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Abstract Detailed, time-varying spatial fields of air contaminant concentrations
arc valuable to public health professionals secking to identify relationships be-
tween human health and ambient air quality, and policy makers interested in as-
sessing compliance with air quality regulations. In this paper PM,s fields are
created from a linear model that predicts PM,s at unmonitored grid points from
observed PM,s concentrations, CMAQ model outputs, and satellite estimates of
aerosol optical density. The dimensionality of the input data set is first reduced
using projection onto latent structures. Parameters of the linear model are mapped
to the CMAQ model domain, permitting estimation of PM,s at unmonitored sites.

Introduction

Air quality observations are available in the US on a temporally dense but spatial-
ly sparse basis. To achieve additional spatial density, observations have been in-
tegrated (fused) with outputs of numerical air quality models. A more recent de-
velopment is the integration of satellite data, used as proxies for ambient
concentrations, into fused maps.

Viable integration techniques address the bias of model outputs and efficiently
make use of the vast amount of available information. Here fused maps were
created with Projection onto Latent Structures, also known as partial least-squares
regression (PLSR). PLSR is a multivariate regression tool in which a response
matrix (Y) is predicted from a matrix of predictors (X). With PLSR, the predic-
tors (X) may be numerous (much greater than the dimension of Y), and correlated
with each other (Wold etal, 2001, Trygg and Wold, 2002, Smoliak et al. 2010).
The purpose of this paper is to present a technique for producing maps of ambient
concentrations from these three sources of information.
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Methods

The data used for this study were extracted from the Remote Sensing Information
Gateway (RSIG, USEPA, 2010)). The goal of RSIG. an interactive web browser-
based application hosted by the United States Environmental Protection Agency
(USEPA). is to support researcher and analyst data gathering needs (sharing, visu-
alization, and analysis), to extend air quality research and management to the larg-
er air quality community. In addition to satellite data, RSIG hosts air quality ob-
servations and air quality model outputs. Multiple datasets can be visualized at
the same time and downloaded. RSIG provides users the ability to integrate vari-
ous data sets across different time and space scales. A valuable RSIG option is the
display of different datasets on the CMAQ model grid.

We created fused maps of daily averaged PM,s concentrations for the period 1
June 2006 to 31 December 2006 for the eastern U.S. at a resolution of 12 km.
PM,s concentrations at AIRS sites with continuous PM,; monitors were down-
loaded from RSIG. Sites 80% complete for the period of interest were retained
(103 sites). Hourly community Multiscale Air Quality (CMAQ) model estimates
of PM,s concentrations for the surface layer, and GOES EAST Aerosol/Smoke
Product (GASP) Aerosol Optical Depth (AOD) remotely sensed (satellite) signals
were also extracted from the RSIG site. Daily averages were formed from the
hourly data. Data details can be found at the RSIG web site (USEPA, 2010).

The AIRS PM,;s sites were randomly divided into 18 ‘predictor® and 85 ‘response’
sets. The AIRS ‘predictor’ set, together with CMAQ and GASP, form X. The
AIRS ‘response’ set forms Y. The dimension of X was reduced using PLSR
(Matlab PLS function). PLSR transforms the numerous correlated predictors into
a limited set of orthogonal (uncorrelated) latent structures defined to both capture
X variability and best explain the Y response. PLSR is similar to principal com-
ponent analysis (PCA) in that the dimension of a set of variables is reduced to a
smaller orthogonal set. The goal of PLSR, prediction of Y, differs from the goal
of PCA, which is to predict X without consideration of any response variable Y.

Following the detailed description of PLSR found in Wold etal (2001), the set of
predictor variables is expressed as the product of ‘scores’ and ‘loads’:
X=Xse X; + E, X=predictor matrix 1
X dimension = N, (number of time steps) x Nx (number of predictors)
Xs = X Scores [dimension = N, X N, (number of latent variables)]
X1, = X Loads [dimension = Ny, x Nx]
E = portion of X not explained by Xs e X,

A few X scores explain X (N, << N,) and can be expressed as a linear combina-
tion of X:

Xs=Xe W, W =setof constants 2)



The response variable is predicted by Xg and the Y loads (Yy):
Y=Xseo Y, +F, F=Y variability not explained by the model 3
and Yy, is found from:
Y=XeWeY,, Y=XeB, B=WeY (4)
Fused maps were created as follows:
1. estimate the B coefficients at monitored grid points
2. map the B coefficients over the entire domain with a 2D cubic spline
3. estimate Y at unmonitored grids using the mapped B coefficients:
Y  (uomonitored grid) = X e (mapping)
5)
where X is the collection of CMAQ, GASP, and AIRS time series described
above. For our application, the model can also be written:
Y=B0+B1.XI+Bz.X2+B3.X3 (6)
Where Y is one of the 85 AIRS = sow o
sites in the response set (time se-
ries of 214 daily mean PM;s), X,
consists of the other 18 AIRS
sites (prediction set), X, =
GASP, 3x3 neighborhood of the
monitored grid (9 time series),
and X; are time series in a
CMAQ 3x3 neighborhood of the

monitored (Y) grid (9 time series). Figure 1. Fused map (36 predictors/
5 latent variables)

The map is created from:

(unmonitored grid) = X ° (mapping)
Y]

Results and Discussion

Figure 1 shows X (GASP, CMAQ and AIRS) and the fused map for 1 July 2006.
== Leave one out’ cross-validation ex-
T e amples in Figures 2 and 3 show
good agreement and poor agree-
ment, respectively. Overall, cross-
validation results summarized in
Table 1 are not terribly impressive
Vo ; | but are to be expected given the
TETTEh® e s gparse network of observations that
Figure 2. Example of ‘good’ form the basis of the map.
cross-validation result (R? 0.80)
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Summary

PLSR can be used to reduce the dimension of the very large correlated set of ex-
planatory variables represented by observations, CMAQ, and remotely sensed in-
e T L] i formation. Fused maps produced
coopeptze==d by PLSR have relief derived from
-] spatially dense CMAQ and satel-
.1 lite information. PLSR prediction
performance in this study is Ii-
mited by the sparse PM,s network
utilized. Improvements might ac-

I ) : crue from expansion of the set of
. predictor variables to other

Figure 3. Example of ‘poor’ cross-validation CMAQ layers, other remotely
result (R? 0.16) sensed parameters, and derived
variables.

Table 1. Cross-validation results (5 latent vectors)

predictors number of relative relative R?
predictor grids RMSE mean bias
GASP 9 (3x3) 0.63 0.48 0.03
CMAQ 9 (3x3) 0.48 048 0.02
CMAQ 36 (3x3) 0.58 0.44 0.21
GASP (3%3)
AIRS (18 sites)
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Question and Answer

Akula Venkatram: Does your method for combining model results with observa-
tions improve upon a purely statistical technique such as Kriging of observations.
P. Steven Porter: Kriged maps are too smooth for our purposes.

Jeremy Silver: How do you think the maps would look if the satellite data did not
have areas missing due to cloudiness?

P. Steven Porter: Missing data are an important issue with GASP data. A signifi-
cant effort goes into preprocessing, including filling-in missing values. The maps
would undoubtedly look different with complete satellite information.



