameters and assumptions used to calculate the estimated ETS-PM emissions and
equilibrium concentrations. Both the model steps and parametric assumptions are
described in more detail below. Unless otherwise stated, all steps in the analyses below

were conducted using SAS 9.2 ( SAS Institute Inc.).



CPS-TUS Smoking Models

Two smoking models were developed for this study, using data from the 2006/7 Current
Population Survey — Tobacco Use Supplement (CPS-TUS) (NCI, 2007), n =227, 428.
These data have previously been used within multilevel logistic regressions to predict the
probability of smoking based on individual characteristics (age, sex, poverty,
race/ethnicity, nativity, education, occupation, employment, marital status, and number of
people in the household) and area characteristics (state smoking laws, state taxes, percent
poverty of core-based statistical area); more details about the underlying statistical

approach are described elsewhere (Chahine, 2010).

For the purpose of our analyses, we needed to make multiple modifications to the
previous modeling framework (Chahine, 2010), given the focus in this analysis on
residential exposures as well as constraints in available data within other steps of the
modeling (Table 1a). In our first model (Model 1a), we used as our outcome variable
smoking at home rather than smoking overall. The TUS asked respondents whether
smoking is prohibited inside the home, permitted in some places or at some time inside
the home, or permitted everywhere inside the home. Subjects who replied that smoking is
prohibited inside the home were assigned a value of 0 for the outcome; all other subjects
were assigned a value of 1. Because no further detail was provided in the survey, for the
purpose of this analysis we did not differentiate between subjects who were permitted to

smoke in some places or at some time inside the home vs. everywhere inside the home.



In our second model, we used TUS data on the number of cigarettes smoked daily for the
subset of people who smoke at home, which was predicted using linear regression (Model
1b). We were not able to include occupation and employment in our models, which were
statistically significant predictors previously (Chahine, 2010), because insufficient
information was provided on these covariates in the AHS dataset. We were also not able
to include random effects at the levels of the state and the core-based statistical area, due
to mnsufficient geographic identifiers in the AHS dataset. A household random parameter
was included in our models to account for the nested structure of the AHS data. Dummy
variables were added to represent census region and metropolitan status (central city vs.

suburb). Models 1a and 1b were created using MLwiN 2.16 (Rasbash et al., 2002).

24% of the TUS study population did not complete the portion of the survey dedicated to
rules of smoking at home and work. These subjects were either unemployed, self-
employed, or retired. Summary statistics were performed on this subpopulation fo
determine whether they differed from the general population in demographics and
smoking prevalence. A further 1% of the TUS study population did not know or refused
to answer this portion of the questionnaire. Therefore the total sample size upon which
Model 1a was built was 169,061. Only people who smoked at home were included in the
analysis for Model 1b (n=18,529), and an additional 164 people were excluded due to

missing values for number of cigarettes smoked daily, resulting in a total sample size of

18,265 for Model 1b.

AHS Smoking Predictions




As described above, we used Model 1a to calculate the predicted probability of smoking
at home for each individual in the AHS, according to their sociodemographic
characteristics (age, sex, poverty, race/ethnicity, nativity, education, marital status, and
number of people in the houséhold) and geographic covariates (census region and urban
status). The predicted probability was then used to assign a binary home smoking status
for each individual, to appropriately capture the fact that each household either does or
does not have a smoker. This was done by generating a random number between 0 and 1
and determining whether this number was less than the individual’s predicted probability
of smoking at home (resulting in an assignment of a home-smoking status of 1) or greater
than the predicted probability of smoking at home (resulting in an assignment of a home-
smoking status of 0). The resulting simulated dataset of homesmokers vs. non-
homesmokers was then carried forward in the subsequent analyses described below. This
process was repeated 1000 times to construct 1000 simulated datasets. All individuals
under the age of 18 were assigned a home-smoking status of zero because the underlying

TUS data on which the smoking models were built included adults only.

For those with a home-smoking status of 1, we then calculated the predicted number of
cigarettes smoked daily according to their sociodemographic characteristics and
geographic location using Model 1b. Based on previous literature, on average people
spend approximately one third of their time outside of the home, one third of their time
inside the home during waking hours, and one third of their time inside the home during
non-waking hours (Klepeis, 1999; Nazaroff and Singer, 2004). Therefore, we assumed

that our study population spends one half of its waking time inside of the home, and
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multiplied the predicted daily number of cigarettes smoked by a factor of 0.5 to obtain the
predicted daily number of cigarettes smoked at home (Table 1b). We assumed a constant
rate of smoking; although it is possible that more cigarettes are smoked outside of

- working hours given the increasing smoking restrictions in public places, no information
was available on this and we chose to use a linear rate based on the previous literature

(Klepeis and Nazaroff, 2006).

Air Exchange Model

To estimate air exchange rates for the houses in the AHS dataset, we used a previously
published regression model developed using a residential leakage database for single-
family detached homes (Chan et al., 2005). Homes were separated into conventional and
low income, and model parameters were applied to calculate normalized leakage based
on year built and floor area. Floor area was reported as an ordinal variable in the AHS,
while year built was reported in interval categories. For our calculations, each home was
assigned the midpoint of its year-built category. Year built was top-coded at 2000 and
floor area at 600 m” (which fell at the 96™ percentile of the AHS data), to maintain
consistency with the residential leakage databasc used to develop the air exchange model.
Floor area was missing for 7914 houses and was estimated by multiplying the number of
rooms in these houses by the median room size in the dataset (25 m?). Normalized
leakage was then translated into air changes per hour using an equation as described by
Chan et al., 2005. An additional factor of two was applied for multi-unit housing
structures, based on a previous study which analyzed all currently available data on

multi-unit housing structures and reported that multi-unit housing structures are on
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average twice as leaky per unit area as single-unit homes, with little systematic variatioﬁ
in building leakage by construction type, building activity type, height, size, or location
within the U.S. (Price et al., 2003). While our approach is quite uncertain, direct
application of the Chan et al. model to multi-family housing was not appropriate and no
additional data sources were available; we consider the implications of this assumption

within our analysis.

ETS Concentration Estimation

Screening-level estimates of residential ETS concentrations were calculated using a
single-zone mass-balance equation, assuming perfect mixing: C = (Q/V)/(atk), where:
C = equilibrium concentration (ug/m°)

Q = emission rate (pg/hour)

V = volume of housing unit (m?)

a = air exchange rate (1/hour)

k = deposition rate (1/hour)

Emission and deposition parameters were selected based on previously reported central
estimates: we used 10 mg per cigarette for PM emissions and 0.1/hr for particle
deposition loss-rate coefficient (Klepeis and Nazaroff, 2006). These previously reported

central estimates were based on an assimilation of multiple previous studies (Klepeis et

al., 2003; Martin et al., 1997; Xu et al., 1994).

Statistical Analysis of Estimated ETS-PM Concentrations
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Multiple analyses were conducted on the resulting ETS-PM concentrations to develop
broadly-applicable models describing the association of ETS-PM with sociodemographic
and geographic variables available across the U.S. The analyses were performed at the
household level rather than the level of the individual, because the individuals in our
study population are clustered within households. Given available information, we
assumed that all individuals within a household are exposed to the same equilibrium
concentrations of residential ETS, though time-activity pattern differences could clearly

lead to differential personal exposures.

We restricted the household predictors to variables which are available both in the AHS
dataset and cross-tabulated in the U.S. Census by census tract. A census tract is a small
statistical subdivision of a county, usually containing between 2500-8000 persons (U.S.
Census Bureau, 2000). We chose census tracts as our geographic resolution because they
were designed to be homogeneous with respect to population characteristics, economic
status, and living conditions. The U.S. Census provides summary tables for singular
household variables, and cross-tabulations of selected variables. The largest cross-
tabulation of multiple householder demographic variables available is: Householder Race
by Householder Age by Household Income. We also included dummy variables for

census region and urban/rural status.

A logistic regression model was fit to estimate the predicted probability of non-zero ETS-
PM in the indoor home environment with respect to the above variables (Model 2a). For

the subset of people with non-zero residential ETS concentrations, a log-linear regression
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model was fit to describe the distribution of ETS-PM concentrations in the indoor home
environment (Model 2b). These regression models were fit for each of the 1000 simulated

datasets, and we report results representing the mean across regression model fits.

RESULTS

Models la and 1b: Home smoking prevalence and daily cigarettes smoked in CPS-TUS

The average prevalence of home-smokers in the TUS dataset was 10.9%, compared to an
overall smoking prevalence of 17.7%. The difference is attributable to the fact that 39.7%
of smokers reported having smoke-free homes. The mean number of total daily cigarettes
smoked by home-smokers was 16.2. Examining the characteristics of the subset of the
study population with missing data on home smoking rules showed similar overall
smoking prevalence to the overall population and no significant differences in
sociodemographic covariates, except that it contains more people in the 18-24 age group

and fewer people in the never-married group than the general study population.

Models 1a and 1b shared many common patterns with respect to sociodemographic and
geographic covariates (Tables 2 and 3). The reference sociodemographic population for
M.odels la and 1b was White non-Hispanic women aged 45-54 with a high school degree
who are native U.S. citizens, currently married, have an annual household income
between $30-60,000 and live with two or more people; the reference geographic
categories were Census region 3 (i.e. South) and Metropolitan balance (i.e. not a central

city). Compared to the reference population, higher odds of smoking at home and higher
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number of daily cigarettes among home-smokers were found in White Non-Hispanic
males, native U.S. citizens, and those with lower education levels. A U-Shaped pattern
was observed for the association between age and smoking at home, peaking at age 45-54
in both models. Living in a metropolitan suburb was associated with lower odds of
smoking at home, as was living in the Western U.S. (Census Region 4). The effect of
gender was found to differ by race in both models, as indicated by statistically significant

interaction terms between the two variables.

Significant effect modification was found between Census region and race in Model 1a
(Table 2). This is consistent with previous findings which showed the effect of race to
differ by state (Osypuk et al., 2006; Chahine, 2010). However, the interaction between
these two variables was not statistically significant in Model 1b, and was not retained in
the final model (Table 3). Other key differences between Model 1a and Model 1b include
the fact that those who live alone were more likely to smoke at home but smoked fewer
cigarettes per day relative to home-smokers living with two or more people, as well as the
fact that those who live in metropolitan central cities were more likely to smoke but
smoked significantly fewer cigarettes per day at home. As indicated by the 95%
confidence intervals in Table 3, while annual household income was one of the most
significant predictors of smoking at home, it did not predict the daily number of
cigarettes smoked by people who smoke at home. In general, as can be seen from the
confidence intervals in Tables 2 and 3, most predictors had weaker associations with the

outcome in Model 1b compared to Model 1a. This could be due both to smaller sample
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size and to a lesser effect of demographic and geographic factors on the smoking

intensity of home-smokers.

Air Exchange and ETS-PM Simulations in AHS

Estimated air changes per hour (ACH) varied from a low of 0.07 to a high of 2.7. The
mean estimated ACH across households was 0.5/hr, with a median of 0.4/hr and standard
deviation of 0.4/hr. Slight regional variations were observed, with the highest air
exchange rates in the Northeast (mean 0.6/hr, median=0.5/hr) and lowest in the South

(mean 0.4/hr, median=0.3/hr).

Across all 1000 simulated datasets, the mean prevalence of smoking at home in our AHS
study population was 10.9%, similar to the TUS study population, with a mean number of
cigarettes predicted for homesmokers of 14.9, slightly lower than the mean of 16.2
observed in the TUS. Approximately 17% of homes had non-zero ETS concentrations.
The mean household concentration of ETS-PM in the total population across individual
homes and simulations was 2.8 pg/m’, with a median of zero and a standard deviation
(SD) of 8.9. Looking at the exposed subset only, the mean household concentration was
16.3 pg/m’ (median 1-3.0 ug/m®, SD 15.9); the 99% percentile was 67 pg/m’> and the
maximum concentration reached over 499 ug/m’, indicating that a small percentage of
the population is predicted to be exposed to extremely high concentrations of ETS-PM.

Figure 1 presents box-plots of ETS-PM concentrations for key sociodemographic and

geographic covariates.
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Models 2a and 2b: Statistical Analysis of Estimated ETS-PM Concentrations

Odds of ETS exposure (Model 2a) showed generally similar patterns of association with
many householder covariates as was observed in the underlying smoking prevalence
model with individual covariates (Model 1a), with the exception of race (Table 4).
Concentrations of ETS-PM in the exposed population (Model 2b) showed similar
patterns of association with householder covariates as was observed in the underlying
number of cigarettes model with individual covariates (Model 1b), with the exception of
Census region (Table 5). While households in the Midwest region had the highest odds of
ETS exposure, exposed households in the South had the highest mean concentrations
after controlling for household income, householder age, and urban/rural status. This
reflects the role of housing characteristics in determining ETS-PM concentrations, as the

lowest air exchange rates were estimated in the South.

A non-monotonic relationship was observed between household income and ETS-PM
concentration in the exposed homes, where households in the second lowest income
quartile had the highest concentration (Table 5). This is a direct result of the low-income
air exchange model provided by Chan et al. (2005) and the factor of two that we further
applied to attached units (which are most prevalent in the lowest income category). R-
square values for the log-linear regression models were on the order of 0.2, indicating
that a substantial proportion of variability in ETS-PM concentrations remains
unexplained by the covariates controlled for in our model. Standard errors of the

individual models (n=1000) were on the same order as the standard deviation of the mean
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parameter estimates (intercept and coefficients, denoted by B) for both models shown in
Tables 4 and 5, indicating that the model is appropriately characterizing uncertainty

(results not shown).

DISCUSSION

Our results demonstrate that the substantial variability in residential ETS concentrations,
driven by variability in both smoking patterns and housing characteristics, can be
reasonably explained by household sociodemographic and geo graphic variables which
are publicly available at the census tract level. Although many influential factors could
not be captured within the constrained set of covariates available through census cross-
tabulations, the models are interpretable and help identify sociodemographic and

geographic subpopulations in the United States which are at higher risk of clevated ETS

exposures.

The mean estimated ETS-PM concentration of 16 pg/m® for exposed households in our
study falls on the lower side of the range of concentrations measured in previous large-
scale residential ETS studies (Dockery and Spengler, 1981; Leaderer, 1990; Ozkaynak et
al., 1996). Our results are also in general agreement with recent modeling studies:
Klepeis et al reported means ranging from 6.6-49 ug/m?’ from multiple simulations using
a simple box model approach; and Myatt et al reported a mean of 15 pg/m’® and a median

of 17.8 pg/m3 using the CONTAM model (Klepeis and Nazaroff, 2006; Myatt et al.,

2008). These studies incorporated time-activity patterns and ventilation patterns but
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relied on a hypothetical smoking population for their simulations, while our study is a
snapshot characterization of equilibrium concentrations based on parameters estimated
from housing characteristics and incorporating smoking variability from a national
survey. Thus, while these studies showed that exposure concentrations may vary within a
household depending on ventilation behavior and time-activity patterns of occupants, our
study suggests that time-averaged concentrations can vary between households depending
on smoking patterns and house type, volume, and age (all of which show variation among

sociodemographic and geographic subpopulations).

In our multiple logistic and linear regression models we attempted to capture variability
in log 0dds of ETS exposure (Model 2a) and in the concentration of ETS-PM in exposed
populations (Model 2b) usiné covariates available across the U.S. from the Census.
While the majority of the estimated parameters were consistent with those of Models 1a
and 1b (e.g., a U-shaped curve for age, higher exposure in rural locations and in the .
Midwest), some parameters had differing relationships for ETS than for smoking. In
particular, race was not a significant predictor of residential ETS exposure in Model 2a.
One possible explanation for these results is that the grouping of the variables was
modified in order to be consistent with how these variables are defined and presented in
the 2000 Census. Race/ethnicity were grouped to gether in Model 1a, to maintain integrity
with the original smoking model from which it was developed, which was determined
based on the previous literature. However, the 2000 Census presents race without the
ethnicity component. In Model 1a, the log odds for the Black-Non Hispanic indicator

variable was borderline significant at p=0.046, while the log odds for the Hispanic
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indicator variable was highly significant at p < 0.001. The association captured in Model
la may have been largely due to the ethnicity component rather than the race component,

which was not captured by the race variable in Model 2a.

Our findings can be additionally evaluated by contrasting them with studies examining
cotinine levels among children, taken from the National Health and Nutrition
Examination Survey (NHANES). Among children with reported smoke exposure in the
home (paralleling our Model 2b), cotinine levels were significantly higher among
households with low parental education, white ethnicity (relative to Mexican-American
ethnicity), and households with fewer rooms, with a borderline significant effect of
poverty status and no significant difference by region or white/black race (Mannino et al.,
2001). While our findings are not directly comparable given different covariates, and the
NHANES study includes factors influencing metabolism and dosimetry, both studies
reinforce the importance of housing factors and more complex associations with

household income than seen in studies of smoking patterns.

One of the major uncertainties in our analysis relates to our modeling of air exchange
rates. We applied a leakage model developed for single-family detached units which
takes into consideration floor area, year built, and low-income housing status to estimate
air exchange, and adapted the model to accommodate attached units. The literature on air
cxchange rates in attached housing units is scarce, and theoretical understanding of
factors influencing air exchange could lead us to argue for either higher or lower air

exchange relative to detached units. On the one hand, the lack of a ceiling/roof providing
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a dircct. pathway to the outdoors and the smaller ratio of exterior wall area per unit of
interior volume in attached homes may point to smaller air exchange rates. On the other
hand, larger buildings may contain more opportunity for leakage such as cracks and
leaks; the natural physical forces that move air (e.g., wind and stack effect) are more
pronounced in taller buildings; and there may be weaker financial incentives for energy-
efficient construction or retrofits (Diamond et al., 1996). Our choice of multiplying by a
factor of two for attached units is based on a study which analyzed all available data on
multi-family homes and reported greater leakage and a larger air exchange rate than
single-family homes (Price et al., 2003). The available data are not statistically
representative and consist of measurements of indoor-outdoor air changes per hour
(ACH) in individual apartments within sixteen different apartment buildings. The
observed rates of 0.5 to 2 ACH were approximately twice those of single-family homes,
and leakiness values in the same studies (3 to 8 L/s'm”) were also approximately twice
those of single-family homes. The study employed Bayesian hierarchical modeling to
address problems caused by small samples sizes, and no systematic variation was found
with construction type, building activity type, height, size, or location of the buildings. To
assess the sensitivity of our results on this assumption, we removed the factor of two and
repeated our analysis. This did not change the general pattefns observed in Model 2a and
2b (results not shown). In the absence of a larger body of knowledge on air exchange in

multi-family housing, we relied on this analysis, but additional data collection would

clearly be warranted.
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Our study has a number of additional limitations. First, lack of availability of state and
metropolitan area identifiers for over half the study population in the AHS inhibited our
ability to make use of more detailed geographic inputs that could have been included in
the smoking model from the CPS-TUS. While this reduced our predictive power, these
inputs were previously shown to have a smaller contribution to predicting smoking
variability than individual socioeconomic and demographic variables (Chahine, 2010).
Given our inclusion of geographic information in the form of Census region and urban
status indicator variables, we believe that our model still captures much of the variability
in smoking that can be predicted with available covariates. Second, the use of a simple
box model to estimate ETS concentrations may not adequately capture indoor conditions,
given the multi-compartment naturc of most houses. For a more sophisticated exposure
assessment, the use of a more detailed exposure model taking into account the differences
in smoking rules within a house, the number of rooms in the house, the movement of
people within the house, and more detailed ventilation information is required. However,
because the aim of our study is to provide screening-level estimates, we chose a simple
box model. Third, although the previously published air exchange model used in our
study established that higher leakage rates are found in low-income homes, the data used
for such homes came from a state database and the model likely does not capture

variability in leakage in different regions of the U.S. (Chan et al., 2005).

Beyond the concerns mentioned above with estimating air exchange rates in multi-family
housing, the scaling factor of two addresses indoor-outdoor air exchange only; our study

does not take into account exchange between units in the same building, which may be a
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substantial contributor of ETS, nor the variability in air exchange rates for different units
in the same building (Bohac et al., 2007). Another limitation of our model is that the
simulated home-smoking includes adults aged 18 and above only, which may result in an
underestimation of residential ETS exposure. The CPS-TUS and other comparable
national surveys such as the CDC’s Behavioral Risk Factor Surveillance System
(BRFSS) do not collect data on smoking in children and teenagers. While data are
available in the literature on smoking in children and teenagers, these data were collected
in separate youth-focused surveys (CDC, 2010). We recommend that children and
teenagers be included in the study population for future CPS-TUS data collection.
Finally, our simulation method does not formally take into account which individuals in
our dataset live in the same homes. Although Model 1a incorporates within-house
correlations in smoking into the beta parameters used to estimate predicted probability of
home-smoking in this study, the random number generation method does not further
incorporate information on individuals living in the same home in the AHS data.set (1.8
the likelihood that a-smoker will live with another smoker, beyond the demo graphic

factors that predict individual behaviors).

More generally, the results of our ETS-PM regression models shed light on the average
differences between subpopulation groups as represented by houschold income,
householder race, and householder’s age, using variables that are universally available at
the census tract level. However, many other factors remain which influence residential
ETS exposure and which have not been controlled for in our analysis. These factors could

include further individual-level variables in addition to variables operating at the
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neighborhood, town, metropolitan, and state levels. Therefore, although our estimates are
an improvement on national averages, use of our model should be restricted to screening
purposes, to identify likely exposure hot spots where more detailed local data could be

gathered and to inform screening-level community cumulative exposure assessments.

Despite these limitations, this study leverages data from three national datasets to provide
screening estimates of residential ETS exposure in demographic and geographic
subpopulations across the U.S. While previous studies have used average smoking and air
exchange statistics in ETS exposure simulations, our study captures variability in
residential smoking patterns and housing characteristics, including factors that correlate
with both smoking behaviors and air exchange. Our modeling approach, while
constrained in the predictors that were considered, would theoretically allow for ETS
exposure to be systematically estimated for a census tract given its location and
demographic cross-tabulations. Future studies should investigate correlations between
ETS and other indoor air pollutants in the home in order to determine whether
subpopulations with highest ETS exposure are also more highly exposed to high
concentrations from other indoor sources. Given the high level of concern among
communities for prevalent health risks such as asthma, more awareness on the hazards of

ETS exposure is needed at the community level.

Although no relative risks are established for health outcomes from ETS-PM, evidence
based on ambient PM with appropriate adjustments for personal exposures vs. outdoor

concentrations could allow for a screening-level characterization of risk from residential
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ETS-PM exposure. To contextualize this risk, the annual average residential ETS-PM
concentration of 16 pg/m’ that we have estimated for exposed households in the U.S. is
higher than the annual average outdoor PM; s concentration of 12 pg/m3 reported for
2007 (USEPA, 2008). Further, others have stated that exposure to indoor particulate
matter is as hazardous, if not more hazardous, than exposure to outdoor particulate matter
(Nazaroff and Singer, 2004; Repace, 2007). While only a subset of the population is
exposed to residential ETS-PM, and relative risks may differ between the mixture of
particles in ambient PM and those in ETS-PM, the health risks may be of a similar order

of magnitude as those from ambient PM for this exposed subpopulation.

More generally, by providing estimates of ETS-PM concentration distributions for
different subpopulations, we allow for future risk assessments that move beyond “living
with a smoker (yes/no)” exposure classification. These estiﬁlatcs arc a useful starting
point for communities interested in characterizing cumulative health risks from indoor air

pollutants, which are likely substantial contributors to population disease burdens.
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Table 1a. Steps conducted to model variability in residential ETS concentrations:

1)

2)

3)

4)

5)

6)

7)

Develop multi-level regression models predicting home-smoking as a function of sociodemographic
and geographic covariates available in the AHS, using data from the 2006-7 CPS-TUS.

o Model 1a: predicted probability of smoking at home

o Model 1b: predicted number of cigarettes smoked daily by home-smokers

Apply parameters from Models 1a and 1b to calculate predicted probability of smoking and predicted
daily cigarettes among smokers for all individuals in the AHS based on their demographic and
geographic covariates.

Assign binary home-smoking status for all individuals in the AHS dataset through multiple
simulations using their predicted probability of smoking at home.

Estimate ETS-PM emissions per person by combining binary home-smoking status with predicted
daily cigarettes, emission rates per cigarette, and time spent at home.

Apply previously developed air exchange model to estimate air changes per hour for each AHS home
using floor area, year built, and unit type.

Sum ETS-PM emissions across each household and apply one-compartment mass balance model to

obtain screening-level estimates of equilibrium ETS-PM concentrations in each AIIS home,
assuming perfect mixing.

Apply statistical analysis to describe association of ETS-PM concentrations in the home with
demographic and geographic household covariates, constraining covariates to publicly available
census-tract cross-tabulations (U.S. Census 2000) to allow for broad-based extrapolation.

o Model 2a: predicted probability of ETS-PM exposure at home

o Model 2b: predicted concentrations of ETS-PM in exposed households
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Table 1b.

Parameters and model assumptions used to calculate ETS-PM emissions and

equilibrium concentrations.

(References for each parameter can be found in the text.)

Parameter Assumption and central estimates used in model
Total daily number of cigarettes Estimated by applying Model 1b for each
smoked by homesmokers individual in AHS 2007 dataset

Proportion of total waking hours spent
at home

Half of total waking hours are assumed to be spent
inside the home.

Rate of cigarette consumption

Cigarettes are assumed to be consumed at a
constant rate during waking hours.

Particulate Matter (PM) emitted per
cigarette

1x 10° pg/cigarette

Volume of housing unit

Calculated from floor arca provided in AHS 2007
dataset, assuming average height of three meters.

Air changes per hour Estimated using unit type, year built, floor area
Particle deposition loss-rate 0.1/hr
coefficient
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Table 2. Multilevel logistic regression model of home smoking as
a function of geographic and demographic covariates (Model 1a).
Reference categories not shown.

| Other Non-Hispanic

PARAMETER OR (95% CI)
Intercept 0.21 (0.20, 0.23)
Men 1.09 (1.05, 1.13)
<$30,000/year 1.42 (1.36, 1.49)
$60,000-99,000/year 0.67 (0.63, 0.70)
>$100,000/year 0.44 (0.40, 0.47)
Family income not reported 0.82 (0.77, 0.87)
Age 18-24yrs 0.46 (0.43, 0.50)
25-34yrs 0.75 (0.71, 0.79)
35-44yrs 0.94 (0.90, 0.99)
55-64yrs 0.69 (0.66, 0.73)
65-74yrs 0.31 (0.29, 0.33)
| >75vrs 0.09 (0.08, 0.10)
Black Non-Hispanic 0.59 (0.50, 0.71)
Hispanic 0.49 (0.40, 0.59)

1.01 (0.80, 1.27)

| Not a native U.S. Citizen

0.40 (0.37, 0.44)

| Formerly married
| Never married

1.60 (1.52, 1.69)
1.98 (1.89. 2.08)

Less than High School Edu
| Some College

1.51 (1.43, 1.58)
0.70 (0.67, 0.73)

College Degree 0.32 (0.30, 0.34)
Graduate Degree 0.21 (0.19, 0.23)
Living alone 1.26 (1.19, 1.33)

Living with 1 other person

1.23 (1.18, 1.29)

| Northeast Census region (NE)
' Midwest Census region (MW)
West Census region (W)

0.88 (0.83, 0.92)
0.94 (0.90, 0.99)
0.64 (0.60, 0.67)

Metropolitan Central City
Nonmetropolitan
Unidentified

1.10 (1.05, 1.16)
1.10 (1.05, 1.15)
1.06 (1.01, 1.11)

Interaction term:  Black*Men
Hispanic*Men
Other*Men
Interaction term:  Black*MW
Black*S
Black*W
Hispanic*MW
Hispanic*W
Hispanic*S
Other*MW
Other *S
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1.36 (1.22, 1.53)
1.53 (1.32, 1.78)
1.36 (1.17, 1.59)
1.21 (0.98, 1.49)
0.77 (0.64, 0.92)
1.39 (1.08, 1.79)
0.88 (0.67, 1.15)
0.50 (0.40, 0.63)
0.64 (0.51, 0.79)
1.30 (1.00, 1.70)
0.79 (0.60, 1.03)




Table 3. Multilevel regression model of total number of cigarettes
smoked daily by home-smokers as a function of geographic and

demographic covariates (Model 1b). Reference categories not shown.

PARAMETER ESTIMATE (95% CI)
Intercept 19.00

Men 3.93 (3.59, 4.26)
<$30,000/year -0.001 (-0.38, 0.38)
$60,000-99,000/year 0.05 (-0.46, 0.56)
>$100,000/year -0.61 (-1.38, 0.15)
Family income not reported -0.07 (-0.63, 0.50)
Age 18-24yrs -5.57 (-6.25, -4.88)
25-34yrs -2.81 (-3.32, -2.30)
35-44yrs -1.13 (-1.57, -0.69)
55-64yrs -0.13 (-0.59, 0.34)
65-74yrs -1.17 (-1.80, -0.54)
>75yrs -3.73 (-4.68, -2.79)
Black Non-Hispanic -6.00 (-6.72, -5.29)
Hispanic -4.62 (-5.70, -3.53)

Other Non-Hispanic

2.26(:3.25,-1.28)

Not a native U.S. Citizen

-2.36 (-3.15, -1.58)

Formerly married -0.77 (-1.27, -0.28)
Never married 0.19 (-0.22, 0.61)
Less than High School Edu 0.83 (0.42, 1.25)
-Some College -1.19 (-1.56, -0.82)
College Degree -3.21 (-3.81, -2.61)
Graduate Degree -3.96 (-4.96, -2.96)

Living alone
Living with 1 other person

-1.23 (-1.70, -0.76)
-0.36 (-0.73, 0.02)

Northeast Census region (NE)
Midwest Census region (MW)
West Census region (W)

-1.44 (-1.88, -1.00)
-0.87 (-1.26, -0.49)
-1.54 (-1.99, -1.08)

Metropolitan Central City

-0.87 (-1.33, -0.42)

Nonmetropolitan 0.48 (0.08, 0.88)

Unidentified 0.01 (-0.42, 0.45)

Interaction term:

Black*Men -2.79 (-3.82, -1.77)
Hispanic*Men -2.83 (-4.27, -1.39)

Other*Men

-0.43 (-1.80, 0.94)
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Figure 1. Distribution of ETS-PM concentrations (ug/m°) among households with non-zero exposures, stratified by
selected demographic and geographic covariates.
(Upper limit of box represents 75™ percentile; values >30 pg/m’ not shown.)
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Table 4. Results from multiple logistic regression models of residential ETS
exposure as binary outcome (N=1000). Mean parameter estimates (intercept and

coefficients, denoted by B), odds ratios, and 95% confidence intervals are presented.

‘Model2a. ~  Variable = Meanf  SD .  OR 95-%"(:1"'
Intercept o Som A | |
REGION NE 0.45 0.05 1.57 1.43 1.72
MW 0.63 0.04 1.88 1.72 2.05
S 0.50 0.04 1.65 1.52 1.79
W 0
Householder's Age <25 -0.43 0.07 065 - 057 0.74
25-34 -0.24 0.05 0.79 0.72 0.86
35-44 0
45-54 0.25 0.04 1.28 1.19 1.39
55-64 -0.04 0.04 0.96 0.89 1.04
65-74 -0.62 0.05 0.54 0.48 0.59
75+ -1.46 0.06 0.23 0.21 0.26
Householder's Race ~ White Only 0
Black Only -0.10 0.04 0.91 0.84 0.99
Other Race(s) -0.08 0.06 0.92 0.82 1.04
Urban Status Urban 0
Rural 0.23 0.03 1.25 118 133
Household Income  <30K 0
30<60K -0.30 0.03 0.74 0.70 0.79
60<100K -0.76 0.04 0.47 0.43 0.50
>100K -1.37 0.04 0.26 0.23 0.28
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Table 5.

Results from multiple log-linear regression models (N=1000) of ETS-PM

concentrations (ug/m’) in exposed households. Mean parameter estimates (intercept

and coefficients, denoted by p), and 95% confidence intervals are presented.

Model 2b.
Intercept

REGION

Householder's Age

Householder's Race

Urban Status

Household Income

~ Variable

NE

MW

<25

White Only
Black Only
Other Race(s)
Urban

Rural

<30K
30<60K
60<100K

=100K

"Mean § -
2.87
-0.20
0.01
0.16

0
-0.35

-0.12

-0.57

-0.14

0.21

-0.18

-0.04

-0.22

SD_

0.02

0.02

0.02

0.02

0.03

0.02

0.02

0.02

0.02

0.03

0.02

0.03

1001

0.01

0.02

0.02

95% CI
2.83
-0.25
-0.03

0.13

-0.41

-0.16

0.02
0.02
-0.03

-0.13

-0.61

-0.19

0.19

-0.21

-0.07

-0.26

291

-0.16

0.05

0.20

-0.29

-0.08

0.09

0.08

0.06

-0.02

-0.54

-0.09

0.24

-0.16

-0.01

-0.18
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