Emerging contaminants in the environment Tammy L Jones-Lepp, U.S. Environmental Protection Agency, Las Vegas, NV USA

1 Introduction

This chapter explores the use of mass spectrometry and its application to emerging contaminants (ECs) in the environment; such classes of compounds as organometallics, pharmaceuticals/drugs, nanomaterials, and dispersants (surfactants). Table 1 shows the variety of ECs that are available, however this table should not be thought of as an exhaustive listing, but as a helpful reference for this chapter.

7

8 What does "emerging contaminant" mean? For example, in 3000 B.C. lead was 9 co-extracted with silver from silver mines in Anatolia and subsequently discarded. To 10 those who lived in the vicinity of the mine, and whose water and food sources were 11 contaminated with leftover lead, the lead may well have been considered an emerging 12 contaminant. Skipping forward five thousand years, at the beginning of the industrial age 13 the United States (US) Tariff Commission published (1918-1919) that the combined 14 production total of synthetic organic chemicals was nearly 800 million pounds (USTC 15 1919). The finished products were diverse: dyes, color lakes, photographic chemicals, 16 medicinals, flavors, perfume materials, synthetic phenolic resins, synthetic tanning 17 materials, and explosives (USTC 1919). In contrast, in 2007 the US production volume 18 of organic synthetic chemicals was nearly 27 trillion lbs (USEPA 2008). Should all 27 trillion lbs be considered ECs? The answer lies within our modern concept of an 19 20 "emerging contaminant". The idea of what is an EC really didn't take hold until it was 21 recognized that not every chemical that is manufactured is a "good" chemical for the 22 environment. In 1962 the publishing of Rachel Carson's seminal book "Silent Spring" 23 (Carson 1962) brought forth to the attention of the American public, and the global

24	community, the hidden dangers of what was thought to be a "good" chemical,
25	dichlorodiphenyltrichloroethane (DDT). DDT was great for public health; it killed
26	malaria-bearing mosquitoes, squelched infestations of bedbugs, and had other beneficial
27	properties for human well-being. However, now it is widely known and accepted that
28	DDT was responsible for the near extinction of the bald eagle, and other birds of prey,
29	and DDT was officially banned from use in the US on June 14, 1972
30	(http://www.epa.gov/history/topics/ddt/01.htm). Although DDT has not been used
31	for nearly 40 years in the US, the use of mass spectrometry has determined that there are
32	still residual amounts of DDT and its breakdown/transformation products,
33	dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), to
34	be found in the environment (McMahon, Dennehy et al. 2006; Lubick 2007).
35	
36	Many synthetic organic chemicals have brought positive benefits to humankind,
37	and yet they can have unintended negative consequences for both human and
38	environmental health. For example, organotins have a wide variety of beneficial
39	applications in the modern world. Organotins are used as molluscides in nautical paints;
40	as fungicides in agriculture, indoor/outdoor house paints, and indoor flooring and
41	wallpaper; and as industrial polymerizers in plastics (Hoch 2001; Appel 2004). However,
42	they have been implicated as endocrine disruptors, neurotoxins, inducing diabetes, and
43	other unintended negative effects (Huggett, Unger et al. 1992; Eskes, Honegger et al.
44	1999; Appel 2004; Grun and Blumberg 2006; Grote, Hobler et al. 2007; Grote, Hobler et
45	al. 2009; Moser, McGee et al. 2009; Hobler, Andrade et al. 2010). The different
46	organotins have varying toxicity levels, therefore it is important to know which organotin

47	is found. However, analyzing just for total tin does not deliver the specificity necessary
48	to determine the organic moieties of tin; only through the use of mass spectrometry,
49	coupled to chromatography, can the various organometallics be distinguished from each
50	other (Jones-Lepp, Varner et al. 1999; Morabito, Massanisso et al. 2000; Moreno,
51	Pacheco-Arjona et al. 2006).
52	
53	Another example of emerging contaminants are the use of pharmaceuticals for the
54	treatment of harmful diseases in both humans and animals and their unintended release
55	into the environment (Ankley, Brooks et al. 2007; Kemper 2008). For example, the
56	introduction and use of antibiotics in the 20 th Century has led to a decrease in mortality
57	from common bacterial infections. However, it is now recognized that the increasing use
58	of human and veterinary antibiotics can lead to an increase in antibiotic resistance in the
59	environment, an unintended consequence from the use of this class of beneficial
60	pharmaceuticals (Guardabassi, Wong et al. 2002; Schwartz, Kohnen et al. 2003; Da
61	Silva, Tiago et al. 2006; Auerbach, Seyfried et al. 2007; Kim and Aga 2007; Schlüter,

62 Szczepanowski et al. 2007; Rosenblatt-Farrell 2009; Szczepanowski, Linke et al. 2009;

63 Zhang, Marrs et al. 2009). In a seven year field study Kidd et al. (2007) demonstrated

64 how the use of a beneficial drug can have unintended negative environmental

65 consequences (Kidd, Blanchfield et al. 2007). In this study they spiked a small isolated

66 lake with low levels of the synthetic estrogen used in birth-control pills [17 β -

67 ethynylestradiol (EE2)]. Within seven years they demonstrated that even very low levels

68 of the synthetic estrogen caused an ecologic collapse of native fish populations to near

69 extinction levels (Kidd, Blanchfield et al. 2007). From the very beginning mass

70	spectrometry has played an important role in the detection of pharmaceuticals in the
71	environment leading to their being classified as ECs (Watts, Crathorn et al. 1983; Ternes
72	1998; Daughton and Ternes 1999; Daughton 2001; Daughton and Jones-Lepp 2001).
73	
74	Newer chemical materials are constantly being introduced into production for
75	consumer use, most recently are anthropogenically engineered nanoparticles. Although
76	naturally occurring nanoparticles have always been around, created either by forces of
77	nature (e.g., volcanoes) or incidentally (e.g., emissions from combustion sources),
78	anthropogenically engineered nanomaterials are recent inventions (Owen and Handy
79	2007; Lubick 2008; Farré, Gajda-Schrantz et al. 2009). These nanomaterials can be
80	considered as ECs, and are engineered from nanometallic (e.g., silver, gold, iron) and
81	nanocarbon (e.g., fullerenes) materials that are sized between 1 nm and 100 nm. The
82	Woodrow Wilson Institute since 2006 has kept an on-line database of the number of
83	consumer nanomaterials products currently being offered on the market (Woodrow
84	2010). The number of nanomaterial-containing products has grown substantially from
85	212 products listed in 2006 to 1015 products as of August 2009 (Woodrow 2010). The
86	majority of these nanoproducts contain nanosilver, followed by nanocarbon materials.
87	Nanomaterials will have far-reaching benefits and subsequent consequences, positive and
88	negative, with their use (Colvin 2003; Owen and Handy 2007; Klaine, Alvarez et al.
89	2008).
90	

Lastly, in this chapter we will explore the use of dispersants, and the role of massspectrometry in aiding crisis response strategy during a major environmental crisis. In

93 the summer of 2010 an undersea oil well (Deepwater Horizon) in the Gulf of Mexico

94 failed. Millions of gallons of oil leaked into the Gulf of Mexico from April 2010 until

July 15, 2010, when the well was capped off. In an effort to stem the negative

- 96 consequences of this much oil being released into the ocean ecosystem nearly 2 million
- 97 gallons of dispersants had been deployed as of December 1, 2010 through aerial spraying,
- and underwater deployment, over the areas affected by the spill

99 (http://www.restorethegulf.gov/release /2010/12/01/operations-and-ongoing-response-

100 <u>december-1-2010</u>). At this time the consequences of the use of this amount of dispersant

101 on an ocean ecosystem is unknown, and only future observations will determine if the use

102 of dispersants was beneficial or harmful, or somewhere in-between.

103

104 Mass Spectrometry for the Analysis of Emerging Contaminants

105 The majority of detection techniques for ECs are mass spectrometry based. This 106 is due to the reality that most environmental matrices are complex, and only the mass 107 accuracy and specificity given by mass spectrometry can overcome the large amounts of 108 interferences found in real-world matrices. For example, one of the first reports of 109 estrogens found in the environment used HPLC-fluorescence detection, but the authors 110 reported many polar interferences in the estrogen-containing fraction, making 111 identification difficult (Snyder, Keith et al. 1999). Later work, by the same principal 112 investigator (Snyder) utilized the mass accuracy and specificity of a mass spectrometer 113 detector for the same analytes, plus they were able to characterize other pharmaceuticals 114 in the same lake water matrix (Vanderford, Pearson et al. 2003).

116	There are a variety of mass spectrometers that are being used today as detectors,
117	and the majority are coupled either to gas chromatographs (GCs) or liquid
118	chromatographs (LCs). There are quadrupole mass spectrometers (MS), ion traps
119	(ITMS), time-of-flight mass spectrometers (TOFMS), triple quadrupole mass
120	spectrometers (QqQ), magnetic sector mass spectrometers, and recently orbitrap mass
121	spectrometers. Which type of mass spectrometer to use for determining ECs in
122	environmental matrices depends upon: type of separation technique chosen (GC or LC);
123	mass information wanted; mass accuracy required; and specificity needed. The reader is
124	referred to several mass spectral references for gaining a better understanding of the
125	beginnings and basics of mass spectrometry (McLafferty 1980; Busch, Glish et al. 1988;
126	Barceló 1996; Grayson 2002; Herbert and Johnstone 2003).
127	
10,	
128	Gas chromatography-mass spectrometry. In general, chemicals that vaporize at
	Gas chromatography-mass spectrometry. In general, chemicals that vaporize at < 300 °C, and therefore are chemically stable up to that temperature, can be measured by
128	
128 129	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by
128 129 130	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by gas chromatography/mass spectrometry (GC/MS). Unlike non-specific detection
128 129 130 131	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by gas chromatography/mass spectrometry (GC/MS). Unlike non-specific detection techniques (e.g., flame ionization detector (FID), UV/diode array detector (DAD), or
128 129 130 131 132	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by gas chromatography/mass spectrometry (GC/MS). Unlike non-specific detection techniques (e.g., flame ionization detector (FID), UV/diode array detector (DAD), or fluorescence), GC/MS offers the ability to produce multiple fragment ions (via electron
128 129 130 131 132 133	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by gas chromatography/mass spectrometry (GC/MS). Unlike non-specific detection techniques (e.g., flame ionization detector (FID), UV/diode array detector (DAD), or fluorescence), GC/MS offers the ability to produce multiple fragment ions (via electron impact ionization) from an analyte, giving the chemist an unequivocal identification
128 129 130 131 132 133 134	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by gas chromatography/mass spectrometry (GC/MS). Unlike non-specific detection techniques (e.g., flame ionization detector (FID), UV/diode array detector (DAD), or fluorescence), GC/MS offers the ability to produce multiple fragment ions (via electron impact ionization) from an analyte, giving the chemist an unequivocal identification
128 129 130 131 132 133 134 135	< 300 °C, and therefore are chemically stable up to that temperature, can be measured by gas chromatography/mass spectrometry (GC/MS). Unlike non-specific detection techniques (e.g., flame ionization detector (FID), UV/diode array detector (DAD), or fluorescence), GC/MS offers the ability to produce multiple fragment ions (via electron impact ionization) from an analyte, giving the chemist an unequivocal identification technique.

139	et al. 2000; Morabito, Massanisso et al. 2000; Ternes, Andersen et al. 2002). For
140	pharmaceutical ECs, there are typically two methods of derivatization that are used to
141	methylate the H-acidic functional groups of the e.g., -COOH and -OH groups;
142	diazomethane, and trimethylsilyl (TMS) derivatization (Ternes 1998; Moeder, Schrader
143	et al. 2000; Jones-Lepp, Alvarez et al. 2006). For organometallic ECs, the most common
144	derivatization methods are either hydride generation, alkylation by Grignard reagents, or
145	the use of sodium tetraethylborate (NaBEt ₄) (Morabito, Massanisso et al. 2000).
146	Derivatization methods have disadvantages. For example, incomplete derivatization can
147	occur leading to lower recoveries, and subsequent underestimation of contamination.
148	More specifically, the use of diazomethane is not a preferred derivatization method due to
149	its dangerous properties (toxicity and explosivity). The use of TMS, while not
150	"dangerous", can lead to the formation of mono- and di-TMS derivatives, which can
151	subsequently cause interferences with identification and quantitation. Because of the
152	limitations of derivatization, there is an increasing trend to use LC/MS as a determinative
153	method in analyzing for polar, non-volatile, and/or thermally labile ECs in environmental
154	matrices.
4	

155

Liquid chromatography-mass spectrometry. As discussed in the previous section
conventional GC/MS methods have limitations as to the types of analytes that are
amenable to that detection technique. Many ECs are polar, thermally instable,
hydrophobic, and have low volatility, making them ideal candidates for LC/MS. The
coupling of LC to MS has been utilized for over 30 years (Niessen 2006). Briefly, the
liquid mobile phase of the LC is nebulized, charged, and directed into an MS source

162	[most LC to MS coupling is via electrospray ionization (ESI)]. The MS source is at
163	atmospheric pressure, and through various combinations of heated capillaries (e.g., ion
164	cones, hexapoles, quadrupoles, and ion filters) the charged analytes are directed into the
165	high vacuum range of the mass spectrometer detector region. One of the unique aspects
166	of LC/MS is that the technique usually only creates a single ion in the source, allowing
167	for identification of the molecular weight of a compound. The ion created is typically the
168	protonated molecule, $(M+H)^+$, in the positive ionization mode, or the molecule minus the
169	hydride ion (M-H) ⁻ , in the negative ionization mode. However, this positive aspect can
170	also be a limitation, for with only one ion for identification it would be easy to
171	misidentify analytes in complex environmental matrices. For example,
172	methamphetamine ($C_{10}H_{16}N$, m/z 149.23 Da, CAS 537-46-2) and N,N'-
173	dimethylphenethylamine (C ₁₀ H ₁₆ N, m/z 149.23 Da, CAS 1126-71-2; DMPEA; industrial
174	chemical used as a flavoring agent) are isobaric ions of each other, both have exactly the
175	same molecular mass (m/z 149.23), but are slightly different in chemical structure.
176	Therefore an analyst must go to a more specific mass spectral identification technique,
177	referred to as tandem MS, or MS/MS techniques. This is a technique whereby a
178	precursor ion is formed in the LC/MS source [typically the $(M+H)^+$ or $(M-H)^-$ ion], the
179	ion is energized and collided (collision induced dissociation – CID), either in a triple
180	quadrupole, ion trap, or a magnetic sector mass spectrometer region, and in so doing
181	produces product ions. Product ions typically involve the loss of various functional
182	groups from the analytes, for example $(M+H-OH)^+$ or $(M+H-CH_3)^+$. However, even
183	using MS/MS techniques false identification is still possible. In the case of
184	methamphetamine and DMPEA, when using CID they both form unique predominant

185	product ions, m/z 119 (MH–CH ₃ NH ₂) ⁺ , and m/z 105 (MH-NH(CH ₃) ₂) ⁺ , respectively.
186	Both compounds form m/z 91 as a secondary product ion, but through different
187	pathways. Such that, if a researcher choses to monitor mass m/z 91, instead of m/z 119,
188	for methamphetamine (and there are those who have reported doing so in the literature)
189	then a false positive for methamphetamine could occur. Figure 1 is a mechanistic
190	rationale for support of this hypothesis. < fig 1 insert chemical structure meth/DMPEA
191	pathways>. Another example is MDMA ($C_{11}H_{15}NO_2$, mw 193.25 Da, CAS 69610-10-2)
192	vs. caffeine ($C_8H_{10}N_4O_2$, mw 194.19 Da, CAS 58-08-02). While MDMA and caffeine
193	have different molecular weights they have overlapping product ions (mass m/z 163), but
194	different precursor to product pathways. MDMA with a molecular weight of m/z 193, in
195	the ESI source forms m/z 194, $(M+H)^+$, and produces mass m/z 163.0, $(MH-CH_3NH_2)^+$,
196	as the predominant product ion using MS/MS. Caffeine has a molecular weight of m/z
197	194 (one amu different from MDMA), and forms m/z 195, $(M+H)^+$ in the positive mode,
198	and m/z 138, $(MH-CH_3NCO)^+$ is the predominant product ion formed under CID, with
199	mass m/z 163 also formed, but less abundantly. Therefore, if an analyst were to monitor
200	the m/z 163 ion channel, and detected m/z 163, near or at the same retention time as
201	caffeine, they might misidentify that compound as MDMA, when in fact it is caffeine.
202	Figure 2 is a mechanistic rationale for support of this hypothesis. < fig 2 insert chemical
203	structure MDMA/Caffeine pathways>.
204	

When using LC/MS techniques for identifying known, and unknown, chemicals,
it cannot be emphasized enough that the analyst must use a LC/MS/MS technique in

207 order to accurately identify the unknown analytes, and it is important that the proper208 product and transition ions are chosen to ensure specificity and accuracy.

209

210 **Organometallics.** Organometallic compounds are used daily in a variety of consumer, 211 agricultural, and industrial products. Many of these synthetic compounds are important 212 in medicine (e.g., organoferreous and organoplatinum as anti-tumor agents; organoboron 213 in neutron capture therapy), household products (dibutyltin, dimethyltin, octyltin in 214 plastic formulations), agriculture (triphenyltin, fungicide; cacodylic acid as a contact 215 herbicide; phenylarsonic acids as animal growth promoters), and in the shipping industry 216 (tributyltin and triphenylboron as anti-mulluscides) (Huggett, Unger et al. 1992; Craig 217 2003; Jones-Lepp and Momplaisir 2005; Allard, Passirani et al. 2008; Oudijk 2010). 218 Biological transformations of metal or metalloid species contribute to organometallic 219 compounds in the environment, as well as anthropogenic activities, such as mining and 220 the energy industry (e.g., methylmercury and alkyllead) (Tessier and Turner 1995). 221 Determining individual chemical species rather than total element concentrations is 222 important due to differences in toxicological and biochemical properties of 223 organometallic compounds (Tessier and Turner 1995; Newcombe, Raab et al. 2010). For 224 the capability to speciate individual organometallics hyphenated mass spectral techniques 225 are essential. 226

Organotins. As mentioned previously organotin compounds can elicit a wide range of endocrine- and nervous-system effects, depending on the nature and number of alkyl groups bonded to the tin atom. Therefore, it is important to be able to determine

230	the specific organotin structure and not just the total tin available. Tin, ¹²⁰ Sn, has 10
231	stable isotopes, which makes a unique GC-MS and LC-ESI-MS mass spectral pattern,
232	helping in the distinctive identification of organotin compounds in environmental
233	samples. Most methods for detecting organotins are GC-MS based, which means that
234	derivatization must happen before detection. In Thomaidis et al. seawaters were
235	collected, adjusted to pH 5, and the organotins were extracted and derivatized with a
236	sodium tetraethylborate (STEB) and hexane solution (Thomaidis, Stasinakis et al. 2007).
237	The derivatized extracts were then analyzed by GC-MS, where the instrumental limit-of-
238	detection (LOD) for the butyltins was around 2 pg injected (1 μ L injection = 2000 ng L ⁻¹)
239	as tin. For phenyltins the LOD was lower, particularly for triphenyltin (LOD=1 pg)
240	(Thomaidis, Stasinakis et al. 2007). Segovia-Martínez et al. were able to obtain even
241	lower LODs for the organotins, from 0.025 ng L^{-1} for tributyltin and diphenyltin to 1 ng
242	L ⁻¹ for tetraethyltin (Segovia-Martínez, Bouzas-Blanco et al. 2010). Their method was
243	based on in situ ethylation and simultaneous headspace-solid-phase microextraction (HS-
244	SPME) and GC–MS analysis (Segovia-Martínez, Bouzas-Blanco et al. 2010). Figure 3
245	shows the mass spectra obtained, by for tetraethyltin, tributyltin, diphenyltin, and
246	triphenyltin with this method. In each of the spectra are the characteristic isotope
247	patterns for ¹²⁰ Sn. <insert 3="" figure="" segovia-marinez=""> Because their method relied on</insert>
248	derivatization with STEB the spectral patterns show the characteristic ions of the non-
249	derivatized ions and the ethylated ions. For example, in the tributyltin spectrum the
250	masses representing the non-derivatized organotin ions are: m/z 179 (SnBuH ₂) and m/z
251	291 (SnBu ₃); and the ethylated organotins are: m/z 151 (SnEtH ₂), m/z 207 (SnEtBuH),
252	$m/z\ 235\ (SnEt_2Bu)$ and $m/z\ 263\ (SnEtBu_2)\ (Segovia-Martínez, Bouzas-Blanco et al.$

253 2010). Organotin methods for other matrices besides waters have been recently

254 developed. Organotin compounds in netted dog whelk (Nassarius reticulates) samples

were quantified by using a SPE extraction, followed by STEB derivatization, and analysis

by GC-MSD (Sousa, Laranjeiro et al. 2009). Kannan et al. (Kannan, Takahashi et al.

257 2010) reported finding organotins in house dust using a modification of the Sousa method

258 (Sousa, Laranjeiro et al. 2009).

259

260 Besides GC-MS, LC-MS has been used to analyze for the organotins. As 261 mentioned earlier because of the limitations of derivatization, there are methods that have 262 been developed that use LC/MS as a determinative method for organotins (and 263 organometallics) thus bypassing the need for derivatization and/or hydrolysis. Siu et 264 al. were the first to publish using atmospheric pressure chemical ionization (APCI) 265 ionspray tandem-MS in the selected reaction monitoring mode (SRM) for determining 266 organotin in sediment reference materials (Siu, Gardner et al. 1989). Another early 267 paper, published by Cullen et al. used a Kratos MS 80 RFA mass spectrometer equipped 268 with a Vestec Kratos thermospray interface to determine butyltins in marine samples 269 (Cullen, Eigendorf et al. 1990). Jones-Lepp et al. (1999) was one of the first papers to 270 demonstrate a rapid extraction and detection method for organotins in source waters 271 using LC-ESI-ion trap mass spectrometry (LC-ESI-ITMS) (Jones-Lepp, Varner et al. 272 1999). One inherent difficulty with their method was the instability of the electrospray 273 ionization process. Adding tropolone as a stabilizing reagent to the mobile phases 274 compensated for this difficulty. Because of the addition of tropolone, the ions detected 275 by the ion trap were the tropolonium adduct ions (Jones-Lepp, Varner et al. 1999). For

276	example, the spectrum for diphenyltin dichloride (mw 344 Da) is easily identified as
277	mass m/z 395, produced from the loss of two chlorine atoms and the addition of the
278	tropolonium ion, $(M-2Cl+C_7H_5O_2)^+$, figure 4. <insert 4="" diphenyltin="" figure="" of="" spectra=""></insert>
279	A recent publication shows a new technique of coupling on-line SPE to LC-ESI-MS and
280	LC-atmospheric pressure chemical ionization (APCI)-MS for the speciation of organotins
281	in waters (Sun, Chen et al. 2009). The direct coupling of SPE to the LC-MS allowed for
282	removal of most matrix interferences and pre-concentration of tributyltin (TBT) and
283	triphenyltin (TPT). The spectra appeared similar whether using ESI or APCI; for TBT
284	the most prominent ion $(M-Cl)^+$ was detected at m/z 291.1 (SnBu ₃), accompanied by
285	fragment ions corresponding to the loss of one butene groups, $(TBT-C_4H_8)^+$, m/z 235.0,
286	and two butene groups $(TBT-(C_4H_8)_2)^+$, m/z 179.0 (Sun, Chen et al. 2009). In Sano et al.
287	(Sano, Takagi et al. 2010) they evaluated a hydrophilic interaction liquid chromatography
288	(HILIC)–ESI-MS method. Their goal was to develop an improved and rapid liquid
289	chromatography technique, HILIC, coupled to ESI-MS. The total chromatographic run
290	times were under 15 minutes, with good separation between TPT and TBT. The ions
291	detected under these conditions however were not what were expected. Instead of the
292	molecular ions $(M)^+$, or $(M+H)^+$ being formed, the adduct ions of TBT and TPT,
293	$[M+CH_3CN]^+$ at m/z 332 and m/z 392, respectively, were formed (Sano, Takagi et al.
294	2010). The formation of the acetonitrile adduct ions was due to the use of acetonitrile
295	both in the extraction steps and in the mobile phase. With this method the LODs for TBT
296	and TPT were 3 and 6 ng/L, respectively (Sano, Takagi et al. 2010).
297	

Organoarsenics. While organotin derivatives are generally considered more toxic than

299	the inorganic forms of the element (Eskes, Honegger et al. 1999; Grun and Blumberg
300	2006; Moser, McGee et al. 2009), this is not the case for metalloid arsenic.
301	Biomethylation of arsenic is considered to be a detoxification mechanism used by many
302	organisms to counteract the effects of the more toxic inorganic forms of the element.
303	Methylarsonic acid and dimethylarsinic acid, identified in many environmental matrices,
304	were found to be less toxic than inorganic arsenic compounds (Kaise, Yamauchi et al.
305	1989). Trimethylarsine oxide was similar in acute toxicity to arsenobetaine, the most
306	abundant and predominant arsenic species in many marine animals (Kaise, Yamauchi et
307	al. 1989; Newcombe, Raab et al. 2010). In a recent study to understand the
308	bioavailability of arsenobetaine in humans, researchers used a combination of LC-ICP-
309	MS and LC-ESI-MS to confirm that the total arsenic seen by LC-ICP-MS was in fact due
310	to just arsenobetaine. This was done by simultaneously obtaining LC-ICP-MS/ESI-MS
311	data and monitoring the $(M+H)^+$ ion, m/z 179, of arsenobetaine (mw 178.06 Da). The
312	$(M+H)^+$ is produced in the ESI source, alongside the element arsenic, m/z 75, in the ICP-
313	MS, figure 5, confirming that the total arsenic found was due to arsenobetaine
314	(Newcombe, Raab et al. 2010). Figure 5 shows the overlays of the LC-ICP-MS/ESI-MS
315	chromatograms. < insert figure from newcombe paper figure 5>
316	

Other organometallics. The toxicological and environmental impacts of many synthetic
organometallic compounds that are used in medicine as anti-tumor agents or for other
medicinal purposes (e.g., organoferrocenes, organoplatinum, organoboranes) have not
been studied in detail (Cui, Ding et al. 2003; Hann, Stefánka et al. 2005; Lenz, Hann et
al. 2005; Allard, Passirani et al. 2008; Johnson, Jörgens et al. 2008). Cui et al. (Cui, Ding

322 et al. 2003) report using a high-field asymmetric waveform ion mobility spectrometry

323 (FAIMS) analyzer interfaced with ESI-ITMS to detect cisplatin (mw = 300.05 Da,

324 Cl₂H₆N₂Pt) in solutions. They make use of the filtering (mass) ability that FAIMS offers

325 to show dramatic improvements in detection of cisplatin by significantly reducing the

background "noise" by 30-fold (Cui, Ding et al. 2003). This technique holds the

327 potential to cross-over into the environmental field.

328

329 Pharmaceuticals and other drugs. In recent years it has been clearly demonstrated that 330 pharmaceuticals, both human-use and veterinary, can find their way into the natural 331 environment after excretion or disposal by end-users (Daughton and Ternes 1999; 332 Daughton and Jones-Lepp 2001; Ankley, Brooks et al. 2007; Kemper 2008; Kümmerer 333 2010). Acceptable, reproducible, and sensitive analytical chemistry techniques are 334 necessary to better quantify and support environmental and human-health risk 335 assessments from pharmaceuticals detected in the environment. The majority of the 336 detection techniques to identify very low levels (ppb and lower) of pharmaceuticals in 337 complex environmental matrices are mass spectrometry based (Daughton 2001; Petrovic, 338 Hernando et al. 2005; Hao, Clement et al. 2007; Wang 2009; Richardson 2010). 339 340 Initially GC/MS was the approach that had been used for detecting non-polar 341 pharmaceuticals, polar pharmaceuticals (with derivatization) and steroids and hormones 342 in environmental matrices. The first report of drugs, drug metabolites, and steroids

detected in the environment was by Garrison et al. in 1976 (Garrison, Pope et al. 1976).

344 The ECs and other "traditional" compounds (e.g., aromatic hydrocarbons, phthalates,

345	chlorinated alkanes, etc.) were extracted using a liquid-liquid extraction (LLE) procedure
346	followed by methylation, and GC/MS detection (Garrison, Pope et al. 1976). Moeder et
347	al. (2000) developed a solid-phase microextraction (SPME) extraction method with
348	subsequent derivatization, for detecting ibuprofen, clofibric acid, caffeine, paracetamol,
349	phenazone, carbamazepine, gemfibrozil, naproxen, indomethacine, norethisteron,
350	propranolol, and metaprolol in water, using GC/MS/MS (Moeder, Schrader et al. 2000).
351	The authors describe adding 100 μL of (BSTFA) to the 500 μL SPME extract, heating for
352	1-hr at 40°C, evaporating to 250 μ L, then injecting 1 μ L into a GC/MS for analysis
353	(Moeder, Schrader et al. 2000).
354	
355	However, many pharmaceuticals and hormones are polar, thermally instable,
356	hydrophobic, and have low volatility, making them ideal candidates for LC/MS.
357	Therefore, today almost all methods for detecting polar pharmaceuticals in the
358	environment are LC-MS and LC-MS/MS based techniques (Petrovic, Hernando et al.
359	2005; Kosjek, Heath et al. 2007). As mentioned earlier, Moeder et al. (2000) developed a
360	SPME extraction method, with derivatization, for detecting several pharmaceuticals in
361	water, so that the extract was suitable for GC/MS/MS analysis (Moeder, Schrader et al.
362	2000). Farré et al. (2001) developed a SPE extraction method, minus derivatization, for
363	the same analytes from water (Farré, Ferrer et al. 2001). They analyzed the extracts
364	directly by negative ionization LC-ESI/MS, and found that the LC/MS method was an
365	improvement over the GC/MS method since the derivatization step was avoided (Farré,
366	Ferrer et al. 2001).
367	

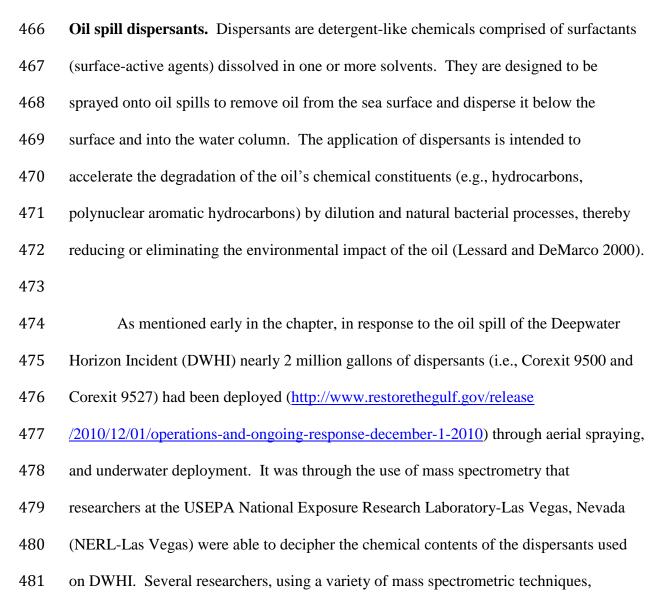
368	Conley et al. (2008) describe a rapid detection method using ultra performance
369	liquid chromatography (UPLC) coupled to a ESI-QqQ for a large number of common
370	pharmaceutical ECs (Conley, Symes et al. 2008). The use of UPLC allowed for the
371	detection of 13 different pharmaceuticals, and one metabolite, in less than 5 minute
372	chromatographic runs. With UPLC coupled to ESI-QqQ their ability to correctly identify
373	these analytes was enhanced into the low ng/L (ppt) range (Conley, Symes et al. 2008).
374	One important issue that Conley et al. (2008) bring up is that of matrix effects when
375	using LC-ESI-MS techniques (Conley, Symes et al. 2008), and providing an equation for
376	determining whether the detection of an analyte is matrix enhanced or suppressed. Other
377	researchers have noticed these phenomena of matrix suppression or enhancement when
378	using LC-ESI-MS. For example, during the analysis of sulfonamides and tetracyclines
379	with LC-ESI-iontrap MS/MS, Yang et al. (2004) found ionization suppression of
380	tetracyclines in wastewater to be significant, while no suppression or enhancement of the
381	signal for sulfonamides was observed. The matrix suppression of tetracyclines was
382	alleviated by using an internal standard (Yang, Cha et al. 2004). Matrix interferences in
383	Swedish hospital wastewater was also found to be negligible for sulfamethoxazole by
384	Lindberg et al. (2004), while ciprofloxacin was found to be highly susceptible to matrix
385	ionization suppression (Lindberg, Jarnheimer et al. 2004).

386

A recent publication by Loos et al. (2010) demonstrates the flexibility and
potency of LC-MS/MS as a screening technique (Loos, Locoro et al. 2010). They
screened for 34 ECs (e.g., pharmaceuticals, pesticides, EDCs, PFOA/PFOS, etc.) using
LC-ESI-atmospheric pressure ionization-QqQ (LC-ESI-API-QqQ). They had to use both

391	the positive and negative ionization modes in order to capture all the chemical classes			
392	represented by the 34 ECs (Loos, Locoro et al. 2010). Another recent development in			
393	unique environmental screening mass spectrometry tools is the liquid chromatograph-			
394	hybrid linear ion trap-fourier transform-orbitrap mass spectrometry (LC-LTQ FT-OT)			
395	(Hu, Noll et al. 2005). The OT combines the high resolution and mass accuracy			
396	acquisition capability to capture MS ⁿ spectra (Hu, Noll et al. 2005). Environmental			
397	samples are complex, such that not only are targeted analytes present, but so are			
398	numerous unknown ECs. In Hogenboom et al. (2009) the use of LC–LTQ FT-OT			
399	allowed for a two pronged approach to identify targeted analytes, as well as the			
400	identification of several unknown ECs that were present in a groundwater sample			
401	(Hogenboom, van Leerdam et al. 2009). First Hogenboom et al., made full-scan accurate			
402	mass measurements of the unknown ECs and then compared those measurements with			
403	theoretical exact masses of known ECs. When they couldn't find a complete match they			
404	modeled elemental compositions of the unknown ECs. MS ⁿ experiments were performed			
405	to obtain fragment ions in the LTQ, and they used the OT portion of the mass			
406	spectrometer to generate accurate mass measurements on the fragment ions. Using what			
407	they termed a "fragmentation tree" they were able to link the accurate mass fragment ions			
408	to the accurate mass precursor ions generated during the full-scan mode (Hogenboom,			
409	van Leerdam et al. 2009). Figure 6 demonstrates the ability of this technique to			
410	accurately identify a previously unknown EC from a complex environmental matrix.			
411	<insert 6="" fig="" hogenboom="" paper=""></insert> In figure 6, shown in the top half is the full-scan			
412	accurate mass spectrum of initially an unknown EC in the groundwater extract.			
413	However, after applying their "fragmentation tree" formula they were able to determine			

that the unknown EC is metolachlor oxalinic acid. The bottom half of the figure shows
the spectrum from a standard solution of metolachlor oxalinic acid, proving their
determination was correct (Hogenboom, van Leerdam et al. 2009).


417

418 Nanomaterials. To be able to be fully informed in risk assessments regarding both 419 human health and environmental exposure to nanoparticles the need exists for the 420 technology and methods to detect nanoparticles in environmental matrices. Engineered 421 nanomaterials, especially nanosilver, are already heavily used by consumers in such 422 products as cosmetics, socks, underwear, washing machines, etc., thereby increasing the 423 chance of the release of these nanomaterials into the aquatic environment through 424 wastewater treatment plant effluents or the accidental releases of raw sewage (Geranio, 425 Heuberger et al. 2009; Howard 2010; Weinberg, Galyean et al. 2011). Since little data 426 currently exists in the literature regarding ecotoxicological effects from these materials, 427 the first steps would be to (1) determine if engineered nanomaterials are present in the 428 environment, and (2) in what concentrations, bringing with it analytical challenges. 429 Analytical methods need to be able to differentiate between naturally occurring and 430 engineered nanoparticles, size differentiate and separate the engineered nanoparticles 431 from everything else present in complex environmental matrices. A few researchers have 432 used the technique of LC/MS towards understanding the fate and transport of the 433 fullerene class of nanomaterials. 434

Isaacson et al. (2007) demonstrate an LC-ESI-MS detection method for several
fullerenes, showing a clear chromatographic separation of each fullerene, i.e., C₆₀, ¹³C₆₀,

437	C ₇₀ , C ₈₂ , C ₈₈ , C ₉₈ , figure 7. <insert article="" fig7="" from="" isaacson=""></insert> Using the negative			
438	ionization mode the most abundant ions formed under ESI-MS conditions were the			
439	molecular ions [M \cdot]. They were able to successfully separate and quantitate each of the			
440	fullerenes at low, environmentally relevant concentrations. For example, the LOD for			
441	C_{60} , as defined by the concentration that gave a signal-to-noise ratio of 3:1, was 0.0004			
442	μ g/L (Isaacson, Usenko et al. 2007). Chen et al. (2008) developed a SPE method to			
443	concentrate fullerene nanomaterials from natural waters. The SPE technique eliminated			
444	background interferences such that low environmentally relevant levels of fullerenes			
445	could be detected using an atmospheric pressure chemical ionization source (APCI) with			
446	LC-MS, LC-APCI-MS (Chen, Westerhoff et al. 2008). Using SPE with LC-APCI-MS			
447	allowed them to detect C_{60} as the negative-ion, m/z 720 [M \cdot]. Based upon the response			
448	of the signal from m/z of 720 [M \cdot], C ₆₀ appeared to be detected as a single nanoparticle			
449	under LC-APCI-MS conditions (Chen, Westerhoff et al. 2008). Isaacson and Bouchard			
450	(2010) have recently coupled asymmetric flow field flow fractionation (AF4) to a			
451	dynamic light scattering detector in flow through mode, and processed the fractionated			
452	sample using an atmospheric pressure photoionization source coupled to LC-MS, LC-			
453	APPI-MS (Isaacson and Bouchard 2010). This technique allowed for unambiguous			
454	determinations of C_{60} in each of the size fractions collected from AF4.			
455				
456	At this time the current literature does not indicate the ability to detect			
457	nanometallics (e.g., nanosilver, nanogold, nanoiron) except through the use of a few non-			
458	specific detectors, e.g., ICP-MS, UV-vis, fluorescence (Howard 2010; Weinberg,			

Galyean et al. 2011). While these non-specific detectors can give total metal content, for
the most part they lack the ability to differentiate between naturally occurring and
engineered nanoparticles, and specificity in particle sizing and counting. There is a need
for the ability to couple non-specific detectors with AF4, or other size exclusion
techniques and to improve upon their capabilities in particle counting and reduction of
background interferences (Howard 2010).

482	determined the individual chemical constituents of the various fractions (e.g., volatiles,
483	semi-volatiles, and non-volatile organics) of the dispersants. Serial dilutions of the two
484	dispersants (i.e., Corexit 9500 and Corexit 9527) were made up in: water for determining
485	the volatile organics (VOAs); hexane for the semi-volatiles (semi-VOA); and methanol
486	for the non-volatile fractions. For the VOA fraction the diluted dispersants were
487	analyzed by vacuum distillation-GC-MS (VD-GC-MS); this technique is suitable for
488	those VOAs that are primarily in the boiling point range between 180 and 240° C (Hiatt
489	1995), http://www.epa.gov/epawaste/hazard/testmethods/sw846/new_meth.htm
490	-8261A). The results of both dispersants (9500 and 9527) showed that the VOA fraction
491	consisted mainly of a low-boiling solvent(s) (the solvents are for helping in the aerial
492	dispersing), lighter weight alkyl aromatic hydrocarbons, simple hydrocarbons, 1,4-
493	dioxane, and naphthalene. The semi-VOA fraction of Corexit 9500 was analyzed by GC-
494	MS; one main component was determined, bis (2-ethylhexyl) fumarate (CAS # 141-02-
495	6); this compound is the industrial precursor to sodium dioctyl sulfosuccinate (DOSS)
496	[DOSS was reported as a constituent in Corexit 9500 by the National Academy of
497	Sciences (NAS) (Committee on Understanding Oil Spill Dispersants: Efficacy and
498	Effects 2005)], as well as a smaller peak that was identified as an isomer of bis (2-
499	ethylhexyl) fumarate. The non-volatile fraction of Corexit 9500 was analyzed by LC-
500	ESI-ITMS and direct analysis in real-time time-of-flight mass spectrometry (DART-
501	TOFMS), two complementary LC-MS techniques. DART-TOFMS is a rapid screening
502	technique that gives accurate mass of those unknown dispersant compounds that are
503	ionizable (Grange and Sovocool 2008), while LC-ESI-ITMS allowed for separation, and
504	detection using MS/MS capability to determine the unknown constituents in the

505	dispersant. Using these two techniques it was determined that the major non-volatiles
506	present, in the positive ionization mode, were nonionic surfactants (e.g., ethoxylated
507	sorbitan mono- and trioleates) [as reported by NAS (Committee on Understanding Oil
508	Spill Dispersants: Efficacy and Effects 2005)], dipropylene glycol n-butyl ether, and a
509	minor amount of nonylphenol ethoxylate. In the negative ionization mode, using LC-
510	ESI-triple quadrupole mass spectrometry (LC-ESI-QqQ), the presence of DOSS [as
511	reported by the National Academy of Sciences (NAS) (Committee on Understanding Oil
512	Spill Dispersants: Efficacy and Effects 2005)] was confirmed.
513	
514	Mass spectrometry was also used to provide quality assurance/quality control
515	(QA/QC) support to toxicological testing of dispersants (Judson, Martin et al. 2010).
516	Spiked well-plates (to be used for toxicological testing), <insert 8="" figure="" of="" of<="" picture="" td=""></insert>
517	well-plate> and mixtures of sea water/oil/dispersants, were analyzed as part of QA/QC
518	measures using the same multiple mass spectrometry techniques that were used to
519	determine the dispersant constituents. The importance of using mass spectrometry was
520	shown during the cross-checking of the well-plates. The first example is demonstrated
521	in the mass spectra and chromatogram of a standard of dispersant A, figure 9 (a). <insert< b=""></insert<>
522	figure 9 of two dispersant spectra (a) and (b)> Shown are a series of ions that are
523	attributable to multiple surfactants (e.g., oxylated sorbitan oleates). One series of
524	oxylated oleates is: m/z 476.3, m/z 520.3, m/z 564.3, m/z 608.4. Each series of ions are
525	separated by mass m/z 44, which is attributable to (-CH ₂ CH ₂ O-), indicating an

526 ethoxylated species of sorbitan oleates. Present in the same spectrum is another, lesser,

527 underlying series of ethoxylated ions at m/z 503.3, m/z 547.3, m/z 591.3. Also detected

528	in this non-polar fraction of dispersant A is a large peak at mass m/z 163.2, $(M+H)^+$, and
529	a smaller peak at m/z 185.2 $(M+Na)^+$, the sodium adduct ion. Using DART-TOFMS, and
530	specialty software, the m/z 163.2 $(M+H)^+$ was determined to be attributable to either, m/z
531	162.13, 2-Propanol, 1-(2-ethoxypropoxy)-, or m/z 162.13, 2-(2-Butoxyethoxy) ethanol.
532	However, it would have been necessary to obtain standards of each of these compounds
533	to further accurately clarify which analyte was actually detected. The second example is
534	demonstrated in figure 9 (b). Shown in this figure is a mass spectra and chromatogram of
535	a well-plate that was supposed to contain only dispersant A. However, also seen in the
536	same mass spectra and chromatogram, as a minor contaminant, are the ions attributable to
537	dispersant G, m/z 191 and m/z 213. These two instances, determining unknowns and
538	cross-checking for accuracy demonstrate the power of mass spectrometry techniques so
539	magnificently.

540

541 **Conclusions**

542 In this chapter we have tried to cover a broad range of mass spectrometric 543 analytical techniques applicable to extracting and detecting ECs from complex 544 environment samples. Many of the techniques discussed are new technologies built upon 545 dependable older mass spectrometric techniques. What we have not covered are the 546 myriad of ways to sample and extract ECs from complex environmental samples. The 547 reader is encouraged to go to the literature to learn more about these subjects (Jones-548 Lepp, Alvarez et al. 2009; Richardson 2010). Most of the mass spectrometric techniques 549 that are published regarding the detection of ECs in the literature also explain the 550 sampling and extraction techniques that were used for those particular classes of ECs. 551

552	Acknowledgements.	This author would lik	ke to thank her	colleagues at the	USEPA for

- their contribution to the dispersant sub-section: Mr. Mike Hiatt (VOAs by vacuum
- distillation-GC/MS); Mrs. Charlita Rosal (semi-VOAs by GC-MS and non-volatiles by
- 555 LC-QqQ); Mr. John Zimmerman (semi-VOAs by GC-MS); Dr. Andy Grange (non-
- volatiles by DART-TOFMS); and Dr. Don Betowski and Dr. Wayne Sovocool for their
- 557 mass spectra elucidation and interpretation contributions to the Dispersant sub-section
- and with other parts of this Chapter.
- 559
- 560 **NOTICE:** The United States Environmental Protection Agency through its Office of
- 561 Research and Development funded and managed the research described here. It has been
- subjected to Agency's administrative review and approved for publication.
- 563

564 **References**

565 Allard, E., C. Passirani, E. Garcion, P. Pigeon, A. Vessières, G. Jaouen and J.-P. Benoit 566 (2008). "Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas." Journal of 567 568 Controlled Release 130(2): 146-153. 569 Ankley, G. T., B. W. Brooks, D. B. Huggett, Sumpter and P. John (2007). "Repeating 570 History: Pharmaceuticals in the Environment." Environmental Science & 571 Technology **41**(24): 8211-8217. 572 Appel, K. E. (2004). "Organotin Compounds: Toxicokinetic Aspects." Drug Metabolism 573 Reviews 36(3-4): 763-786. 574 Auerbach, E. A., E. E. Seyfried and K. D. McMahon (2007). "Tetracycline resistance 575 genes in activated sludge wastewater treatment plants." Water Research 41(5): 576 1143-1151. 577 Barceló, D., Ed. (1996). Applications of LC-MS in environmental chemistry. 578 Amsterdam, Netherlands, Elsevier. 579 Busch, K., G. Glish and S. McLuckey (1988). Mass Spectrometry/Mass Spectrometry: 580 Techniques and applications of tandem mass spectrometry. New York, New 581 York, VCH Publishers. 582 Carson, R. (1962). Silent Spring, Houghton Mifflin. 583 Chen, Z., P. Westerhoff and P. Herckes (2008). "Quantification of C60 fullerene 584 concentrations in water." Environmental Toxicology and Chemistry 27(9): 1852-585 1859. 586 Colvin, V. (2003). "The potential environmental impact of engineered nanomaterials." 587 Nature Biotechnology **21**(10): 1166-1170. 588 Committee on Understanding Oil Spill Dispersants: Efficacy and Effects, N. R. C. 589 (2005). Oil Spill Dispersants: Efficacy and Effects, The National Academies 590 Press. 591 Conley, J. M., S. J. Symes, S. A. Kindelberger and S. M. Richards (2008). "Rapid liquid 592 chromatography-tandem mass spectrometry method for the determination of a 593 broad mixture of pharmaceuticals in surface water." Journal of Chromatography 594 <u>A</u> **1185**(2): 206-215. 595 Craig, P. (2003). Organometallic Compounds in the Environment. Chichester UK, John 596 Wiley & Sons, Ltd. 597 Cui, M., L. Ding and Z. n. Mester (2003). "Separation of Cisplatin and Its Hydrolysis 598 Products Using Electrospray Ionization High-Field Asymmetric Waveform Ion 599 Mobility Spectrometry Coupled with Ion Trap Mass Spectrometry." Analytical 600 Chemistry 75(21): 5847-5853. 601 Cullen, W. R., G. K. Eigendorf, B. U. Nwata and A. Takatsu (1990). "The quantitation of 602 butyltin and cyclohexyltin compounds in the marine environment of British 603 Columbia." Applied Organometallic Chemistry 4(6): 581-590. 604 Da Silva, M. F., I. Tiago, A. Veríssimo, R. A. R. Boaventura, O. C. Nunes and C. M. 605 Manaia (2006). "Antibiotic resistance of enterococci and related bacteria in an 606 urban wastewater treatment plant." FEMS Microbiology Ecology 55(2): 322-329. 607 Daughton, C. (2001). "Emerging pollutants, and communicating the science of 608 environmental chemistry and mass spectrometry: pharmaceuticals in the

609	environment." Journal of the American Society of Mass Spectrometry 12(10):
610	1067-1076.
611	Daughton, C. and T. Jones-Lepp, Eds. (2001). Pharmaceuticals and Personal Care
612	Products in the Environment: Scientific and Regulatory Issues. ACS Symposium
613	Series 791. Washington D.C., American Chemical Society.
614	Daughton, C. and T. Ternes (1999). "Pharmaceuticals and personal care products in the
615	environment: Agents of subtle change?" Environmental Health Perspectives
616	107 (6): 907-938.
617	Eskes, C., P. Honegger, T. Jones-Lepp, K. Varner, J. Matthieu and F. Monnet-Tschudi
618	(1999). "Neurotoxicity of dibutyltin in aggregating brain cell cultures."
619	<u>Toxicology In Vitro</u> 13: 555-560.
620	Farré, M., K. Gajda-Schrantz, L. Kantiani and D. Barceló (2009). "Ecotoxicity and
621	analysis of nanomaterials in the aquatic environment." Analytical and
622	Bioanalytical Chemistry 393 (1): 81-95.
623	Farré, M. l., I. Ferrer, A. Ginebreda, M. Figueras, L. Olivella, L. Tirapu, M. Vilanova and
624	D. Barceló (2001). "Determination of drugs in surface water and wastewater
625	samples by liquid chromatography-mass spectrometry: methods and preliminary
626	results including toxicity studies with Vibrio fischeri." Journal of
627	<u>Chromatography A</u> 938(1-2): 187-197.
628	Garrison, A., J. Pope and F. Allen (1976). GC/MS Analysis of organic compounds in
629	domestic wastewaters. Identification and Analysis of Organic Pollutants in Water.
630	C. H. Keith. Ann Arbor, Michigan, Arbor Science Publishers: 517-556.
631	Geranio, L., M. Heuberger and B. Nowack (2009). "The Behavior of Silver Nanotextiles
632	during Washing." Environmental Science & Technology 43(21): 8113-8118.
633	Grange, A. H. and G. W. Sovocool (2008). "Automated determination of precursor ion,
634	product ion, and neutral loss compositions and deconvolution of composite mass
635	spectra using ion correlation based on exact masses and relative isotopic
636	abundances." <u>Rapid Communications in Mass Spectrometry</u> 22(15): 2375-2390.
637	Grayson, M., Ed. (2002). Measuring Mass: From positive rays to proteins. Philadelphia,
638	Chemical Heritage Press.
639	Grote, K., C. Hobler, A. J. M. Andrade, S. W. Grande, C. Gericke, C. E. Talsness, K. E.
640	Appel and I. Chahoud (2007). "Effects of in utero and lactational exposure to
641	triphenyltin chloride on pregnancy outcome and postnatal development in rat
642	offspring." <u>Toxicology</u> 238(2-3): 177-185.
643	Grote, K., C. Hobler, A. J. M. Andrade, S. W. Grande, C. Gericke, C. E. Talsness, K. E.
644	Appel and I. Chahoud (2009). "Sex differences in effects on sexual development
645	in rat offspring after pre- and postnatal exposure to triphenyltin chloride."
646	<u>Toxicology</u> 260 (1-3): 53-59.
647	Grun, F. and B. Blumberg (2006). "Environmental Obesogens: Organotins and Endocrine
648	Disruption via Nuclear Receptor Signaling." Endocrinology 147(6): 50-55.
649	Guardabassi, L., D. Wong and A. Dalsgaard (2002). "The effects of tertiary wastewater
650	treatment on the prevalence of antimicrobial resistant bacteria." Water Research
651	36 : 1955-1964.
652	Hann, S., Z. Stefánka, K. Lenz and G. Stingeder (2005). "Novel separation method for
653	highly sensitive speciation of cancerostatic platinum compounds by HPLC-ICP-
654	MS." Analytical and Bioanalytical Chemistry 381(2): 405-412.

655	Hao, C., R. Clement and P. Yang (2007). "Liquid chromatography-tandem mass
656	spectrometry of bioactive pharmaceutical compounds in the aquatic
657	environment—a decade's activities." Analytical and Bioanalytical Chemistry
658	387 (4): 1247-1257.
659	Herbert, C. and R. Johnstone (2003). Mass Spectrometry Basics. Boca Raton, Florida,
660	CRC Press.
661	Hiatt, M. H. (1995). "Vacuum Distillation Coupled with Gas Chromatography/Mass
662	Spectrometry for the Analysis of Environmental Samples." Analytical Chemistry
663	67 (22): 4044-4052.
664	Hobler, C., A. J. M. Andrade, S. W. Grande, C. Gericke, C. E. Talsness, K. E. Appel, I.
665	Chahoud and K. Grote (2010). "Sex-dependent aromatase activity in rat offspring
666	after pre- and postnatal exposure to triphenyltin chloride." <u>Toxicology</u> 276(3):
667	198-205.
668	Hoch, M. (2001). "Organotin compounds in the environment an overview." Applied
669	<u>Geochemistry</u> 16 (7-8): 719-743.
670	Hogenboom, A. C., J. A. van Leerdam and P. de Voogt (2009). "Accurate mass screening
671	and identification of emerging contaminants in environmental samples by liquid
672	chromatography-hybrid linear ion trap Orbitrap mass spectrometry." Journal of
673	<u>Chromatography A</u> 1216 (3): 510-519.
674	Howard, A. G. (2010). "On the challenge of quantifying man-made nanoparticles in the
675	aquatic environment." Journal of Environmental Monitoring 12(1): 135-142.
676	Hu, Q., R. Noll, H. Li, A. Makarov, M. Hardman and R. Cooks (2005). "The Orbitrap: a
677	new mass spectrometer." Journal of Mass Spectrometry 40: 430-443.
678	Huggett, R., M. Unger, P. Seligman and A. Valkirs (1992). "The marine biocide
679	tributyltin: Assessing and managing the environmental risks." Environmental
680	<u>Science and Toxicology</u> 26 (2): 232-237.
681	Isaacson, C. W. and D. Bouchard (2010). "Asymmetric flow field flow fractionation of
682	aqueous C60 nanoparticles with size determination by dynamic light scattering
683	and quantification by liquid chromatography atmospheric pressure photo-
684	ionization mass spectrometry." Journal of Chromatography A 1217(9): 1506-
685	1512.
686	Isaacson, C. W., C. Y. Usenko, R. L. Tanguay and J. A. Field (2007). "Quantification of
687	Fullerenes by LC/ESI-MS and Its Application to in Vivo Toxicity Assays."
688	<u>Analytical Chemistry</u> 79 (23): 9091-9097.
689	Johnson, A. C., M. D. Jörgens, R. J. Williams, K. K, mmerer, A. Kortenkamp and J. P.
690	Sumpter (2008). "Do cytotoxic chemotherapy drugs discharged into rivers pose a
691	risk to the environment and human health? An overview and UK case study."
692	Journal of Hydrology 348(1-2): 167-175.
693	Jones-Lepp, T., K. Varner, M. McDaniel and L. Riddick (1999). "Determination of
694	organotins in water by micro liquid chromatography-electrospray/ion trap mass
695	spectrometry." Applied Organometallic Chemistry 13: 881-889.
696	Jones-Lepp, T. L., D. A. Alvarez, B. Englert and A. L. Batt (2006). Pharmaceuticals and
697	Hormones in the Environment. Encyclopedia of Analytical Chemistry, John
698	Wiley & Sons, Ltd.

699	Jones-Lepp, T. L., D. A. Alvarez, B. Englert and A. L. Batt (2009). Pharmaceuticals and
700	Hormones in the Environment. Encyclopedia of Analytical Chemistry, John
701	Wiley & Sons, Ltd.
702	Jones-Lepp, T. L. and GM. Momplaisir (2005). "New applications of LC-MS and LC-
703	MS2 toward understanding the environmental fate of organometallics." TrAC
704	Trends in Analytical Chemistry 24(7): 590-595.
705	Judson, R. S., M. T. Martin, D. M. Reif, K. A. Houck, T. B. Knudsen, D. M. Rotroff, M.
706	Xia, S. Sakamuru, R. Huang, P. Shinn, C. P. Austin, R. J. Kavlock and D. J. Dix
707	(2010). "Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for
708	Endocrine and Other Biological Activity." Environmental Science & Technology
709	44 (15): 5979-5985.
710	Kaise, T., H. Yamauchi, Y. Horiguchi, T. Tani, S. Watanabe, T. Hirayama and S. Fukui
711	(1989). "A comparative study on acute toxicity of methylarsonic acid,
712	dimethylarsinic acid and trimethylarsine oxide in mice." Applied Organometallic
713	<u>Chemistry</u> 3 (3): 273-277.
714	Kannan, K., S. Takahashi, N. Fujiwara, H. Mizukawa and S. Tanabe (2010). "Organotin
715	Compounds, Including Butyltins and Octyltins, in House Dust from Albany, New
716	York, USA." Archives of Environmental Contamination and Toxicology 58(4):
717	901-907.
718	Kelly, C. (2000). "Analysis of steroids in environmental water samples using solid-phase
719	extraction and ion-trap gas chromatography-tandem mass spectrometry." Journal
720	of Chromatography A 872: 309-314.
721	Kemper, N. (2008). "Veterinary antibiotics in the aquatic and terrestrial environment."
722	Ecological Indicators 8: 1-13.
723	Kidd, K. A., P. J. Blanchfield, K. H. Mills, V. P. Palace, R. E. Evans, J. M. Lazorchak
724	and R. W. Flick (2007). "Collapse of a fish population after exposure to a
725	synthetic estrogen." Proceedings of the National Academy of Sciences of the
726	<u>United States of America</u> 104 (21): 8897-8901.
727	Kim, S. and D. S. Aga (2007). "Potential Ecological and Human Health Impacts of
728	Antibiotics and Antibiotic-Resistant Bacteria from Wastewater Treatment Plants."
729	Journal of Toxicology and Environmental Health, Part B: Critical Reviews 10(8):
730	559 - 573.
731	Klaine, S. J., P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S.
732	Mahendra, M. J. McLaughlin and J. R. Lead (2008). "Nanomaterials in the
733	environment: Behavior, fate, bioavailability, and effects." Environmental
734	Toxicology and Chemistry $27(9)$: 1825-1851.
735	Kosjek, T., E. Heath, M. Petrovic and D. BarcelÛ (2007). "Mass spectrometry for
736	identifying pharmaceutical biotransformation products in the environment." TrAC
737	Trends in Analytical Chemistry 26(11): 1076-1085.
738	Kümmerer, K. (2010). "Pharmaceuticals in the Environment." <u>Annual Review of</u>
739	Environment and Resources 35 (1): 57-75.
740	Lenz, K., S. Hann, G. Koellensperger, Z. Stefanka, G. Stingeder, N. Weissenbacher, S. N.
741	Mahnik and M. Fuerhacker (2005). "Presence of cancerostatic platinum
742	compounds in hospital wastewater and possible elimination by adsorption to
743	activated sludge." <u>Science of the Total Environment</u> 345 (1-3): 141-152.

744	Lessard, R. R. and G. DeMarco (2000). "The Significance of Oil Spill Dispersants." Spill
745	Science & Technology Bulletin 6(1): 59-68.
746	Lindberg, R., PA. Jarnheimer, B. Olsen, M. Johansson and M. Tysklind (2004).
747	"Determination of antibiotic substances in hospital sewage water using solid
748	phase extraction and liquid chromatography/mass spectrometry and group
749	analogue internal standards." <u>Chemosphere</u> 57 (10): 1479-1488.
750	Loos, R., G. Locoro and S. Contini (2010). "Occurrence of polar organic contaminants in
751	the dissolved water phase of the Danube River and its major tributaries using
752	SPE-LC-MS2 analysis." Water Research 44(7): 2325-2335.
753	Lubick, N. (2007). "DDT's Resurrection." <u>Environmental Science & Technology</u> 41 (18):
754	6323-6325.
755	Lubick, N. (2008). "Risks of Nanotechnology Remain Uncertain." <u>Environmental</u>
756	Science & Technology 42 (6): 1821-1824.
757	McLafferty, F. (1980). Interpretation of mass spectra, 3rd edition. Mill Valley, California,
758	University Science Books.
759	McMahon, P. B., K. F. Dennehy, B. W. Bruce, J. K. B ^h lke, R. L. Michel, J. J. Gurdak
760	and D. B. Hurlbut (2006). "Storage and transit time of chemicals in thick
761	unsaturated zones under rangeland and irrigated cropland, High Plains, United
762	States." <u>Water Resour. Res.</u> 42 (3): W03413.
763	Moeder, M., S. Schrader, M. Winkler and P. Popp (2000). "Solid-phase microextraction-
764	gas chromatography-mass spectrometry of biologically active substances in water
765	samples." Journal of Chromatography A 873(1): 95-106.
766	Moeder, M., S. Schrader, M. Winkler and P. Popp (2000). "Solid phase microextraction-
767	gas chromatography mass spectrometry of bioloigcally active substances in water
768	samples." Journal of Chromatography A 873: 95-106.
769	Morabito, R., P. Massanisso and P. Quevauviller (2000). "Derivatization methods for the
770	determination of organotin compounds in environmental samples." TrAC Trends
771	in Analytical Chemistry 19 (2-3): 113-119.
772	Moreno, M. J., J. Pacheco-Arjona, P. Rodríguez-González, H. Preud'Homme, D.
773	Amouroux and O. F. X. Donard (2006). "Simultaneous determination of
774	monomethylmercury, monobutyltin, dibutyltin and tributyltin in environmental
775	samples by multi-elemental-species-specific isotope dilution analysis using
776	electron ionisation GC-MS." Journal of Mass Spectrometry 41 (11): 1491-1497.
777	Moser, V., J. McGee and K. Ehman (2009). "Concentration and persistence of tin in rat
778	brain and blood following dibutylith exposure during development." Journal of
779	Toxicology and Environmental Health, Part A 72: 47-52.
780	Newcombe, C., A. Raab, P. N. Williams, C. Deacon, P. I. Haris, A. A. Meharg and J.
781	Feldmann (2010). "Accumulation or production of arsenobetaine in humans?"
782	Journal of Environmental Monitoring 12(4): 832-837.
783	Niessen, W. (2006). Liquid Chromatography-Mass Spectrometry. New York, New York,
784	Marcel Dekker, Inc.
785	Oudijk, G. (2010). "The Rise and Fall of Organometallic Additives in Automotive
786	Gasoline." Environmental Forensics 11: 17-49.
787	Owen, R. and R. Handy (2007). "Formulating the problems for environmental risk
788	assessment of nanomaterials." <u>Environmental Science and Technology</u> 41 (16):
789	5582-5588.

790 Petrovic, M., M. D. Hernando, M. S. Dlaz-Cruz and D. Barcel (2005)	. "Liquid
791 chromatography-tandem mass spectrometry for the analysis of p	harmaceutical
residues in environmental samples: a review." Journal of Chrom	
793 1067 (1-2): 1-14.	
794 Richardson, S. D. (2010). "Environmental Mass Spectrometry: Emergin	ng Contaminants
and Current Issues." <u>Analytical Chemistry</u> 82 (12): 4742-4774.	C
796 Rosenblatt-Farrell, N. (2009). "The landscape of antibiotic resistance."	Environmental
797 <u>Health Perspectives</u> 117 (6): A244-A250.	
798 Sano, T., H. Takagi, K. Nagano and M. Nishikawa (2010). "Analysis of	f triorganotin
compounds in water samples by hydrophilic interaction liquid c	
800 electrospray ionization-mass spectrometry." Journal of Chromat	ography A
801 1217 (26): 4344-4346.	
802 Schlüter, A., R. Szczepanowski, A. Pühler and E. Top (2007). "Genomi	ics of IncP-1
803 antibiotic resistance plasmids isolated from wastewater treatmer	
804 evidence for a widely accessible drug resistance gene pool." <u>FE</u>	
805 <u>Review</u> 31: 449-477.	
806 Schwartz, T., W. Kohnen, B. Jansen and U. Obst (2003). "Detection of	antibiotic-
807 resistant bacteria and their resistance genes in wastewater, surfa	
808 drinking water biofilms." <u>FEMS Microbiology Ecology</u> 43 (3): 3	
809 Segovia-Martínez, L., A. Bouzas-Blanco, P. Campíns-Falcó and A. Sec	
810 (2010). "Improving detection limits for organotin compounds in	
811 water samples by derivatization-headspace-solid-phase microex	
812 MS." <u>Talanta</u> 80 (5): 1888-1893.	
813 Siu, K. W. M., G. J. Gardner and S. S. Berman (1989). "Ion spray mass	
814 spectrometry/mass spectrometry: quantitation of tributyltin in a	
815 reference material for trace metals." <u>Analytical Chemistry</u> 61 (20	
816 Snyder, S., T. Keith, D. Verbrugge, E. Snyder, T. Gross, K. Kannan and	
817 "Analytical methods for detection of selected estrogenic compo	- · · ·
818 mixtures." Environmental Science and Toxicology 33 : 2814-282	*
819 Sousa, A., F. Laranjeiro, S. Takahashi, S. Tanabe and C. M. Barroso (20	
and organotin prevalence in a European post-legislative scenario	
821 from 2003 to 2008." <u>Chemosphere</u> 77 (4): 566-573.	1
822 Sun, Q., Z. Chen, D. Yuan, M. Megharaj and R. Naidu (2009). "On-line	e solid-phase
823 extraction coupled with liquid chromatography/electrospray ion	-
824 spectrometry for the determination of trace tributyltin and triphe	
825 samples." <u>Rapid Communications in Mass Spectrometry</u> 23 (23)	•
826 Szczepanowski, R., B. Linke, I. Krahn, KH. Gartemann, T. Gotzkow,	
827 Puhler and A. Schluter (2009). "Detection of 140 clinically relev	
828 resistance genes in the plasmid metagenome of wastewater treat	
829 bacteria showing reduced susceptibility to selected antibiotics."	
830 mic.0.028233-0.	
 830 mic.0.028233-0. 831 Ternes, T. (1998). "Occurrence of drugs in german sewage treatment pl 	ants and rivers."
831 Ternes, T. (1998). "Occurrence of drugs in german sewage treatment pl	ants and rivers."
 831 Ternes, T. (1998). "Occurrence of drugs in german sewage treatment pl 832 <u>Water Research</u> 32: 3245-3260. 	
831 Ternes, T. (1998). "Occurrence of drugs in german sewage treatment pl	tion of estrogens

836	Tessier, A. and D. R. Turner (1995). Metal speciation and bioavailability in aquatic
837	systems. Chichester, John Wiley.
838	Thomaidis, N., A. Stasinakis, G. Gatidou, R. Morabito, P. Massanisso and T. Lekkas
839	(2007). "Occurrence of Organotin Compounds in the Aquatic Environment of
840	Greece." Water, Air, & amp; Soil Pollution 181(1): 201-210.
841	USEPA (2008). 2006 Inventory Update Reporting: Data Summary. O. o. P. P. a. Toxics.
842	Washington D.C., U.S. EPA: 1-41.
843	USTC (1919). Census of Dyes and Coal-Tar Chemicals. <u>Tariff Information Series</u> . U. S.
844	T. Commission, United States Tariff Commission. 22: 110.
845	Vanderford, B., R. Pearson, D. Rexing and S. Snyder (2003). "Analysis of endocrine
846	disruptors, pharmaceuticals, and personal care products in water using liquid
847	chromatography/tandem mass spectrometry." <u>Analytical Chemistry</u> 75: 6265-
848	6274.
849	Wang, J. (2009). "Analysis of macrolide antibiotics, using liquid chromatography-mass
850	spectrometry, in food, biological and environmental matrices." Mass
851	Spectrometry Reviews 28(1): 50-92.
852	Watts, C. D., B. Crathorn, M. Fielding and C. P. Steel (1983). Identification of non-
853	volatile organics in water using field desorption mass spectrometry and high
854	performance and high performance liquid chromatography. Analysis of Organic
855	Micropollutants in Water: Proceedings of the Third European Symposium, Oslo,
856	Norway, D. Reidel Publishing Company.
857	Weinberg, H., A. Galyean and M. Leopold (2011). "Evaluating engineered nanoparticles
858	in natural waters." TrAC Trends in Analytical Chemistry 30(1): 72-83.
859	Woodrow, W. I. (2010). The Project on Emerging Nanotechnologies, Woodrow Wilson
860	Institute.
861	Yang, S., J. Cha and K. Carlson (2004). "Quantitative determination of trace
862	concentrations of tetracycline and sulfonamde antibiotics in surface water using
863	solid-phase extraction and liquid chromatography/ion trap tandem mass
864	spectrometry." Rapid Communications in Mass Spectrometry 18: 2131-2145.
865	Zhang, Y., C. Marrs, C. Simon and C. Xi (2009). "Wastewater treatment contributes to
866	selective increase of antibiotic resistance among Acinetobacter spp." Science of
867	the Total Environment 407 : 3702-3706.
868	
869	

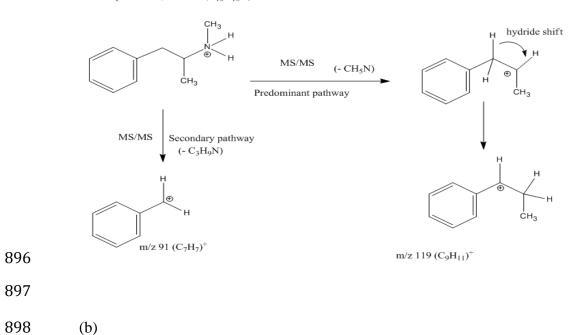
870 <u>Tables</u>

Table 1. Emerging Contaminant Subcategories, Classifications and Available AnalyticalMethods

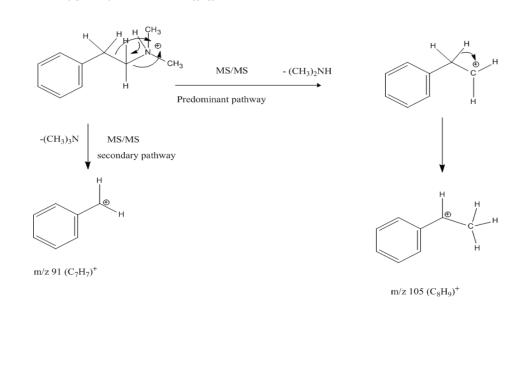
873 Table 1. Emerging Contaminant Subcategories, Classifications and Available Analytical Methods¹

874

Emerging Contaminant	Compounds included in
Subcategory	Emerging Contaminant Subcategory
Pharmaceuticals/Illicit	- Life style drugs
drugs	- Antidepressants
	- Hormone replacements and ovulation inhibitors
	- some antibacterials and antimicrobials
	- Prescription and over the counter human and veterinary medications
Personal Care Products	- Musks, some antibacterials and antimicrobials
	- Chemicals found in hygiene products
	- High usage in everyday household items
Steroids and Hormones	- anabolic agents
	- hormone replacements,
	- sex Hormones
	- ovulation inhibitors
	- Phytosterols and various other sterols
	- Moderate to high lifestyle and medicinal uses, some illicit uses
Surfactants	- Nonyl phenols
	- alkyl phenols
	- linear alkyl ethoxylates
	- ethoxylated sorbitan monoleates
	- ethoxylated sorbitan trioleates
Organometallics	- Medicinals
	- Fungicides
	- Molluscides
	- dyes
Nanomaterials	Antimicrobial/antivirals, makeup, sunscreen agents, imaging agents


875 876

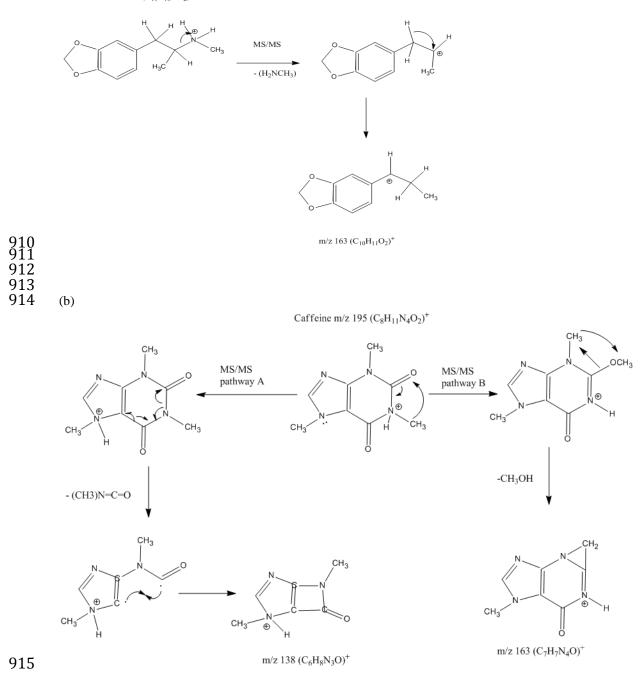
¹ The above table is not intended to be exhaustive. Original design of table courtesy Dr. Brian Englert, Greenguard
 Environmental Institute, Marietta, Georgia USA

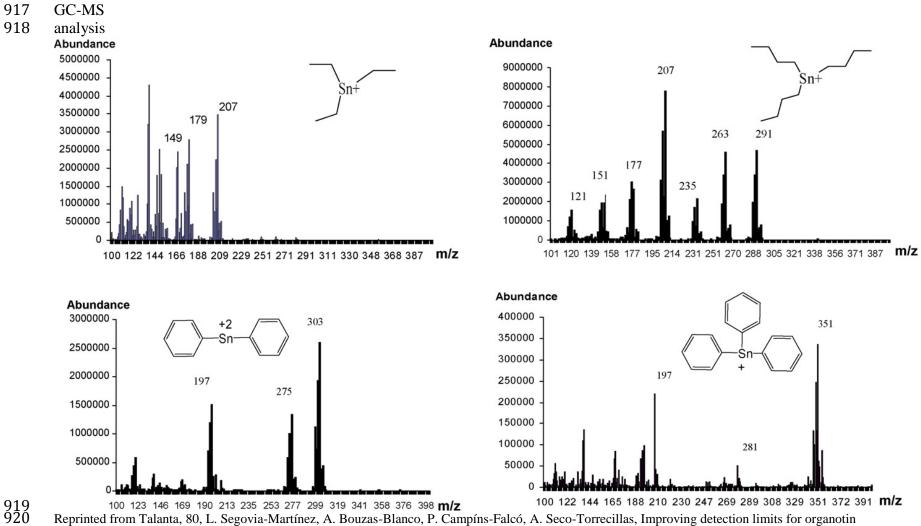

877 Figures		
878	1.	Precursor to product pathways: (a) methamphetamine and (b) DMPEA Jones-lepp
879	2.	Precursor to product pathways: (a) MDMA and (b) caffeine Jones-lepp
880	3.	Mass spectra of four organotin species: tetraethyltin, tributyltin, diphenyltin, and
881		triphenyltin obtained from derivatization and GC-MS analysis. Segovia-Martínez
882	4.	Mass spectra of diphenyltin obtained from LC-ESI-ITMS Jones-lepp
883	5.	Comparison of LC-ICP-MS/ESI-MS spectra of mass m/z 75, total arsenic, to
884		mass m/z 179 arsenobetaine. Newcombe
885	6.	Full-scan accurate mass spectrum (negative-ion mode) of metolachlor oxalinic
886		acid (metolachlor OA) detected in a groundwater sample (top) and a standard
887		solution (bottom). Hogenboom et al. 2009
888	7.	LC-ESI-MS chromatogram of several fullerenes. Isaacson 2007
889	8.	Toxicity testing well-plate. Jones-lepp
890	9.	Mass spectra and chromatograms of Dispersant A and well-plates
891		a. Standard of Dispersant A
892		b. Well-plate Dispersant A

- Figure 1. Precursor to product pathways: (a) methamphetamine and (b) DMPEA
- (a)

methamphetamine, m/z 150 (C10H16N)+

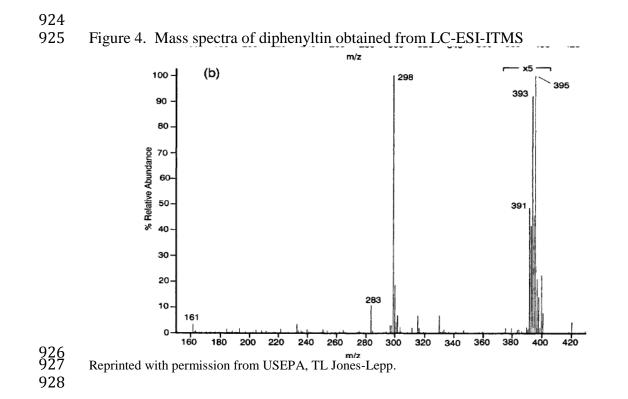
N,N'-dimethylphenethylamine, m/z 150 $\left(C_{10}H_{16}N\right)^{+}$

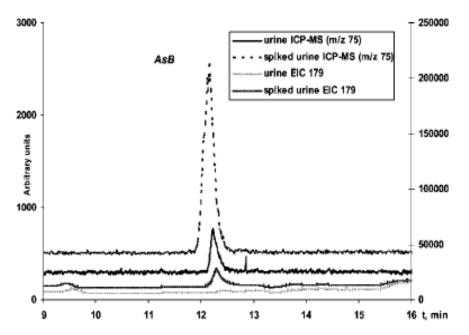



900

907 908 909 Figure 2. Precursor to product pathways: (a) MDMA and (b) caffeine

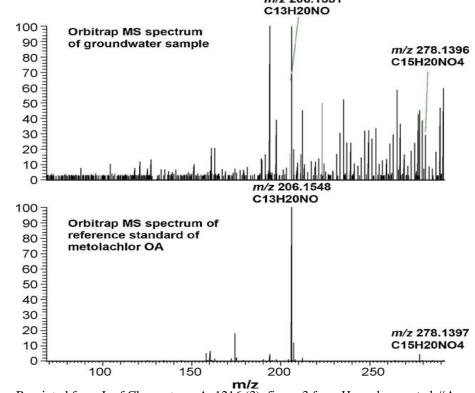
- (a)


MDMA m/z 194 (C₁₁H₁₆NO₂)⁺



916 Figure 3. Mass spectra of four organotin species: triethyltin, tributyltin, diphenyltin, and triphenyltin obtained from derivatization and

Reprinted from Talanta, 80, L. Segovia-Martínez, A. Bouzas-Blanco, P. Campíns-Falcó, A. Seco-Torrecillas, Improving detection limits for organotin compounds in several matrix water samples by derivatization-headspace-solid-phase microextraction and GC–MS figure 4, pgs. 1888–1893, 2010, with permission from Elsevier


930 Figure 5. Comparison of LC-ICP-MS/ESI-MS spectra of mass m/z 75, total arsenic, to mass m/z 179 arsenobetaine.

Reprinted from J. of Environmental Monitoring, figure 2 from Newcombe et al. "Accumulation or production of arsenobetaine in humans," 2010, 12, 832-837, with permission from Royal Society of Chemistry.

936

- 937 Figure 6. Full-scan accurate mass spectrum (negative-ion mode) of metolachlor oxalinic acid (metolachlor OA) detected in a
- 938 groundwater sample (top) and a standard solution (bottom). *m/z* 206.1551

Provide the second secon

943 944 Figure 7. LC-ESI-MS chromatogram of several fullerenes.

945

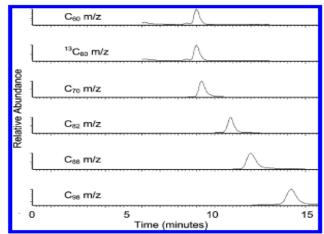
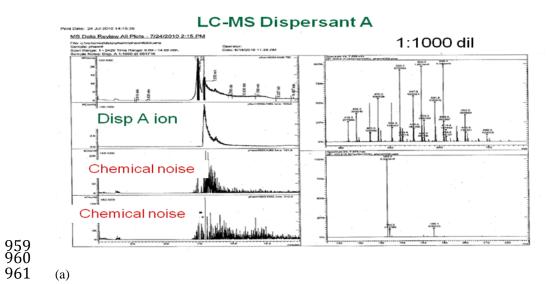
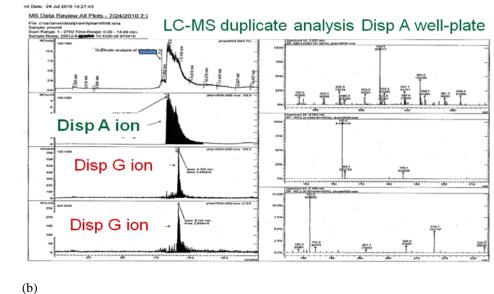


Figure 1. Selected LC/ESI-MS chromatograms in methanol/toluene (80:20) unless otherwise noted; including C60 (2 µg/L in zebrafish homogenate matrix), ¹³C₆₀ (10 µg/L in zebrafish homogenate matrix), C_{70} (10 μ g/L), C_{82} (3.4 μ g/L), C_{88} (2.5 μ g/L), and C_{88} (0.4 μ g/L). Additional fullerenes in higher-order mixture not shown.


946 947 948 949 950 Reprinted in part with permission from figure 1, Isaacson, C. W., C. Y. Usenko, et al. (2007). "Quantification of Fullerenes by LC/ESI-MS and Its Application to in Vivo Toxicity Assays." Analytical Chemistry 79(23): 9091-9097. Copyright 2007 American Chemical Society.

951 952 Figure 8. Toxicity testing well-plate 953



- 956 Figure 9. Mass spectra and chromatograms of Dispersant A and well-plates (a) Standard
- 957 of Dispersant A; (b) Well-plate Dispersant A
- 958

QA for Dispersant Toxicity Testing

QA for Dispersant Toxicity Testing cont.

