1	Mercury in Tadpoles Collected from Remote Alpine Sites in the Southern
2	Sierra Nevada Mountains, California, USA
3	
4	David F. Bradford, ¹ Joanna L. Kramer, Shawn L. Gerstenberger, Nita G. Tallent-
5	Halsell, ² Maliha S. Nash
6	
7	D.F. Bradford, N.G. Tallent-Halsell, M.S. Nash,
8	U.S. Environmental Protection Agency, National Exposure Research Laboratory,
9	Landscape Ecology Branch, 944 E. Harmon Ave., Las Vegas, NV 89119, USA
10	
11	J. L. Kramer, S.L. Gerstenberger
12	Department of Environmental and Occupational Health, University of Nevada Las
13	Vegas, 4505 Maryland Parkway, Box 453064, Las Vegas NV, 89154, USA
14	
15	¹ Corresponding Author: David Bradford
16	Voice: 702-798-2681
17	Fax: 702-798-2208
18	Email: bradford.david@epa.gov
19	
20	² Present Address: National Park Service, Inventory and Monitoring Network, 601
21	Nevada <mark>Way</mark> , Boulder City, NV 89005
22	

23	Abstract Amphibians in alpine wetlands of the Sierra Nevada mountains
24	comprise key components of an aquatic-terrestrial food chain, and mercury
25	contamination is a concern because concentrations in fish from this region exceed
26	thresholds of risk to piscivorous wildlife. Total mercury concentrations were
27	measured in whole tadpoles of the Sierra chorus frog, Pseudacris sierra, two
28	times at 27 sites from high elevations (2786 – 3375 m) in the southern Sierra
29	Nevada. Median mercury concentrations were 14 ng/g wet mass (154 ng/g dry
30	mass), which were generally low in comparison to tadpoles of 15 other
31	species/location combinations from studies that represented both highly
32	contaminated and minimally contaminated sites. Mercury concentrations in <i>P</i> .
33	sierra were below threshold concentrations for risk to predaceous wildlife.
34	Concentrations in tadpoles were also lower than those observed in fish in the
35	study region presumably because tadpoles in the present study were much
36	younger (1-2 mo) than fish in the other study ($3-10$ years old), and tadpoles
37	represent a lower trophic level than fish. Mercury concentrations were not related
38	to distance from the adjacent San Joaquin Valley, a source of agricultural and
39	industrial pollutants.
40	
41	Keywords Pacific chorus frog, Pseudacris sierra, Amphibian, High elevation,

- 42 Tadpole, Mercury

46	The Sierra Nevada mountains of California (hereafter, Sierra Nevada) lie
47	downwind from major regional sources of airborne pollutants from agriculture,
48	industry, and transportation, and the mountains may also receive pollutant inputs
49	from trans-Pacific sources and the global atmospheric pool (Cahill et al. 1996;
50	Landers et al. 2008). Atmospherically transported pollutants at high elevation
51	(e.g., >2750 m) in the Sierra Nevada include both historic- and current-use
52	pesticides, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons
53	(PAHs), and metals (e.g., Cahill et al. 1996; Landers et al. 2008; Bradford et al.
54	2010). Of particular concern, mercury (Hg) concentrations in brook trout
55	(Salvelinus fontinalis) at high elevation have exceeded thresholds of risk to
56	piscivorous wildlife (Schwindt et al. 2008). Moreover, mercury was associated
57	with tissue damage in the kidneys and spleen of these fish, as indicated by
57 58	with tissue damage in the kidneys and spleen of these fish, as indicated by increases in macrophage aggregates, suggesting that Hg or another pollutant has
58	increases in macrophage aggregates, suggesting that Hg or another pollutant has
58 59	increases in macrophage aggregates, suggesting that Hg or another pollutant has
58 59 60	increases in macrophage aggregates, suggesting that Hg or another pollutant has affected fish health (Schwindt et al. 2008).
58 59 60 61	increases in macrophage aggregates, suggesting that Hg or another pollutant has affected fish health (Schwindt et al. 2008). Amphibians often serve as vital links for energy and nutrient flow between low <mark>er</mark>
5859606162	increases in macrophage aggregates, suggesting that Hg or another pollutant has affected fish health (Schwindt et al. 2008). Amphibians often serve as vital links for energy and nutrient flow between lower and higher trophic levels, and they may also be important in transferring
 58 59 60 61 62 63 	 increases in macrophage aggregates, suggesting that Hg or another pollutant has affected fish health (Schwindt et al. 2008). Amphibians often serve as vital links for energy and nutrient flow between lower and higher trophic levels, and they may also be important in transferring contaminants from aquatic to terrestrial food webs (Bergeron et al. 2010).
 58 59 60 61 62 63 64 	 increases in macrophage aggregates, suggesting that Hg or another pollutant has affected fish health (Schwindt et al. 2008). Amphibians often serve as vital links for energy and nutrient flow between lower and higher trophic levels, and they may also be important in transferring contaminants from aquatic to terrestrial food webs (Bergeron et al. 2010). Amphibians have historically been nearly ubiquitous among the abundant water
 58 59 60 61 62 63 64 65 	 increases in macrophage aggregates, suggesting that Hg or another pollutant has affected fish health (Schwindt et al. 2008). Amphibians often serve as vital links for energy and nutrient flow between lower and higher trophic levels, and they may also be important in transferring contaminants from aquatic to terrestrial food webs (Bergeron et al. 2010). Amphibians have historically been nearly ubiquitous among the abundant water bodies at high elevation in the Sierra Nevada (Vredenburg et al. 2007). At least

69	food web with the garter snakes (<i>Thamnophis couchi</i> and <i>T. elegans</i>) as the
70	primary top carnivore (e.g., Knapp 2005). Indeed, the occurrence of garter snakes
71	in this area is highly dependent on the occurrence of these prey species, and there
72	is no evidence that the snakes switch to other aquatic or terrestrial prey in the
73	absence of aquatic amphibians (e.g., Knapp 2005). Unfortunately, populations of
74	two of these species (R. muscosa and R. sierrae) have dramatically declined in
75	recent decades throughout their range in the Sierra Nevada (Vredenburg et al.
76	2007).
77	
78	The present study examines Hg concentrations in tadpoles of <i>P. sierra</i> because
79	the abundant and widespread populations of this species allow us to address two
80	objectives. First, we evaluate total Hg concentration in <i>P. sierra</i> relative to
81	tadpoles of other species elsewhere and relative to thresholds of concern to
82	predatory wildlife (Lazorchak et al. 2003). If Hg concentrations are high relative
83	to other species/locations or concentrations exceed predator thresholds, concern
84	would be raised that Hg may be affecting other wildlife and contributing to
85	regional amphibian population declines. Second, we evaluate the spatial
86	distribution of Hg in the study region because it is unknown whether certain areas
87	tend to have higher Hg concentrations than others (i.e., "hotspots"). Specifically,
88	we test the hypothesis that Hg at high elevation is related to distance from the
89	adjacent San Joaquin Valley. During much of the year air reaching high
90	elevations in the Sierra Nevada passes through the San Joaquin Valley and
91	receives pollutant inputs from agricultural and industrial sources (including coal-

92	fired power plants) in the Valley and the San Francisco Bay area (Hayes et al.
93	1984; Shair 1987; Ewell et al. 1989). Within the southern Sierra Nevada, the
94	general geographic pattern for some atmospherically deposited organic pollutants
95	is a decrease in concentration with distance from the San Joaquin Valley up to
96	about 40 km, beyond which elevations are high (e.g., >2750 m) and
97	concentrations remain static or decrease relatively little (Bradford et al. 2010).
98	
99	
100	Materials and Methods
101	
102	In the Sierra Nevada at high elevation, P. sierra females oviposit in water bodies
103	within days of ice-off, and tadpoles develop over a period of approximately 2-3
104	months before completing metamorphosis (unpublished data). Tadpoles feed
105	primarily by removing material from benthic, rock, or plant surfaces, but will
106	scavenge dead animal matter when available (unpublished data). We collected
107	tadpoles of <i>P. sierra</i> from two water bodies > 200 m apart from each of 14 areas
108	(with one exception, yielding total of 27 sites) dispersed throughout the high-
109	elevation (>2750 m) portion of Sequoia and Kings Canyon National Parks,
110	California (see map of site locations in Bradford et al. 2010). Sampling was
111	conducted during two periods (Period 1, 30 July to 12 August 2005; Period 2, 29
112	August to 12 September 2005) to capture much of the developmental time of pre-
113	metamorphic tadpoles. Elevation at sampling sites averaged 3219 m (range 2786
114	to 3375 m), water pH averaged 6.3 (range $5.0 - 7.4$), and electrical conductivity

- 115 averaged 12 μ S/cm (range 1 127) (Bradford et al. 2010). We calculated two
- 116 metrics to represent the distance for each sampling site to the San Joaquin Valley
- 117 (Bradford et al. 2010). First, linear distance (measured using Arc Map 9.2; ESRI)
- 118 is the distance to the closest point on the mountain-valley boundary, defined as
- 119 the boundary between mountain slopes and the relatively flat valley, roughly
- 120 following certain contour levels but smoothed to eliminate prominent lateral
- 121 deviations (e.g., river valleys). Second, upslope distance was calculated using
- 122 Arc Info (ESRI) as the path that runoff water would follow from the site to the
- 123 mountain-valley boundary. Upslope distance was used as a surrogate for the flow
- 124 path taken by daily upslope/downslope winds common in the southern Sierra
- 125 Nevada during summer (Shair 1987; Ewell et al. 1989). Linear distance for the
- 126 sampled sites ranged from 42.9 to 82.5 km and upslope distance ranged from 59.6
- 127 to 187.3 km) (Bradford et al. 2010).
- 128
- 129 Tadpoles were collected by hand or dip net using clean, powder-free latex gloves
- 130 and placed in plastic bags filled with water from the collection site. A median of
- 131 **11 (range 5-75)** tadpoles were transferred to a 25-ml certified pre-cleaned glass
- 132 vial with Teflon[™] lined cap and placed on dry ice. Tadpoles at metamorphic
- 133 stages (i.e., Gosner 1960 stages > 41) were excluded. Duplicate sampling
- 134 frequency was 10%. Vials were stored on dry ice or in a freezer at -20° C until
- 135 analysis. Median tadpole stage (Gosner 1960) was determined from a sample of
- approximately 16 tadpoles collected simultaneously and used for other analyses

137	(Bradford et al. 2011). Details for site selection, site characteristics, and sampling
138	methods are provided in Bradford et al. (2010).
139	
140	In the laboratory tadpole samples were homogenized using a Kinematica [®]
141	Polytron PT1200E (Lucerne, Switzerland) handheld homogenizer for
142	approximately 2 min. A microwave oven, Anton-Parr Multiwave [™] 3000 (Graz,
143	Austria), with Teflon TM vessels was used in a microwave-assisted acid digestion
144	of tissues. Approximately 4 g of ground tadpole tissue (equivalent to a median of
145	4 tadpoles; range 2 - 46) were combined with 4 mL HNO ₃ and 4 mL dionized H ₂ 0
146	and microwaved with increasing power to approximately 1200 W and 160 $^{\circ}$ C.
147	
148	Detailed methods used to analyze the tadpole tissue for Hg can be found in
149	(Kramer and Gerstenberger 2010). In short, total mercury was analyzed in
150	accordance with U.S. Environmental Protection Agency (EPA) Method 245.6
151	(One EPA 1991) using a PerkinElmer [®] Flow-Injection Mercury System 100
152	(FIMS 100) (Sheldon, Connecticut, USA). equipped with an AS-91 autosampler
153	using the flow-injection mercury cold-vapor technique. The instrument detection
154	limit is reported to be 0.2 parts per billion (ppb). The method detection limit
155	(MDL) was calculated to be 0.010 μ g/g (10 ppb)
156	
157	.Three replicates were performed on each sample and an average of the three
158	measurements was reported. To compare Hg concentrations with studies that
159	reported concentrations on a dry mass basis, tadpole moisture content was

- 160 determined by oven drying a subsample (approx. 0.5 g) of the homogenized
 161 tadpoles.
- 162

163	Quality assurance and quality control were ensured by performing a calibration
164	blank each day prior to analysis. Calibration standard solutions were prepared
165	from 1000 ug/mL Hg in 5% HNO3 JT Baker [®] stock reference solution
166	(Phillipsburg, New Jersey, USA) by serial dilution. A 0.995 or higher correlation
167	coefficient was considered acceptable for the calibration curve. Each microwave
168	digestion tray contained 16 samples including a reagent blank and two certified
169	standard reference materials: National Research Council Canada DORM-3
170	dogfish muscle tissue (Ontario, Canada) and National Institute of Standards and
171	Technology Standard Reference Material [®] (SRM) 1946 Lake Superior Fish
172	Tissue (Gaithersburg, Maryland, USA). For further assurance, 10% of samples
173	were randomly selected for duplicate analysis. A recovery between 80% and
174	120% of expected value was accepted for the SRMs, duplicate samples, and
175	spiked samples. Samples were not recovery corrected.
176	
177	For statistical analysis Hg concentration values below the estimated method
178	detection limit were replaced with half this value (i.e., 0.005 μ g/g). Values for
179	concentration during Period 1 were not normally distributed (Shapiro-Wilks test)
180	even if log-tranformed. Consequently, Spearman rank tests were used to test for

181 correlations between concentration and distance from the San Joaquin Valley and

- 182 tadpole stage Statistical analysis was conducted with SAS 9.3 (SAS Institute,
- 183 Cary, North Carolina, USA).
- 184
- 185 **Results and Discussion**
- 186
- 187 Tadpoles increased in developmental stage from an average Gosner stage of 31.5
- 188 during Period 1 to 36.6 during Period 2, whole tadpole mass increased from an
- average of 0.58 g to 1.02 g between the two periods, and water content decreased
- 190 from an average of 92.3% to 89.3% (Table 1, t-test P < 0.0001 in all cases).
- 191 Tadpoles were absent during site visits approximately 30 d prior to the first
- 192 sampling at each site when ponds were still snow covered or recently thawed;
- 193 thus, tadpoles were ≤ 1 mo old during Period 1 and ≤ 2 mo old during Period 2.
- 194
- 195 Mercury concentrations were generally similar between the two sampling periods,
- 196 although detection frequency was lower during Period 1 than Period 2 (Table 1).
- 197 No geographic pattern for non-detects was apparent. Mercury concentrations in
- tadpoles were not significantly related to tadpole developmental stage or to whole
- 199 tadpole mass during either sampling period (Spearman rank correlation tests, P >
- 200 0.15 in all cases). By contrast, results from some studies of other species showed
- 201 both positive and negative associations (e.g., Bank et al. 2007; Weir et al. 2010).
- 202
- 203 Mercury concentrations in *P. sierra* tadpoles were generally low in comparison to
- tadpoles for 15 other species/location combinations in other studies (Table 2).

205	These studies collectively included highly contaminated sites and sites thought to
206	have minimal contamination. Specifically, the overall mean concentration in the
207	present study (16 ng/g wet mass) was low among eight species/location
208	combinations reported on a wet-mass basis, whereas the overall mean (195 ng/g
209	dry mass) in the present study was in mid range among eight species/location
210	combinations reported on a dry-mass basis. Although these results are consistent
211	with some degree of Hg contamination at the alpine sites in the present study,
212	concentrations in tadpoles were well below maximum values observed at known
213	contaminated sites. Specifically, concentrations in P. sierra averaged more than
214	an order of magnitude less than the maximum site averages reported for Bufo bufo
215	near a mercury mine in Slovenia (450 ng/g wet mass) and for Anaxyrus
216	americanus among five sites along a contaminated river in Virginia (3930 ng/g
217	dry mass; Table 2). To our knowledge, the body burden concentration that
218	represents a harmful level is unknown for pre-metamorphic tadpoles of any
219	species.
220	
221	Average Hg concentrations in <i>P. sierra</i> tadpoles in the present study (16 ng/g wet
222	mass) were below threshold concentrations in fish for risk to piscivorous wildlife
223	(i.e., river otter, 100 ng/g wet weight; mink, 70 ng/g; and kingfisher, 30 ng/g;
224	Lazorchak et al. 2003). However, four of the 54 tadpole samples in the present

- study exceeded the threshold for kingfishers. In contrast, whole fish (3-10 years)
- 226 old) sampled from two lakes 2-3 km from our nearest site in 2003 equaled or
- 227 exceeded all consumption thresholds for these predatory wildlife (averaging

228	approximately 100 and 110 ng/g wet mass in the two lakes; Landers et al. 2008;
229	Schwindt et al. 2008). Greater Hg concentrations in fish compared to P. sierra
230	tadpoles in alpine waters is not surprising given that Hg tends to bioaccumulate
231	(Unrine et al. 2007), trout are higher in the food web (carnivores) than in <i>P. sierra</i>
232	tadpoles (omnivores; unpublished data), and the fish sampled were 3 to 10 years
233	old (Schwindt et al. 2008) whereas tadpoles were only 1-2 months old.
234	
235	Although the dietary toxicity is unknown for the common snake predators of
236	aquatic amphibians in the study region, our data suggest that consumption of <i>P</i> .
237	sierra tadpoles poses low risk to snakes from mercury contamination. This might
238	not be the case, however, for their consumption of other aquatic amphibians in the
239	region because these amphibians likely accumulate mercury to a greater extent
240	than P. sierra tadpoles. Specifically, adults of the frogs Rana muscosa and R.
241	sierrae are carnivorous and can live for many years, and tadpoles of these species
242	typically take two or more years to reach metamorphosis whereas P. sierra
243	tadpoles metamorphose in a few months (Vredenburg et al. 2004; Matthews and
244	Miaud 2007; DFB, unpublished data).
245	
246	Mercury concentration in <i>P. sierra</i> tadpoles in the present study was not
247	significantly related to either linear or upslope distance from the San Joaquin

248 Valley during either sampling period (Spearman rank correlation, p>0.25 in all

249 cases). Thus, there is no evidence for spatial structuring of Hg distribution at high

elevation in the southern Sierra Nevada, i.e., > 43 km from the San Joaquin

251	Valley). This finding is generally consistent with that for pesticides, PCBs, and
252	PAHs in <i>P. sierra</i> tadpoles, sediment, and air from the same sites (Bradford et al.
253	2010). For these compounds and media there was no general pattern of
254	concentration as a function of distance metrics among these high elevation sites.
255	Nevertheless, the possibility remains that Hg concentrations would be greater at
256	lower elevations and closer to the San Joaquin Valley, as has been found for
257	several pesticides (Bradford et al. 2010). In summary, there is no evidence that
258	Hg contamination is a threat to <i>P. sierra</i> tadpoles or their predators, and there is
259	no evidence for the existence of Hg "hot spots" at high elevation in the southern
260	Sierra Nevada.
261	

263	Acknowledgments We thank Kerri Stanley for determining tadpole moisture
264	content We are grateful for the support from Sequoia and Kings Canyon
265	National Parks, and we thank many other individuals who contributed to the
266	project: Hassan Basagic, Danny Boiano, Joanna Christion, Annie Esperanza,
267	Amanda Marusich, Rebecca Rising, Carrie Vernon, and Harold Werner. We also
268	thank Deb Chaloud for comments on the manuscript. This research was funded in
269	part by the U.S. Environmental Protection Agency (EPA) through Interagency
270	Agreement DW14989008 with the National Park Service. The article has been
271	approved for publication by the EPA.
272	

References

275	Bank MS, Crocker J, Connery B, Amirbahman A (2007) Mercury
276	bioaccumulation in green frog (Rana clamitans) and bullfrog (Rana
277	catesbeiana) tadpoles from Acadia National Park, Maine, USA. Environ
278	Toxicol Chem 26:118-125
279	Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2010) Mercury
280	accumulation along a contamination gradient and nondestructive indices
281	of bioaccumulation in amphibians. Environ Toxicol Chem 29:1-9
282	Bradford DF, Knapp RA, Sparling DW, Nash MS, Stanley KA, Tallent-Halsell
283	NG, Mcconnell LL, Simonich SM (2010+) Pesticide distributions and
284	population declines of California USA alpine frogs, Rana muscosa and
285	Rana sierrae. Environ Toxicol Chem 30:682-691.
286	Bradford DF, Stanley K, McConnell LL, Tallent-Halsell NG, Nash MS, Simonich
287	SM (2010b) Spatial patterns of atmospherically deposited organic
288	contaminants at high-elevation in the southern Sierra Nevada mountains,
289	California. Environ Toxicol Chem 29:1056-1066
290	Bryne AR, Kosta L, Stegnar P (1975) The occurrence of mercury in amphibia.
291	Environmental Letters 8:147-155
292	Burger J, Snodgrass J (2001) Metal levels in southern leopard frogs from the
293	Savannah River Site: location and body compartment effects.
294	Environmental Research Section A 86:157-166

295	Cahill TC, Carroll JJ, Campbell D, Gill TE (1996) Air quality. Sierra Nevada
296	Ecosystem Project: Final report to Congress, vol. II, Assessments and
297	scientific basis for management options. Centers for Water and Wildland
298	Resources, University of California, Davis, CA, USA, pp 1227-1261
299	Campbell L, Hecky RE, Dixon DG, Chapman LJ (2006) Food web structure and
300	mercury transfer in two contrasting Ugandan highland crater lakes (east
301	Africa). Afr J Ecol 44:337-346
302	Curtis LR (2003) Sources and chronology of mercury contamination in Cottage
303	Grove Reservoir; Final Report for U.S. Army Corps of Engineers.
304	Portland, Oregon
305	Ewell DM, Flocchini RG, Myrup LO, Cahill TM (1989) Aerosol transport in the
306	southern Sierra Nevada. J Appl Meteorol 28:112-125
307	Gariboldi JD, Jagoe CH, Bryan AL, Jr. (1998) Dietary exposure to mercury in
308	nestling wood storks (Mycteria americana) in Georgia. Arch Environ
309	Contam Toxicol 34:398-405
310	Gosner KL (1960) A simplified table for staging anuran embryos and larvae with
311	notes on identification. Herpetologica 16:183-190
312	Goutner V, Furness RW (1997) Mercury in feathers of little egret Egretta garzetta
313	and night heron Nycticorax nycticorax chicks and in their prey in the
314	Axios Delta, Greece. Arch Environ Contam Toxicol 32:211-216
315	Hayes TP, Kinney JJR, Wheeler NJM (1984) California surface wind
316	climatology. California Air Resources Board, Sacramento, CA

317	Karasov WH, Jung RE, Vanden Langenberg S, Bergeson LE (2005) Field
318	exposure of frog embryos and tadpoles along a pollution gradient in the
319	Fox River and Green Bay ecosystem in Wisconsin, USA. Environ Toxicol
320	Chem 24:942-953
321	Kramer JL, Gerstenberger SL (2010) Mercury concentrations in muscle tissue
322	from sportfish in Lake Mead, Nevada-Arizona. Lake Reserv Manage
323	<mark>26:240-248</mark>
324	Knapp RA (2005) Effects of nonnative fish and habitat characteristics on lentic
325	herpetofauna in Yosemite National Park, USA. Biol Conserv 121:265-279
326	Landers DH, Simonich SL, Jaffe DA, Geiser LH, Campbell DH, Schwindt AR,
327	Schreck CB, Kent ML, Hafner WD, Taylor HE, Hageman KJ, Usenko S,
328	Ackerman LK, Schrlau JE, Rose NL, Blett TF, Erway MM (2008) The
329	fate, transport, and ecological impacts of airborne contaminants in western
330	national parks (USA). U.S. Environmental Protection Agency, Corvallis,
331	Oregon, USA
332	Lazorchak JM, McCormick FH, Henry TR, Herlihy AT (2003) Contamination of
333	fish in streams of the mid-atlantic region: an approach to regional
334	indicator selection and wildlife assessment. Environ Toxicol Chem
335	22:545-553
336	Matthews KR, Miaud C (2007) A skeletochronological study of the age structure,
337	growth, and longevity of the mountain yellow-legged frog, Rana muscosa,
338	in the Sierra Nevada, California. Copeia 2007:986-993

- 339 One EPA, 1991. Metals Manual of 1991. U.S. Environmental Protection Agency,
- 340 Office of Research and Development, Cincinnati, OH.
- 341 Schwindt AR, Fournie JW, Landers DH, Schreck CB, Kent ML (2008) Mercury
- 342 concentrations in salmonids from western U.S. national parks and
- 343 relationships with age and macrophage aggregates. Environ Sci Technol
- 344 42:1365-1370
- 345 Shair FH (1987) Atmospheric tracer experiments aimed at characterizing
- 346 upslope/downslope flows along the southwestern region of the Sierra
- 347 Nevada mountains. Final Report Contract No. A4-126-32. California Air
- 348 Resources Board, Sacramento, CA, USA
- 349 Unrine JM, Hopkins WA, Romanek CS, Jackson BP (2007) Bioaccumulation of
- 350 trace elements in omnivorous amphibian larvae: Implications for
- amphibian health and contaminant transport. Environ Pollut 149:182-192
- 352 Vredenburg VT, Bingham R, Knapp R, Morgan JAT, Moritz C, Wake D (2007)
- 353 Concordant molecular and phenotypic data delineate new taxonomy and
- 354 conservation priorities for the endangered mountain yellow-legged frog. J
- 355 Zool 271:361-374
- 356 Vredenburg VT, Fellers GM, Davidson C (2004) Rana muscosa Camp, 1917b. in:
- 357 Lannoo M (Ed.), Amphibian declines; the conservation status of United
- 358 States species. University of California Press, Berkeley, pp 563-566
- 359 Weir SM, Halbrook RS, Sparling DW (2010) Mercury concentrations in wetlands
- 360 associated with coal-fired power plants. Ecotoxicology 19:306-316
- 361

- 362 Table 1 Characteristics and total mercury concentration in *Pseudacris sierra*
- tadpoles at high elevation during two sampling periods: 30 July to 12 August
- 364 2005 (Period 1) and 29 August to 12 September 2005 (Period 2). Multiple
- 365 tadpoles comprised each sample (see text). Individual sample values for wet mass
- 366 and water content are averages per tadpole, whereas sample values for stage
- 367 represent the median.
- 368

	Period 1	Period 2	
Wet Mass (g)	0.58 ± 0.08 ^a (0.07-1.57)	1.02 ± 0.06 ^a (0.39-1.50)	
Median Gosner Stage	31.5 ± 0.6 <mark>^a</mark> (26 - 37)	36.6 ± 0.4 ^a (30 – 39.5)	
Water Content (%)	92.3 ± 0.5 ^ª (84.4 - 96.9)	89.3 ± 0.3 ^ª (86.6 - 94.1)	
Total Hg (ng/g wet) ^b	13 [5 - 17] ⁶ (5 - 53)	16 [13 - 20] ^C (5 - 33)	
Total Hg (ng/g dry) ^b	150 [70 - 247] <mark>⁶</mark> (61 - 1730)	151 [104 - 216] <mark>⁶</mark> (53 - 376)	
Hg Detection Frequency (%)	74.1	96.3	
Number of Sites (Samples)	27	27	

369 **a** Values are mean \pm SE (range)

- ^b Hg concentration below the estimated method detection limit (MDL) were
- 371 replaced with half of the MDL (i.e., 5 ng/g wet mass)
- 372 ^c Values are median [interquartile range] (range)
- 373

375 **Table 2**Total mercury concentration in whole tadpoles.

Location	Context	Species	No. Sites	Mean Hg ^a (ng/g Wet)	Mean Hg ^a (ng/g Dry)	Study ^c
Acadia National Park, Maine, USA	Atmospheric Hg deposition from anthropogenic sources	Lithobates catesbeianus	3	19 (17-22)		(Bank et al. 2007)
II	"	Lithobates clamitans	6	25 (14-38)		II
Southern Illinois, USA	Upwind & downwind from coal-fired power plants; upwind/downwind Hg not significantly different	Lithobates catesbeianus	12	72		(Weir et al. 2010)
"	н	Lithobates clamitans	14	37		"
II	n	L. catesbeianus & L. clamitans	23	 (16-75)		п
Cottage Grove Reservoir, Oregon, USA	Reservoir contaminated by mine drainage	Lithobates catesbeianus	1	< 20		(Curtis 2003)
Vicinity Idrija, Slovenia	Vicinity of mercury mine	Bufo bufo	1	450		(Bryne et al. 1975)
US Dept. of Energy Savannah River Site, South Carolina, USA	1 site undisturbed; 2 with agriculture before 1951; 1 metals-contaminated remediated	Rana sphenocephalus	4	< 0.2 (<0.2-<0.2)		(Burger and Snodgrass 2001
Fox River, Wisconsin, USA	Tadpoles in enclosures along contamination gradient along river	Rana clamitans	3	16	93 (50-120)	(Karasov et al. 2005)

US Dept. of Energy Savannah River Site, South Carolina, USA	Wetland downstream from sluiced ash from coal-fired power plant	Lithobates catesbeianus	1		110 (median) ^b	(Unrine et al. 2007)
Axios Delta, Greece	Estuarine and delta complex; anthropogenic Hg input via rivers	<i>Hyla</i> sp.			840 (median)	(Goutner and Furness 1997)
Ш	n	Rana ridibunda			50	II
South River, <mark>Virginia</mark> , USA	Reference site upstream of contamination source	Anaxyrus americanus	1		540 ^b	(Bergeron et al. 2010)
"	Contaminated sites along river	II	5		2130 ^b (115-3830)	II
Lake Nkuruba, Uganda	Lake in conservation area	Unspecified species	1		40	(Campbell et al. 2006)
Southern Georgia, USA	Stork prey item from unknown specific location	Ranidae	1		<100	(Gariboldi et al. 1998)
Southern Sierra Nevada mountains, California, USA	High-elevation in national park	Pseudacris sierra	27	16 ^d (<10-37) [median=14]	195 ^d (67-975) [median=154]	Present study

^a Hg concentrations are for mean among sites (range of site means)

^b Tadpoles held 48 h to void gut contents

 ^c Studies included had method detection limit < 20 ng/g wet mass or < 50 ng/g dry mass, if reported
 ^d Hg concentrations differ slightly from values in Table 1 because values in present table are averaged by site.