

Development of calibration procedures for non-volatile particulate matter mass measurement methods--status report

John Kinsey, U. S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC

Research problem

- Three candidate methods have been identified by the SAE E-31 Committee for possible use in an Aerospace Recommended Practice (ARP) for the measurement of nonvolatile particulate matter (PM) mass emissions during engine certification
- None of these methods measure PM mass directly, have a standard procedure available to implement the method, or incorporate a technique to quality-assure the data collected by means of an external standard
- A program was designed to standardize each method, provide appropriate quality assurance/control procedures, and validate the measurements against a traceable standard method (filter gravimetric)

Program objectives

- Develop Standard Operating Procedures (SOPs), including quality assurance/quality control checks, for four near-real-time non-volatile particulate matter (black carbon) mass measurement techniques including:
 - Carbon burn-off [i.e., National Institute of Occupational Safety and Health (NIOSH) Method 5040]
 - Multi-Angle Absorption Photometer (MAAP)
 - Laser Induced Incandescence (LII)
 - Photoacoustic analysis (PA)*
- Validate all four methods against the filter gravimetric technique using a known black carbon aerosol source indicative of turbine engine exhaust in a controlled laboratory environment
- If possible, determine the sensitivity of these techniques to organic carbon in the test aerosol
- Provide the above information to the SAE E-31 Committee for inclusion in an Aerospace Recommended Practice for the measurement of non-volatile PM mass to be used in future engine certification

Modifications to NIOSH Method 5040

- Development of specialized sampling train for gas turbine exhaust
- Validation against filter gravimetric technique

Filter sampling trains

Modifications to Thermo Scientific Model 5012 MAAP for use in engine certification

- Reduce the flow through the filter tape to extend the time between filter changes
- Isolate the MAAP from the main sampling line during filter changes
- Perform the necessary calculations to determine black carbon (BC) concentration on a 1 Hz basis and log the data
- Calculate appropriate statistics from the calculated BC concentrations
- Provide the ability to implement a manual filter change
- Monitor the percent light transmission in real time so that the operator can determine when a filter change is about to take place
- Allow for and document some type of quality control check to tell the operator the instrument is working properly and ready for use
- Develop an add-on "package" incorporating the necessary changes for use in certification environments

Photos of SuperMAAP hardware modifications

SuperMAAP graphical user interface (GUI)

Modifications to Artium Technologies LII 300 Instrument

- Incorporation of a flow meter, filter, and external pump to monitor sample flow rate to the instrument
- Addition of an independent light source to be used as an independent QC check to verify proper instrument operation before starting measurements
- Ability to control instrument from a remote computer
- Procedure added to the firmware package for cell temperature and pressure calibration

Artium LII 300 independent light source

Access port for independent light source

AVL 483 Micro-Soot Sensor (MSS) photoacoustic analyzer

Note that Conditioning Unit and heated line/diluter are not being used

Apparatus for methods validation

- Low speed flow tunnel (one pass, unheated)
- Mini-CAST burner (black carbon aerosol generator)
- Catalytic stripper (to remove volatile PM)
- ~ 1.7μm cut-point cyclone pre-separator (to eliminate large agglomerates shed from walls)
- Sample splitters
- Sampling trains for Teflon and quartz filters
- LII 300, SuperMAAP, and AVL MSS

Flow tunnel schematic Quartz Critical Filter Orifice **Photoacoustic** Four-Way Sample Splitter LII ~ 21 Lpm **HEPA** MAAP 20 Diameters ➤ <--~ 4 Diameters--> Filter Inlet ~ 21 Lpm Two-Way Cyclone and Mass Sample Splitter Two-Way Flow Sample Splitter Catalytic 3-Way Stripper Bypass Valve Diluter Mini-TSI CAST **HEPA** ~ 45 Lpm DustTrak **Filters** and/or **EEPS** (along circumference of Orifice duct for turbulent Meter and mixing) Inlet dP Cell To Exhaust Valve Valve To Exhaust Duct Duct Teflon + **Quartz Filter Blowers** Motor Controller

Flow tunnel and aerosol generator

Sample distribution system

Instrument rack and operator's station

SuperMAAP

Typical tunnel velocity profile

Typical CAST output (stripper turned off)

PM mass concentration

Differential number particle size distribution

(Dp = electrical mobility particle diameter)

Experimental matrix

Aerosol Type ^a	Sampling Condition	Target Soot Concentration (μg/m³)	No. of Runs	Teflon Filter	Quartz Filter	MAAP	LII	* AVL MSS
Non-volatile PM	1	10	6	X	X	X	X	X
	2	50	6	X	X	X	X	X
	3	100	6	X	X	X	X	X
	4 ^b	500	6	X	X	X	X	X
	5	1000	6	X	X	X	X	X
Total PM⁵	1	10	6	X	X	X	X	X
	2	50	6	X	X	X	X	X
	3	100	6	X	X	X	X	X
	4 ^e	500	6	X	X	X	X	X
	5	1000	6	X	X	X	X	X

^a Non-volatile PM = Mini-CAST® with catalytic stripper; Total PM = Mini-CAST without catalytic stripper (will include volatile organics).

^b Conducted only if time and resources permit.

^c Lowest priority tests.

Current program status

- LII and MAAP instrument workshops were held at EPA
- SOPs have been developed for all methods and instruments which are currently undergoing EPA Quality Assurance review
- Flow tunnel and associated apparatus has been completed and all instruments and sensors have now been calibrated by the APPCD Metrology Laboratory
- All hardware/software modifications have been completed for the SuperMAAP with the software calculations currently being checked for accuracy at Aerodyne and DLR
- Operational data have been collected on the flow tunnel and with the Mini-CAST burner
- Preliminary data for the first experimental condition is expected to be available by the SAE E-31 Committee Meeting in June

Tentative work schedule

	2011								2012		
Activity	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Conduct Non-Volatile PM Tests			1	1							
Conduct Total PM Tests											
Data Reduction/Lab Analyses											
Draft Report Preparation											
Final Report Preparation											