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Assessing the potential threat of fecal contamination in surface water often depends on
model forecasts which assume that fecal indicator bacteria (FIB, a proxy for the concen-
tration of pathogens found in fecal contamination from warm-blooded animals) are lost or
removed from the water column at a certain rate (often referred to as an “inactivation”
rate). In efforts to reduce human health risks in these water bodies, regulators enforce
limits on easily-measured FIB concentrations, commonly reported as most probable
number (MPN) and colony forming unit (CFU) values. Accurate assessment of the potential
threat of fecal contamination, therefore, depends on propagating uncertainty surrounding
“true” FIB concentrations into MPN and CFU values, inactivation rates, model forecasts,
and management decisions. Here, we explore how empirical relationships between FIB
inactivation rates and extrinsic factors might vary depending on how uncertainty in MPN
values is expressed. Using water samples collected from the Neuse River Estuary (NRE) in
eastern North Carolina, we compare Escherichia coli (EC) and Enterococcus (ENT) dark inac-
tivation rates derived from two statistical models of first-order loss; a conventional model
employing ordinary least-squares (OLS) regression with MPN values, and a novel Bayesian
model utilizing the pattern of positive wells in an IDEXX Quanti-Tray®/2000 test. While our
results suggest that EC dark inactivation rates tend to decrease as initial EC concentrations
decrease and that ENT dark inactivation rates are relatively consistent across different ENT
concentrations, we find these relationships depend upon model selection and model
calibration procedures. We also find that our proposed Bayesian model provides a more
defensible approach to quantifying uncertainty in microbiological assessments of water
quality than the conventional MPN-based model, and that our proposed model represents
a new strategy for developing robust relationships between environmental factors and FIB
inactivation rates, and for reducing uncertainty in water resource management decisions.

© 2010 Published by Elsevier Ltd.

1.

Introduction

et al,, 1993; Ghinsberg et al., 1994). Roughly 20% of all total
maximum daily load (TMDL) assessments approved by the

Fecal contamination is a leading cause of surface water United States Environmental Protection Agency (USEPA) since
quality degradation in the United States (Mostaghimi et al., 1995, for example, address water bodies with unacceptably
2002; Noble et al., 2003a) and throughout the world (Ashbolt high fecal indicator bacteria (FIB) concentrations (a proxy for
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Nomenclature

Bi binomial distribution

No normal distribution

Po Poisson distribution

St Student distribution

C, Ct fecal indicator bacteria concentration at time t
(organisms per 100 ml)

Co fecal indicator bacteria concentration at time t =0
(organisms per 100 ml)

I index of dilution series number

k, kK’ first-order bacteria dark inactivation or loss rate
(1/day)

Ln natural logarithm

N number of wells in a dilution series

P probability of a positive well in a dilution series

t time (days)

Y volume of each well in a dilution series
experiment (ml)
y number of positive wells in a dilution series

Greek letters
¢, € model residual error terms

A mean and variance of the Poisson probability
distribution

u location parameter in Student (St) probability
distribution

v degrees of freedom in Student (St) probability
distribution
prior probability distribution

g, d standard deviation of ¢, € (In organisms per
100 ml)

T scale parameter in Student (St) probability
distribution

the measurement of fecal contamination-associated patho-
gens), the highest percentage of any pollutant category (for
more on the TMDL program, see National Research Council,
2001).

Fecal contamination water quality assessments (within the
context of the TMDL program and similar comprehensive
water resource management programs) typically compare
model-derived (or measured) FIB concentrations in a water
body to a set of health risk-based numeric water quality
standards (Benham et al., 2006; Gronewold et al., 2008). Models
supporting these assessments play a critical role by helping
managers understand the potential threat waterborne path-
ogens pose to human health. This is true even for very simple
models, such as those for calculating a geometric mean or
90th percentile, as outlined in the Food and Drug
Administration and Interstate  Shellfish  Sanitation
Conference (2005) proceedings and discussed further in
Boehm et al. (2009). In addition, models provide the founda-
tion for large-scale management decisions, such as whether
or not to restrict access to a water body, or the extent to which
pollutant loading levels must be reduced (through best
management practices associated with the TMDL process, for
example) so that receiving water bodies will comply with
pertinent water quality standards.

Methodological variability associated with FIB concentra-
tion quantification methods is well-documented (see, for
example Griffin et al., 2001; Noble et al., 2003b; McBride, 2003;
Gronewold and Wolpert, 2008) and, along with other extrinsic
factors, can have a significant impact on a water quality-
based management actions. Fully understanding and
acknowledging these sources of variability represents an
important step towards generating robust management
decisions, such as the closing of a shellfish harvesting area or
beach. More importantly, when uncertainty and variability
are ignored or incorrectly quantified, they may lead to either
overly-conservative management decisions, such as the
closure of a beach or shellfish harvesting area when no true
threat exists, or inadequate management interventions
leading, perhaps, to human illness or the outbreak of disease.

Models that appropriately propagate uncertainty and vari-
ability from monitoring observations and environmental
phenomena into water quality forecasts, therefore, could
lead to more robust water resource management decisions,
alleviate the need for intensive water quality sampling, and
minimize detrimental impacts on human health. Models
which fail to account for these potential sources of variability
may lead to decisions with unfortunate human health
consequences, and are therefore of limited practical use to
water resource managers. We know of no studies, however,
which perform a retrospective analysis of the strength of the
relationship between model-based FIB concentration fore-
casts and actual human illness derived from contact with
contaminated water. We believe this type of comparison
would provide critical information towards improving
model-based management decisions, and should be pursued
in future research.

1.1. FIB inactivation rates and the first-order loss model

Models used to support FIB water quality assessments often
include a parameter reflecting the effective rate of FIB loss
over time due to natural die-off, settling, and other factors
(Auer and Niehaus, 1993; Ferguson et al., 2003). The magnitude
of this rate, and its relationship to extrinsic factors, is typically
assessed by calibrating a first-order loss model (see Section
2.4) using FIB concentration data collected in a controlled (e.g.
laboratory) setting. Other model structures (second-order, for
example) could be used, such as those discussed in Borsuk
and Stow (2000) and Huang and McBean (2007). Here, we
focus on the first-order loss model because it is commonly
applied in FIB dark (i.e. in the absence of sunlight) inactivation
rate studies, and because it provides an ideal template for us
to explore alternative approaches to quantifying uncertainty.

In addition to Auer and Niehaus (1993) and Ferguson et al.
(2003), Sinton et al. (1999) and Noble et al. (2004) suggest that
FIB inactivation rates (also referred to as a “die-off” or “decay”
rate) vary under different environmental conditions,
including solar radiation, and water temperature (from here



http://dx.doi.org/10.1016/j.watres.2010.08.029
http://dx.doi.org/10.1016/j.watres.2010.08.029

forward, we refer to this rate as an “inactivation” rate). FIB
inactivation rate variability in response to other factors,
however, including initial FIB concentration and water
column depth, is not as well-understood, and has been rec-
ommended as an area for future research. An implicit and
more general objective of these studies, however, is to incor-
porate inactivation rates into comprehensive models with
“real-world” data to forecast future FIB concentration
dynamics over broad spatial (e.g. estuarine) and temporal (e.g.
multiple years) scales. Despite this goal, documented inacti-
vation rates (Bowie et al., 1985, for example) are rarely
accompanied by an indication of the structure (e.g. first- or
second-order) or performance (assessed, perhaps, through
model confirmation) of the calibration model from which they
were derived (Gronewold et al., 2009). This common oversight
is particularly problematic because the calibration model may
not be an appropriate representation of FIB concentration
dynamics, leading to inaccurate estimates of inactivation rate
magnitude and variability which could then propagate into
undesired uncertainty and variability in “real-world” model
applications.

1.2.  FIB measurement uncertainty and variability

The two most common FIB concentration metrics are the
most probable number (MPN) and the colony-forming unit
(CFU). MPN and CFU values, when used to calibrate FIB inac-
tivation rate models (such as the first-order loss model),
contribute to variability in inactivation rate estimates and to
discrepancies and model-predicted
concentration values (i.e. model error) in different ways due to
unique intrinsic sources of bias and variability associated with
MPN- and CFU-based testing procedures. Here, we focus on
uncertainty and variability in MPN values alone. For more on
addressing CFU value variability and incorporating it into FIB
water quality models, see Gronewold et al. (2009).

There are a variety of MPN-based testing procedures,
however the two most common for quantifying FIB concen-
trations are multiple-tube fermentation and chromogenic
substrate tests. MPN values derived from these procedures are
known to be positively biased (Garthright, 1993,1997) and have
varying degrees of uncertainty depending on the design of the
testing procedure, such as the number and volume of wells or
tubes in a dilution series. Furthermore, each procedure can
yield multiple sets of “raw” data (such as the pattern of posi-
tive wells in a dilution series) which, while leading to the same
MPN value, might imply very different uncertainty bounds on
the value of the “true” FIB concentration. Put differently, the
“raw” data from an MPN-based experiment includes all of the
information needed to quantify uncertainty and variability in
the FIB concentration and to calculate an MPN value. Unfor-
tunately, water quality scientists commonly report only MPN
values, an approach which effectively discards valuable
uncertainty and variability information contained in the “raw”
data (Woodward, 1957; McBride, 2003).

Here, we explore ways to improve the estimation and
representation of FIB inactivation rates for the purpose of
increased accuracy in water quality management decisions.
In the following section, we describe our approach to collect-
ing and analyzing water quality data from an estuary in

between observed

eastern North Carolina. We then present a novel Bayesian
model calibration procedure for quantifying FIB inactivation
rates in estuarine waters, and explore the effect of potential
extrinsic and intrinsic factors, including uncertainty in
monitoring data, environmental conditions, and specific
members of the FIB group being studied. We then compare the
results of our proposed Bayesian model to those from a more
conventional regression analysis, and conduct a model
confirmation procedure (commonly referred to as a validation
procedure) to assess model performance.

2. Methods
2.1.  Monitoring plan and site description

Our study area is the Neuse River Estuary (NRE) near the city of
New Bern in eastern North Carolina (NC). This area has been
intensively studied and is selected for this study because it
has historically high FIB concentrations relative to other sites
in the NRE (Fries et al., 2006). The NRE is a typical Atlantic,
lagoonal, largely wind-mixed estuary, and the water quality in
the upper NRE is of economic and recreational importance to
the surrounding area (Borsuk et al., 2001). Previous studies
have indicated that NRE water quality suffers from anthro-
pogenic FIB loading through stormwater runoff and upstream
fecal contamination sources (Fries et al., 2006,2008).

2.2.  Sample collection and inoculation

In order to assess dark inactivation rates of FIB populations at
different concentrations, we inoculated environmental
samples (i.e. collected in situ) from the NRE using inocula of
influent from a nearby sewage treatment plant to achieve two
different initial (i.e. post-inoculation) concentrations: 1)
a “high” concentration (approximating a spill from a sewage
treatment plant, for example), and 2) a “moderate” concen-
tration approximating chronic stormwater runoff or a similar
pollutant loading source.

Morehead City Wastewater Treatment Plant (MCWWTP)
influent was collected in order to inoculate the environmental
NRE samples. To enumerate FIB concentrations in the
influent, duplicate 1.0 ml aliquots were diluted 100-fold along
a four-point serial dilution. Escherichia coli (EC) and Enterococcus
(ENT) concentrations (in organisms per 100 ml) were deter-
mined from a 100 ml diluted sample using appropriate IDEXX
media and the IDEXX Quanti-Tray®/2000 kit (see Section 2.3
for details). The estimated MCWWTP influent FIB concentra-
tion was then used to calculate the appropriate volume of
influent to inoculate water samples in an effort to achieve
“target” final (post-inoculation) ENT concentrations of 3000
(“high”) and 300 (“moderate”) organisms per 100 ml.

Environmental grab samples (5 L each) were collected from
both the surface and bottom water of the NRE study site on
three dates (August 6, September 17, and October 16) in 2007.
Three 1-L subsamples were poured from each sample, and
placed in separate 1 L polycarbonate Nalgene bottles. Two of
the three 1 L subsamples were inoculated with MCWWTP
influent to achieve target concentrations. The third 1 L sample
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from each set was not inoculated with MCWWTP influent, and
isreferred to as the sample with a “baseline” FIB concentration.

After inoculation, each 1 L subsample was evenly split into
two 500 ml subsamples which were then incubated in the dark
at temperatures comparable to those in ambient NRE waters
(22—28 °C), and individually shaken and uncapped to simulate
environmental mixing and aeration every 8h thereafter.
Finally, water from the 500 ml subsamples was tested (as
described in the following section) for EC and ENT concen-
trations (in organisms per 100 ml) at time intervals of roughly
0, 1, 2, and 3 days post-inoculation.

2.3. Sample enumeration

EC and ENT concentrations were quantified using the IDEXX
Quanti-Tray®/2000 chromogenic substrate test (CST) kit with
Colilert®-18 and Enterolert™ media. To ensure that FIB
concentrations did not exceed the upper bound of the IDEXX
Quanti-Tray®/2000 test (i.e. a test result with all positive wells
in both dilution series), we followed manufacturer’s recom-
mendations for implementing a 1:10 dilution factor by
extracting duplicate 10.0 ml aliquots from each subsample
and pipetting them into IDEXX 100 ml polycarbonate bottles
containing 90 ml of deionized (DI) water and either Colilert®-
18 and Enterolert™ media. Each bottle was shaken 25 times to
ensure that the media was completely dissolved. The liquid
was poured into an IDEXX Quanti-Tray/2000 tray, and the tray
was sealed. Then, the trays containing the sample and the
dissolved Colilert®-18 and Enterolert™ media were incubated
at 35 °C for 18 h, and 41 °C for 24 h, respectively. “Raw” data,
including the numbers of positive small and large wells for
each set of trays, and the dilution factor (in this study, a dilu-
tion factor of 10 was used for all samples) was recorded
according to manufacturer’s instructions. Finally, the number
of positive large and small wells, along with the applicable
dilution factor, were used to calculate the MPN (in organisms
per 100 ml) for EC, ENT, and total coliforms. Total coliform
results, however, were not used in this study.

2.4. Model calibration

FIB inactivation rates are often quantified by calibrating the
following well-known first-order loss model (Fischer, 1979;
Thomann and Mueller, 1987, pp. 145-147 and 56-59,
respectively:)

dc
Fiin
Inc=Incy —k xt

—kec, c(t=0)=c(0)=co )

where c=c; is the “true” (but unobserved) FIB concentration
(in organisms per 100 ml) at time t (in days), ¢ is the “true” FIB
concentration at time t =0 (also in organisms per 100 ml), and
k (in 1/days) is the first-order loss (or inactivation) rate. Here,
we use k to represent FIB dark inactivation. In the following
sections, we describe the two procedures used to calibrate this
model.

2.4.1. Conventional MPN-based approach
In the conventional MPN-based calibration approach, we assume
(following common practice) that EC and ENT MPN values (in

organisms per 100 ml) are interchangeable with the “true” FIB
concentration c, leading to the following calibration model:

InMPN; =Incy — k x t + ¢ 2

ee~No(0,0) (3)

where MPN; represents the average MPN (based, in our
study, on the average of two split samples) at each time step.

The model in equations (4) and (5) reflects the common
assumption that discrepancies between the expected and
observed values of the (logarithm of the) MPN can be described
by a normally-distributed error term e (with mean 0 and
standard deviation ¢). Although our calibration procedure
allows different values of k and ¢, for each experiment, we use
subscripts in equations (4) and (5) to differentiate between
times t after inoculation only (for clarity).

We estimate k and ¢ in equations (4) and (5) using a clas-
sical ordinary-least squares (OLS) regression procedure (for
more on OLS regression, see Weisberg, 2005) in the Im package
Chapter 4 (Chambers and Hastie, 1991: Chapter 4) in the
statistical software program R (lhaka and Gentleman, 1996).

2.4.2. Proposed “raw” data-based approach

In our proposed “raw” data-based approach, we deliberately
avoid calculating or using MPN values, and instead consider the
pattern of positive wells from the IDEXX Quanti-Tray®/2000
test kit as data (hereafter referred to as “raw” data). In this
approach, we calibrate the first-order loss model by assuming
(following Hurley and Roscoe, 1983; McBride, 2003) that the
number of positive wells in each dilution series of an IDEXX
Quanti-Tray®/2000 test kit are independent binomial random
variables, y; ~ Bi(n;, p;), where (in dilution series i from any
given sample) y; is the number of positive wells, n; is the total
number of wells, p; = 1 — e(~%i/19) js the probability of a positive
well, ¢ (in organisms per 100 ml) is the “true” but unobserved
FIB concentration, and v; is the volume (in ml) of each well in
dilution series i. For the IDEXX Quanti-Tray®/2000 kit, i € {1, 2},
n, = 49, n, = 48, v; = 1.86 ml, and v, = 0.186 ml. These
assumptions, when combined with equation (1), lead to the
following calibration model (for clarity, subscripts differentiate
only between dilution series i and times t after inoculation):

ytt|ni7pi,t~Bi<niapi.t) 4)
pi.t —1— e*C[U‘/].OO (5)
Inc, =Inc, — K x t+¢ (6)
¢, ~No(0, ') )

where € is a normally-distributed error term with mean 0 and
standard deviation ¢'.

The rationale for equations (6) through (9), and for dis-Q1

tinguishing a “raw” data-based model from the conventional
MPN-based model, can be explained, in part, through the
graphical model in Fig. 1. This graphical model reflects the
assumed relationship between the FIB concentration c¢ in
a sample at time t, the dark inactivation rate (k, k'), the asso-
ciated pattern of positive wells ( y; and y,) given ¢, and an MPN
value. The variables and parameters included in our proposed
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Fig. 1 — Graphical representation of first-order FIBloss model
and the IDEXX Quanti-Tray®/2000 procedure. Dashed lines
bound variables and parameters (both ovals) and constants
(rectangles) in our proposed “raw” data-based model
equations (6)—(9), while the shaded regions include
variables, parameters, and constants in the conventional
MPN-based model equations (4) and (5). Single-lined arrows
lead to stochastic (i.e. defined by a probability distribution)
model variables and parameters, while double-lined arrows
lead to deterministic model variables.

“raw” data-based calibration model are bounded by dashed
lines in Fig. 1, while those included in the conventional MPN-
based calibration model are shaded. In particular, Fig. 1 indi-
cates how our proposed “raw” data-based procedure infers the
dark inactivation rate (k') by first quantifying uncertainty in
the true but unobserved FIB concentration c. In contrast, the
dark inactivation rate derived from the conventional MPN-
based procedure (k) is based on an assumption that the MPN
and c are interchangeable.

We encode equations (4)—(7) within a Bayesian framework
(for more on Bayesian statistics, see Berry, 1996; Bolstad, 2004),
an approach which allows us to utilize all of the “raw” data
from a serial dilution experiment and to express the number of
positive wellsin a dilution series as abinomial random variable
(equations (4) and (5)). Encoding equations (6)—(9) in a Bayesian
framework also allows us to infer the FIB dark inactivation rate
(k") by combining a priori beliefs with empirical evidence using
Bayes’ theorem (Bayes 1763). In this approach, a priori beliefs
regarding potential values of k' are expressed through a prior
probability distribution, w(k’), while values of k' supported by
empirical evidence are expressed through a likelihood func-
tion. Bayes’ theorem combines these two sources of informa-
tion into a posterior probability distribution.

Here, we specify an informative prior probability distri-
bution for k' drawing from documented values in previous
FIB inactivation rate studies (Bowie et al., 1985). Using these
historic values as a guide to likely values of k/, we choose
a Student (St) prior distribution, w(k’) ~ St(u, 7, v), with loca-
tion u = 0.15, scale = = 1, and degrees of freedom » = 3. The
Student (St) distribution (Bernardo and Smith, 1994, pp.
122-123), particularly when compared to more common
prior probability distributions, is ideal for our study because

it reflects the range of previously documented inactivation
rates and accommodates potential values which might be
supported by our analysis (including both very high and
negative inactivation rates).

We estimate k' and ¢’ in equations (8) and (9) by simulating
samples from their respective posterior distributions (for
definitions, see Press, 2003); Bolstad 2004; Chapter 4 and
Section 4.6, respectively) using Markov chain Monte Carlo
(MCMC) procedures in the software program WinBUGS (Lunn
et al, 2000). We ran each MCMC chain until it reached
convergence, indicated by a potential scale reduction factor
R = 1.0 (Gelman et al., 2004, pg. 297). Computer code for our
Bayesian model is included in the appendix.

2.5.  Model confirmation

We evaluate the predictive performance of the conventional
MPN-based model and our proposed “raw” data-based model
using a “leave-one-out” cross-confirmation procedure (for
details, see Efron and Tibshirani, 1993, pps. 240—241). We
recognize that while this procedure is commonly referred to
as validation, we prefer the term confirmation, since valida-
tion implies an ascertainment of truth, and only applies when
the model is compared to independent observations (Reckhow
and Chapra, 1983).

To confirm the MPN-based model, we begin by using the
“leave-one-out”’-based parameter sets to predict MPN values at
each time step. This approach is based on the common
assumption that the MPN-based model, because it is calibrated
using MPN values from the IDEXX Quanti-Tray®/2000 procedure,
implicitly predicts MPN values (as opposed to FIB concentration
values or CFU values). We then construct 95% prediction intervals
(Weisberg, 2005) for each MPN value using the 0.025 and 0.975
quantiles of the predictive probability distribution implied by the
model in equation (5). Finally, we calculate the fraction of
observed MPN values within each interval.

We confirm our proposed “raw” data-based model by
following the logic of equations (6)—(9). First, we use the “leave-
one-out” parameter sets to simulate 10,000 samples from the
FIB concentration (c) probability distribution (equations (6) and
(7)) at each time step t. We then simulate the pattern of positive
wells (y1, 1, V2, 1) from an IDEXX Quanti-Tray®/2000 procedure
(equations (6) and (7)) for each simulated sample and calculate
the MPN value following (Woodward, 1957; Hurley and Roscoe,
1983). Using the 10,000 simulated MPN values for each time tin
each experiment we then construct a 95% MPN prediction set
which, following Gronewold and Wolpert (2008), is defined as
the set of highest probability MPN values for which the
cumulative probability mass is at least 0.95. Finally, we
calculate the fraction of observed MPN values which coincide
with each discrete 95% prediction set.

3. Results

3.1. FIB concentration analysis and inactivation rate
assessment

Our water quality analysis results indicate that inoculated
samples corresponding to “high” and “moderate” EC and ENT


http://dx.doi.org/10.1016/j.watres.2010.08.029
http://dx.doi.org/10.1016/j.watres.2010.08.029
Original text:
Inserted Text
 through 

Original text:
Inserted Text
 through 

Original text:
Inserted Text
 through 


concentrations decrease at rates approximately represented
by a log-linear model, although the rate of decrease appears
greater for higher starting concentrations (first and fourth
rows in Fig. 2). Dynamics for relatively low EC and ENT
concentrations, however, are less clear, in part because the
rate of change appears to fluctuate across different sampling
dates, and in part because the uncertainty in monitoring data
is more pronounced at low concentrations (third and sixth
rows in Fig. 2). We also note that the native bacteria organisms

in the baseline sample may be from a different population
than those in the “high” and “moderate” concentration
samples, and that this difference may limit our comparison
between the corresponding inactivation rates.

Our inactivation rate assessment (i.e. model calibration)
results (Fig. 3) indicate that EC dark inactivation rates (left two
panels) decrease as initial EC concentration decreases, and
this relationship is consistent across sample depth and
between the two model calibration procedures. In particular,
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Fig. 2 — EC (top 3 rows) and ENT (bottom 3 rows) MPN values (in organisms per 100 ml) at times t (days) after inoculation.
Rows within each FIB type correspond to “high”, “moderate”, or “baseline” post-inoculation concentrations. Columns
correspond to months when in situ samples were collected from the NRE. Samples collected from the surface are
represented by red circles. Samples collected from the bottom are represented by blue triangles. Split samples are
distinguished as sample A (hollow shapes) and sample B (filled shapes).
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our results indicate that EC dark inactivation rates are likely to
be negative at concentrations at or below approximately
30—-50 organisms per 100 ml (suggesting the potential for
sustained populations or regrowth at low concentrations). Our
results also indicate that the “raw” data-based model leads to
slightly narrower credible interval estimates for EC dark
inactivation rates (black horizontal lines) when compared to
confidence intervals derived from the conventional MPN-
based model (grey horizontal lines).

The relationship between ENT dark inactivation rates (right
panels in Fig. 3) and initial concentration, depth, and model
selection is not as clear. Most noticeably, our results indicate
that the magnitude and uncertainty associated with ENT dark
inactivation rate estimates depends on the model from which
the estimate was derived. In particular, uncertainty in ENT
dark inactivation rates derived from the MPN-based model
(grey lines) is relatively consistent across all extrinsic factors,
while the uncertainty in estimated ENT dark inactivation rates
derived from our “raw” data-based model (black lines)
increases as FIB concentration decreases. Furthermore, while
our results do not indicate a significant overall trend in the
magnitude of ENT dark inactivation rates relative to initial ENT

concentration, they do indicate that ENT dark inactivation
rates derived from the conventional MPN-based model may be
significantly lower at ENT concentrations close to 1 organism
per 100 ml when compared to higher ENT concentrations.

Finally, our results indicate that the two calibration models
lead to very different estimates of model residual standard
deviation (s, ¢’) and that the magnitude of the difference
depends on which FIB organism is studied (Fig. 4). For
example, the residual standard deviation in the MPN-based
model ranged between 0.72 and 1.1 when using EC data (grey
lines in top panel, Fig. 4) and between 0.75 and 1.15 when
using ENT data (grey lines in bottom panel, Fig. 4). The residual
standard deviation in the “raw” data-based model, mean-
while, ranged between 0.6 and 0.96 when using EC data (black
lines in top panel, Fig. 4) and between 0.12 and 0.35 using ENT
data (black lines in bottom panel, Fig. 4).

3.2.  Model confirmation
Model confirmation results for 20 representative EC samples

are presented in Fig. 5, which compares EC MPN values (circles
in Fig. 5 with duplicates, if analyzed, distinguished by color)
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Fig. 4 — 95% (thin lines) and 50% (thick lines) intervals for
model residual standard deviation (¢) from the “raw” data-
based model (black lines) and the conventional MPN-based
model (grey lines). Results are presented separately for
models calibrated to EC data (top panel) and ENT data
(bottom panel).

with cross-confirmation 95% confidence intervals derived
from the MPN-based model (left-hand panel) and 95%
prediction sets derived from the “raw” data-based (i.e.Baye-
sian) model (right-hand panel). Sample 1, for example, which
was not analyzed in duplicate, yielded an MPN value of 31
organisms per 100 ml (bottom blue dot in both panels of Fig. 5)
which is within the 95% prediction intervals derived from the
conventional MPN-based model, and coincides with an MPN

Conventional MPN-based model

value in the 95% prediction set derived from the “raw” data-
based model.

Of the 137 samples analyzed (72 samples, 65 analyzed in
duplicate) for both EC and ENT concentration, 118 (86%) EC
MPN values and 124 (91%) ENT MPN values were within 95%
cross—confirmation prediction intervals derived from the
conventional MPN-based model. Similarly, 125 (91%) EC MPN
values and 121 (88%) ENT MPN values coincided with 95%
prediction sets derived from our “raw” data—based model.

4, Discussion

We have presented two approaches to calibrating a first-order FIB
loss model to assess FIB dark inactivation rates, and have
demonstrated that the magnitude and uncertainty of the
assessed rates may vary depending on FIB species and initial FIB
concentration, but that these relationships might be contingent
upon how the inactivation rate model is calibrated and, conse-
quently, how uncertainty is expressed in the estimated inacti-
vation rate. Applicability of these findings beyond the scope of
this study (to large—scale water quality model-based assess-
ments, for example), however, depends not only on environ-
mental conditions (such as sunlight intensity and salinity,
among others) but also on the predictive performance of the
calibration models from which they were derived (Gronewold

Proposed "raw” data—based model
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duplicate.
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etal., 2009). Indeed, both model calibration procedures appear to
lead to reasonable confirmation results (proposed 95% intervals
and sets collectively include 86—91% of all MPN values), yet we
suspect that the inability of these intervals to capture more of the
variability in MPN values is strongly associated with how the
MPN and “raw” data from a serial dilution analysis procedure are
used (or not used) in model inference. Consequently, under-
standinghow and why the MPN might contribute to poorer-than-
expected model performance and, conversely, how the use of
“raw” data might address those causes, has significant implica-
tions for both “real-world” (i.e. management action-based) and
research-oriented applications.

Tobegin, we note that 95% prediction intervals derived from
the conventional MPN-based model (left-hand panel in Fig. 5)
are commonly assumed to reflect all sources of variability in
MPNvalues, including those arising from FIB fate and transport,
and through the MPN analysis procedure. The conventional
MPN-based model, however, is often calibrated using average
MPN values from two split samples (a practice we follow in this
study). Thus, the 95% prediction intervals in theleft-hand panel
in Fig. 5 are, in fact, prediction intervals for the average MPN
value, and the fact that a relatively high percentage (86—91%,
depending on FIB species) of the non-averaged MPN values (i.e.
blue and red circlesin Fig. 5) are within these intervals indicates
that the MPN-based model may lead to unnecessarily large
prediction intervals and, potentially, to overly-conservative
management decisions. In contrast, the “raw” data-based
model did not utilize average values, and instead treated the
pattern of positive wells from the serial dilution analysis as
independent observations arising from a common FIB
concentration, an approach which ultimately allows us to
propagate uncertainty in the FIB concentration estimate into an
estimated inactivationrate, a quantification of model error and,
ultimately, into a model-based forecast of likely MPN values.

Another complication in the conventional MPN-based model
is the absence of a protocol for reporting an MPN value when an
IDEXX kit (or other serial dilution analysis test) yields no positive
wells in either dilution series (i.e. y; = y, = 0), yet we recognize
this result is often reported as an MPN value < 1.0 organism per
100 ml (i.e. the MPN value when only one well from only one
dilution series is positive). Following Gronewold and Wolpert
(2008), we argue that a result of all wells negative is best
explained by a concentration of 0 organisms per 100 ml, though
other values are possible, and the corresponding MPN values
should be 0 organisms per 100 ml (for details, see Hurley and
Roscoe, 1983; McBride, 2003). Of course, an MPN value of
0 organisms per 100 ml is incompatible with the conventional
MPN-based model (equation (2)) because the logarithm of 0 is not
finite. Furthermore, the range of feasible MPN values in this study
islimited because the MPN probability distribution is intrinsically
discrete, and because a 1:10 dilution factor was used in the study
design, limiting the range of potential MPN values. Thus, while
the discrete nature of the MPN probability distribution and the
value assigned to an “all wells negative” result clearly impact our
water quality analysis results and potential assessments derived
from those results, neither is adequately reflected in the MPN-
based model confidence intervals (left panel Fig. 5). For example,
all of the MPN-based model intervals imply a continuous range of
potential MPN values with the most likely values closest to the
center of each interval. The “raw” data-based model, however,

correctly reflects the discrete multi-modal nature of the MPN
probability distribution by including only values which, given the
design of the testing procedure, are feasible. As aresult, the “raw”
data-based model prediction sets represent a more effective,
defensible, and realistic approach to assessing model predictive
performance.

To further clarify this point, we compare two approaches to
calculating the predictive distribution of the MPN for a hypo-
thetical “true” FIB concentration with a lognormal LN(c [u = In
300, ¢ = 0.16) probability distribution (Fig. 6). The first
approach assumes that the MPN and FIB concentration (c) are
exchangeable and, therefore, have the same predictive
distribution. This approach to calculating the MPN predictive
distribution is consistent with the logic of equations (4) and
(5), and is represented in Fig. 6 by a curved black line (MPN
predictive distribution) and shaded grey area (MPN 95%
prediction region). The second approach uses equations (6)
and (7) to simulate the pattern of positive wells from an
IDEXX Quanti-Tray®/2000 test, and then calculates (for each
simulated pair of positive wells) an MPN value. The predictive
distribution of the MPN based on the second approach is
represented in Fig. 6 by vertical lines. All red vertical lines
(regardless of height or location) represent the MPN 95%
prediction set, defined as the set of highest probability MPN
values for which the cumulative probability is at least 0.95
(Gronewold and Wolpert, 2008). Black vertical lines represent
MPN values outside of the MPN 95% prediction set.

Fig. 6 suggests that the discrepancies between expected and
observed model predictive performance in Fig. 5 may be caused
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Fig. 6 — Comparison between two approaches to
calculating the predictive distribution of the MPN for

a hypothetical FIB concentration ¢ with a lognormal LN
(c|# = In 300, o = 0.16) probability distribution. The MPN
predictive distribution and 95% prediction intervals
associated with this FIB concentration based on the
conventional MPN model are represented by the curved
black line and the grey shaded area, respectively. The MPN
distribution (for the same FIB concentration c) derived from
our “raw” data-based model is represented by vertical
lines. All red vertical lines (regardless of height or location)
represent the MPN 95% prediction set, defined as the set of
highest probability MPN values for which the cumulative
probability is at least 0.95 Gronewold and Wolpert (2008).
Black vertical lines represent MPN values outside of the
MPN 95% prediction set.
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by problems associated with using the MPN and the MPN-based
model, a finding with significant implications for water quality
assessments and management decisions. In particular, the
relatively high number (and height, indicating probability
mass) of vertical red lines in Fig. 6 which fall to the right or left
of the shaded (grey) region indicates there is a significant
chance for an MPN value to be both outside the prediction
interval derived from the conventional MPN-based model and
within the 95% prediction set of the proposed “raw” data-based
model. Adjacent vertical red lines with very different heights
reflect the multi-modal discrete nature of the MPN probability
distribution. The vertical black lines in Fig. 6 within the shaded
grey region indicate it is possible for an MPN value to be within
the 95% prediction interval of the conventional MPN-based
model yet not within the 95% prediction set derived from our
proposed “raw” data-based model. These discrepancies are
unacceptable to water quality managers makinghuman health
risk-based management decisions.

Aside from explicitly addressing these complications
associated with modeling MPN values and providing a more
realistic basis for assessing model predictive performance, our
proposed “raw” data-based modeling approach explicitly
distinguishes between intrinsic bias and variability introduced
through a serial dilution analysis procedure (as discussed in
Bestand Rayner, 1985; Garthright, 1993, 1997), and variability in
FIB fate and transport. These two sources of variability affect
inactivation rate estimates and model forecasts in very
different ways, yet they are not distinguishable in the
conventional MPN-based model (equations (2) and (3)), poten-
tially leading to overly conservative prediction intervals (see,
for example, the relatively high calculated value of the residual
error standard deviation for the EC MPN-based model in Fig. 3)
and an inappropriate level of confidence in the estimate of the
inactivation rate (as indicated by the variability in the width of
ENT inactivation rate confidence intervals in Fig. 3).

Advantages of the proposed “raw” data-based model arise,
in part, from an explicit acknowledgement that the pattern of
positive wells from any serial dilution analysis experiment is
a sufficient statistic (for definitions, see Bernardo and Smith,
1994, pp. 191-192) which can expressed in a probabilistic
framework through a binomial probabilistic distribution. In
other words, the pattern of positive wells (along with the
dilution factor, and volume of each well) contains all of the
information necessary to quantify the likelihood function for
the “true” FIB concentration c. In contrast, the MPN is not
a complete summary of that information. We argue, therefore,
that there is little relative benefit to the existing practice of
calculating and reporting an MPN value when compared to the
less common practice of reporting the pattern of positive wells
(or tubes) alone. This approach, of course, would allow
modelers and water resource managers alike to better
understand the sources of uncertainty and variability in water
quality measurements, and to more appropriately propagate
them into model parameter estimates and model forecasts.

Finally, the “raw” data-based model could be improved by
assuming that the dispersion of FIB cells in a sample aliquot is
greater than that represented by equations (6) and (7), which are
based on the assumption that the number of FIB cells in a sample
has a Poisson Po(3) probability distribution with mean and vari-
ance A. Previous authors (El-Shaarawi et al., 1981; Christian and

Pipes, 1983, for example) have suggested that the dispersion of
organisms in a sample aliquot may be more appropriately
reflected by a negative binomial probability distribution. We
leave exploration of the negative binomial model and its effect on
inactivation rate assessments for future research, but suspect
that it might improve model performance.

Ongoing and future opportunities for applying our modeling
approach are found in a broad range of environmental and
public health-related disciplines. For example (Harris et al.
(1998), utilize MPN data in the analysis of planktonic diatom
concentrations in sediment samples and cite similar studies
using MPN calculations (e.g. Larrazabal et al., 1990; An et al.,
1992). (Eckford and Fedorak (2005) use an MPN method to
assess nitrate-reducing bacteria growth in oil fields, and (Fegan
etal. (2004) present a series of studies enumeratingE. coli 0157 in
cattle feces using MPN procedures. Additional examples of
MPN-based environmental assessment include soil and
groundwater composition analysis (Menyah and Sato, 1996;
Papen and von Berg, 1998) and aquifer contamination studies
(Bekins et al.,, 1999). A specific example of an MPN-based
assessment of fecal contamination in recreational water bodies
is the Oregon Beach Monitoring Program (Neumann et al., 2006).
This program, while acknowledging environmental conditions
as potential sources of data variability, applies MPN point esti-
mates of FIB concentration rather than probabilistic estimates,
and therefore represents the type of study which could utilize,
and potentially be improved by, our modeling strategy.

5. Conclusions
The following is a list of conclusions drawn from our study:

e FIB dark inactivation rates may vary with initial FIB concen-
tration, but the relationship depends on FIB species, and the
choice of a calibration model. We find, for example, that EC
dark inactivation rates tend to decrease as initial EC
concentrations decrease, but that ENT dark inactivation rates
arerelatively consistent across different ENT concentrations.

e We have demonstrated potential benefits of a new modeling
strategy which uses the pattern of positive wells or tubes
from a serial dilution FIB quantification experiment as “raw”
data in a FIB water quality assessment. This approach helps
propagate uncertainty in FIB concentration estimates into
inactivation rates and model-based water quality forecasts
while potentially simplifying the data recording process.

e Our proposed “raw” data-based model represents a more
general class of Bayesian hierarchical and multi-level
modeling strategies (for a detailed description, see Gelman and
Hill, 2007) which provide an ideal structure for encoding the
pattern of positive wells or tubes from a serial dilution analysis
experiment as random variables. This model structure also
allows us to infer inactivation rates (and other model param-
eters) by combining previously documented values with
empirical evidence from our own study using Bayes’ theorem.

e We have demonstrated that our proposed “raw” data-based
modeling approach performs as well as (if not better than)
a conventional MPN-based model, yet avoids much of the
burden of appropriately interpreting MPN values and their
confgidence limits.
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e Laboratory-scale inactivation rate estimates are not neces-
sarily transferable to more complex “real-world” mecha-
nistic models. These estimates, instead, should be critically
evaluated depending on the modeling context in which they
were derived. Minor variations in how uncertainty is
addressed, for example, can lead to very different parameter
estimates for a given model, and can subsequently effect
empirical relationships, model forecasts, and model-based
management decisions.
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modelq{

for(j in 1:J) {
y1[j]1 ~ dbin(p1[j]l,n1)
y2[j1 ~ dbin(p2[j]l,n2)
y3[j]1 ~ dbin(p1i[j],nl)
y4[j]1 ~ dbin(p2[j],n2)
pllj]l <= 1-exp(-(c[j]1/100)*v1/d)
p2[j] <- 1-exp(-(c[j]/100)*v2/d)
c[jl <- exp(log.cl[jl)
log.c[j] = dnorm(mulj],tau)
mul[j] <- b[b.grp.bugljll-

k[k.grp.bugljll*t[j]
}

d <- 10

vl <- 1.86
v2 <- 0.186
nl <- 49

n2 <- 48

for (n in 1:18) {
b[n] ~ dnorm(0, tau_b)
}

for (i in 1:6){
k[i] ~ dt(0.15,1,3)
}

tau <- pow(sigma,-2)
sigma ~ dunif (0,20)
tau_b <- pow(sigma_b,-2)
sigma_b ~ dunif (0,20)

Appendix

The following code was used in WinBUGS to calibrate the
proposed “raw” data-based (Bayesian) model:

J = total number of samples = 72;
No. pos. large wells - sample A;
No. pos. small wells - sample A;
No. pos. large wells - sample B
No. pos. small wells - sample B
Prob. of pos. large well;

Prob. of pos. small well;

EC or ENT conc. (org/100 ml);

b

H

H OH H H H K H H®

First-order loss model for log-
concentration mean;

t = time (days);

‘‘b.grp.bug’’ and ‘‘k.grp.bug’’

indicate experiment--based groups

of intercept and inactivation

rates values (indexed by ‘n’ and

‘i’ below);

H O HF K H K HH

Dilution factor;

Large well volume (ml);
Small well volume (ml);
Total number large wells;
Total number small wells;

H O H H ®

**

Number of experiments;
# Model intercept;

# Different experiment "types";
# Informative prior on k;

Precision of model residuals;
Standard dev. of model residuals;
Precision of model intercept;
Standard dev. of model intercept;

H O HF
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