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a b s t r a c t

Assessing the potential threat of fecal contamination in surface water often depends on

model forecasts which assume that fecal indicator bacteria (FIB, a proxy for the concen-

tration of pathogens found in fecal contamination from warm-blooded animals) are lost or

removed from the water column at a certain rate (often referred to as an “inactivation”

rate). In efforts to reduce human health risks in these water bodies, regulators enforce

limits on easily-measured FIB concentrations, commonly reported as most probable

number (MPN) and colony forming unit (CFU) values. Accurate assessment of the potential

threat of fecal contamination, therefore, depends on propagating uncertainty surrounding

“true” FIB concentrations into MPN and CFU values, inactivation rates, model forecasts,

and management decisions. Here, we explore how empirical relationships between FIB

inactivation rates and extrinsic factors might vary depending on how uncertainty in MPN

values is expressed. Using water samples collected from the Neuse River Estuary (NRE) in

eastern North Carolina, we compare Escherichia coli (EC) and Enterococcus (ENT) dark inac-

tivation rates derived from two statistical models of first-order loss; a conventional model

employing ordinary least-squares (OLS) regression with MPN values, and a novel Bayesian

model utilizing the pattern of positive wells in an IDEXX Quanti-Tray�/2000 test. While our

results suggest that EC dark inactivation rates tend to decrease as initial EC concentrations

decrease and that ENT dark inactivation rates are relatively consistent across different ENT

concentrations, we find these relationships depend upon model selection and model

calibration procedures. We also find that our proposed Bayesian model provides a more

defensible approach to quantifying uncertainty in microbiological assessments of water

quality than the conventional MPN-based model, and that our proposed model represents

a new strategy for developing robust relationships between environmental factors and FIB

inactivation rates, and for reducing uncertainty in water resource management decisions.

ª 2010 Published by Elsevier Ltd.

1. Introduction

Fecal contamination is a leading cause of surface water

quality degradation in the United States (Mostaghimi et al.,

2002; Noble et al., 2003a) and throughout the world (Ashbolt

et al., 1993; Ghinsberg et al., 1994). Roughly 20% of all total

maximum daily load (TMDL) assessments approved by the

United States Environmental Protection Agency (USEPA) since

1995, for example, address water bodies with unacceptably

high fecal indicator bacteria (FIB) concentrations (a proxy for
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the measurement of fecal contamination-associated patho-

gens), the highest percentage of any pollutant category (for

more on the TMDL program, see National Research Council,

2001).

Fecal contaminationwater quality assessments (within the

context of the TMDL program and similar comprehensive

water resource management programs) typically compare

model-derived (or measured) FIB concentrations in a water

body to a set of health risk-based numeric water quality

standards (Benhamet al., 2006; Gronewold et al., 2008). Models

supporting these assessments play a critical role by helping

managers understand the potential threat waterborne path-

ogens pose to human health. This is true even for very simple

models, such as those for calculating a geometric mean or

90th percentile, as outlined in the Food and Drug

Administration and Interstate Shellfish Sanitation

Conference (2005) proceedings and discussed further in

Boehm et al. (2009). In addition, models provide the founda-

tion for large-scale management decisions, such as whether

or not to restrict access to a water body, or the extent to which

pollutant loading levels must be reduced (through best

management practices associated with the TMDL process, for

example) so that receiving water bodies will comply with

pertinent water quality standards.

Methodological variability associated with FIB concentra-

tion quantification methods is well-documented (see, for

example Griffin et al., 2001; Noble et al., 2003b; McBride, 2003;

Gronewold and Wolpert, 2008) and, along with other extrinsic

factors, can have a significant impact on a water quality-

based management actions. Fully understanding and

acknowledging these sources of variability represents an

important step towards generating robust management

decisions, such as the closing of a shellfish harvesting area or

beach. More importantly, when uncertainty and variability

are ignored or incorrectly quantified, they may lead to either

overly-conservative management decisions, such as the

closure of a beach or shellfish harvesting area when no true

threat exists, or inadequate management interventions

leading, perhaps, to human illness or the outbreak of disease.

Models that appropriately propagate uncertainty and vari-

ability from monitoring observations and environmental

phenomena into water quality forecasts, therefore, could

lead to more robust water resource management decisions,

alleviate the need for intensive water quality sampling, and

minimize detrimental impacts on human health. Models

which fail to account for these potential sources of variability

may lead to decisions with unfortunate human health

consequences, and are therefore of limited practical use to

water resource managers. We know of no studies, however,

which perform a retrospective analysis of the strength of the

relationship between model-based FIB concentration fore-

casts and actual human illness derived from contact with

contaminated water. We believe this type of comparison

would provide critical information towards improving

model-based management decisions, and should be pursued

in future research.

1.1. FIB inactivation rates and the first-order loss model

Models used to support FIB water quality assessments often

include a parameter reflecting the effective rate of FIB loss

over time due to natural die-off, settling, and other factors

(Auer andNiehaus, 1993; Ferguson et al., 2003). Themagnitude

of this rate, and its relationship to extrinsic factors, is typically

assessed by calibrating a first-order loss model (see Section

2.4) using FIB concentration data collected in a controlled (e.g.

laboratory) setting. Other model structures (second-order, for

example) could be used, such as those discussed in Borsuk

and Stow (2000) and Huang and McBean (2007). Here, we

focus on the first-order loss model because it is commonly

applied in FIB dark (i.e. in the absence of sunlight) inactivation

rate studies, and because it provides an ideal template for us

to explore alternative approaches to quantifying uncertainty.

In addition to Auer and Niehaus (1993) and Ferguson et al.

(2003), Sinton et al. (1999) and Noble et al. (2004) suggest that

FIB inactivation rates (also referred to as a “die-off” or “decay”

rate) vary under different environmental conditions,

including solar radiation, and water temperature (from here

Nomenclature

Bi binomial distribution

No normal distribution

Po Poisson distribution

St Student distribution

c, ct fecal indicator bacteria concentration at time t

(organisms per 100 ml)

c0 fecal indicator bacteria concentration at time t¼ 0

(organisms per 100 ml)

I index of dilution series number

k, k0 first-order bacteria dark inactivation or loss rate

(1/day)

Ln natural logarithm

N number of wells in a dilution series

P probability of a positive well in a dilution series

t time (days)

v volume of each well in a dilution series

experiment (ml)

y number of positive wells in a dilution series

Greek letters

e, e0 model residual error terms

l mean and variance of the Poisson probability

distribution

m location parameter in Student (St) probability

distribution

n degrees of freedom in Student (St) probability

distribution

p prior probability distribution

s, s0 standard deviation of e, e0 (ln organisms per

100 ml)

s scale parameter in Student (St) probability

distribution
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forward, we refer to this rate as an “inactivation” rate). FIB

inactivation rate variability in response to other factors,

however, including initial FIB concentration and water

column depth, is not as well-understood, and has been rec-

ommended as an area for future research. An implicit and

more general objective of these studies, however, is to incor-

porate inactivation rates into comprehensive models with

“real-world” data to forecast future FIB concentration

dynamics over broad spatial (e.g. estuarine) and temporal (e.g.

multiple years) scales. Despite this goal, documented inacti-

vation rates (Bowie et al., 1985, for example) are rarely

accompanied by an indication of the structure (e.g. first- or

second-order) or performance (assessed, perhaps, through

model confirmation) of the calibrationmodel fromwhich they

were derived (Gronewold et al., 2009). This common oversight

is particularly problematic because the calibrationmodel may

not be an appropriate representation of FIB concentration

dynamics, leading to inaccurate estimates of inactivation rate

magnitude and variability which could then propagate into

undesired uncertainty and variability in “real-world” model

applications.

1.2. FIB measurement uncertainty and variability

The two most common FIB concentration metrics are the

most probable number (MPN) and the colony-forming unit

(CFU). MPN and CFU values, when used to calibrate FIB inac-

tivation rate models (such as the first-order loss model),

contribute to variability in inactivation rate estimates and to

discrepancies between observed and model-predicted

concentration values (i.e. model error) in different ways due to

unique intrinsic sources of bias and variability associatedwith

MPN- and CFU-based testing procedures. Here, we focus on

uncertainty and variability in MPN values alone. For more on

addressing CFU value variability and incorporating it into FIB

water quality models, see Gronewold et al. (2009).

There are a variety of MPN-based testing procedures,

however the two most common for quantifying FIB concen-

trations are multiple-tube fermentation and chromogenic

substrate tests. MPN values derived from these procedures are

known to be positively biased (Garthright, 1993,1997) and have

varying degrees of uncertainty depending on the design of the

testing procedure, such as the number and volume of wells or

tubes in a dilution series. Furthermore, each procedure can

yield multiple sets of “raw” data (such as the pattern of posi-

tivewells in a dilution series) which, while leading to the same

MPN value, might imply very different uncertainty bounds on

the value of the “true” FIB concentration. Put differently, the

“raw” data from an MPN-based experiment includes all of the

information needed to quantify uncertainty and variability in

the FIB concentration and to calculate an MPN value. Unfor-

tunately, water quality scientists commonly report only MPN

values, an approach which effectively discards valuable

uncertainty and variability information contained in the “raw”

data (Woodward, 1957; McBride, 2003).

Here, we explore ways to improve the estimation and

representation of FIB inactivation rates for the purpose of

increased accuracy in water quality management decisions.

In the following section, we describe our approach to collect-

ing and analyzing water quality data from an estuary in

eastern North Carolina. We then present a novel Bayesian

model calibration procedure for quantifying FIB inactivation

rates in estuarine waters, and explore the effect of potential

extrinsic and intrinsic factors, including uncertainty in

monitoring data, environmental conditions, and specific

members of the FIB group being studied.We then compare the

results of our proposed Bayesian model to those from a more

conventional regression analysis, and conduct a model

confirmation procedure (commonly referred to as a validation

procedure) to assess model performance.

2. Methods

2.1. Monitoring plan and site description

Our study area is the Neuse River Estuary (NRE) near the city of

New Bern in eastern North Carolina (NC). This area has been

intensively studied and is selected for this study because it

has historically high FIB concentrations relative to other sites

in the NRE (Fries et al., 2006). The NRE is a typical Atlantic,

lagoonal, largely wind-mixed estuary, and the water quality in

the upper NRE is of economic and recreational importance to

the surrounding area (Borsuk et al., 2001). Previous studies

have indicated that NRE water quality suffers from anthro-

pogenic FIB loading through stormwater runoff and upstream

fecal contamination sources (Fries et al., 2006,2008).

2.2. Sample collection and inoculation

In order to assess dark inactivation rates of FIB populations at

different concentrations, we inoculated environmental

samples (i.e. collected in situ) from the NRE using inocula of

influent from a nearby sewage treatment plant to achieve two

different initial (i.e. post-inoculation) concentrations: 1)

a “high” concentration (approximating a spill from a sewage

treatment plant, for example), and 2) a “moderate” concen-

tration approximating chronic stormwater runoff or a similar

pollutant loading source.

Morehead City Wastewater Treatment Plant (MCWWTP)

influent was collected in order to inoculate the environmental

NRE samples. To enumerate FIB concentrations in the

influent, duplicate 1.0 ml aliquots were diluted 100-fold along

a four-point serial dilution. Escherichia coli (EC) and Enterococcus

(ENT) concentrations (in organisms per 100 ml) were deter-

mined from a 100 ml diluted sample using appropriate IDEXX

media and the IDEXX Quanti-Tray�/2000 kit (see Section 2.3

for details). The estimated MCWWTP influent FIB concentra-

tion was then used to calculate the appropriate volume of

influent to inoculate water samples in an effort to achieve

“target” final (post-inoculation) ENT concentrations of 3000

(“high”) and 300 (“moderate”) organisms per 100 ml.

Environmental grab samples (5 L each) were collected from

both the surface and bottom water of the NRE study site on

three dates (August 6, September 17, and October 16) in 2007.

Three 1-L subsamples were poured from each sample, and

placed in separate 1 L polycarbonate Nalgene bottles. Two of

the three 1 L subsamples were inoculated with MCWWTP

influent to achieve target concentrations. The third 1 L sample
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from each set was not inoculatedwithMCWWTP influent, and

is referred to as the samplewitha “baseline” FIB concentration.

After inoculation, each 1 L subsample was evenly split into

two 500 ml subsampleswhichwere then incubated in the dark

at temperatures comparable to those in ambient NRE waters

(22e28 �C), and individually shaken and uncapped to simulate

environmental mixing and aeration every 8 h thereafter.

Finally, water from the 500 ml subsamples was tested (as

described in the following section) for EC and ENT concen-

trations (in organisms per 100 ml) at time intervals of roughly

0, 1, 2, and 3 days post-inoculation.

2.3. Sample enumeration

EC and ENT concentrations were quantified using the IDEXX

Quanti-Tray�/2000 chromogenic substrate test (CST) kit with

Colilert�-18 and Enterolert� media. To ensure that FIB

concentrations did not exceed the upper bound of the IDEXX

Quanti-Tray�/2000 test (i.e. a test result with all positive wells

in both dilution series), we followed manufacturer’s recom-

mendations for implementing a 1:10 dilution factor by

extracting duplicate 10.0 ml aliquots from each subsample

and pipetting them into IDEXX 100 ml polycarbonate bottles

containing 90 ml of deionized (DI) water and either Colilert�-

18 and Enterolert� media. Each bottle was shaken 25 times to

ensure that the media was completely dissolved. The liquid

was poured into an IDEXX Quanti-Tray/2000 tray, and the tray

was sealed. Then, the trays containing the sample and the

dissolved Colilert�-18 and Enterolert� media were incubated

at 35 �C for 18 h, and 41 �C for 24 h, respectively. “Raw” data,

including the numbers of positive small and large wells for

each set of trays, and the dilution factor (in this study, a dilu-

tion factor of 10 was used for all samples) was recorded

according to manufacturer’s instructions. Finally, the number

of positive large and small wells, along with the applicable

dilution factor, were used to calculate the MPN (in organisms

per 100 ml) for EC, ENT, and total coliforms. Total coliform

results, however, were not used in this study.

2.4. Model calibration

FIB inactivation rates are often quantified by calibrating the

following well-known first-order loss model (Fischer, 1979;

Thomann and Mueller, 1987, pp. 145e147 and 56e59,

respectively:)

dc
dt

¼ �kc; cðt ¼ 0Þ ¼ cð0Þ ¼ c0

lnc ¼ lnc0 � k� t

(1)

where c¼ ct is the “true” (but unobserved) FIB concentration

(in organisms per 100 ml) at time t (in days), c0 is the “true” FIB

concentration at time t¼ 0 (also in organisms per 100 ml), and

k (in 1/days) is the first-order loss (or inactivation) rate. Here,

we use k to represent FIB dark inactivation. In the following

sections, we describe the two procedures used to calibrate this

model.

2.4.1. Conventional MPN-based approach
In the conventionalMPN-basedcalibrationapproach,weassume

(following common practice) that EC and ENT MPN values (in

organisms per 100ml) are interchangeable with the “true” FIB

concentration c, leading to the following calibrationmodel:

lnMPNt ¼ lnc0 � k� tþ et (2)

etwNoð0; sÞ (3)

where MPNt represents the average MPN (based, in our

study, on the average of two split samples) at each time step.

The model in equations (4) and (5) reflects the common

assumption that discrepancies between the expected and

observed values of the (logarithmof the)MPN can be described

by a normally-distributed error term e (with mean 0 and

standard deviation s). Although our calibration procedure

allows different values of k and c0 for each experiment, we use

subscripts in equations (4) and (5) to differentiate between

times t after inoculation only (for clarity).

We estimate k and s in equations (4) and (5) using a clas-

sical ordinary-least squares (OLS) regression procedure (for

more on OLS regression, seeWeisberg, 2005) in the lm package

Chapter 4 (Chambers and Hastie, 1991: Chapter 4) in the

statistical software program R (Ihaka and Gentleman, 1996).

2.4.2. Proposed “raw” data-based approach
In our proposed “raw” data-based approach, we deliberately

avoidcalculatingorusingMPNvalues, and insteadconsider the

pattern of positive wells from the IDEXX Quanti-Tray�/2000

test kit as data (hereafter referred to as “raw” data). In this

approach, we calibrate the first-order loss model by assuming

(following Hurley and Roscoe, 1983; McBride, 2003) that the

number of positive wells in each dilution series of an IDEXX

Quanti-Tray�/2000 test kit are independent binomial random

variables, yi w Bi(ni, pi), where (in dilution series i from any

given sample) yi is the number of positive wells, ni is the total

numberofwells, pi ¼ 1� eð�cvi=100Þ is theprobability of apositive
well, c (in organisms per 100 ml) is the “true” but unobserved

FIB concentration, and vi is the volume (in ml) of each well in

dilution series i. For the IDEXX Quanti-Tray�/2000 kit, i ˛ {1, 2},

n1 ¼ 49, n2 ¼ 48, v1 ¼ 1.86 ml, and v2 ¼ 0.186 ml. These

assumptions, when combined with equation (1), lead to the

following calibrationmodel (for clarity, subscripts differentiate

only between dilution series i and times t after inoculation):

yi;tjni; pi;twBi
�
ni; pi;t

�
(4)

pi;t ¼ 1� e�ctvi=100 (5)

lnct ¼ lnc00 � k0 � tþ e0t (6)

e0twNoð0; s0Þ (7)

where e0 is a normally-distributed error termwith mean 0 and

standard deviation s0.

The rationale for equations (6) through (9) Q1, and for dis-

tinguishing a “raw” data-based model from the conventional

MPN-based model, can be explained, in part, through the

graphical model in Fig. 1. This graphical model reflects the

assumed relationship between the FIB concentration c in

a sample at time t, the dark inactivation rate (k, k0), the asso-

ciated pattern of positive wells ( y1 and y2) given c, and anMPN

value. The variables and parameters included in our proposed
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“raw” data-based calibration model are bounded by dashed

lines in Fig. 1, while those included in the conventional MPN-

based calibration model are shaded. In particular, Fig. 1 indi-

cates how our proposed “raw” data-based procedure infers the

dark inactivation rate (k0) by first quantifying uncertainty in

the true but unobserved FIB concentration c. In contrast, the

dark inactivation rate derived from the conventional MPN-

based procedure (k) is based on an assumption that the MPN

and c are interchangeable.

We encode equations (4)e(7) within a Bayesian framework

(formore on Bayesian statistics, see Berry, 1996; Bolstad, 2004),

an approach which allows us to utilize all of the “raw” data

froma serial dilution experiment and to express thenumber of

positivewells inadilutionseriesasabinomial randomvariable

(equations (4) and (5)). Encoding equations (6)e(9) in a Bayesian

framework also allowsus to infer the FIB dark inactivation rate

(k0) by combining a priori beliefs with empirical evidence using

Bayes’ theorem (Bayes 1763). In this approach, a priori beliefs

regarding potential values of k0 are expressed through a prior

probability distribution, p(k0), while values of k0 supported by

empirical evidence are expressed through a likelihood func-

tion. Bayes’ theorem combines these two sources of informa-

tion into a posterior probability distribution.

Here, we specify an informative prior probability distri-

bution for k0 drawing from documented values in previous

FIB inactivation rate studies (Bowie et al., 1985). Using these

historic values as a guide to likely values of k0, we choose

a Student (St) prior distribution, p(k0) w St(m, s, n), with loca-

tion m ¼ 0.15, scale s ¼ 1, and degrees of freedom n ¼ 3. The

Student (St) distribution (Bernardo and Smith, 1994, pp.

122e123), particularly when compared to more common

prior probability distributions, is ideal for our study because

it reflects the range of previously documented inactivation

rates and accommodates potential values which might be

supported by our analysis (including both very high and

negative inactivation rates).

We estimate k0 and s0 in equations (8) and (9) by simulating

samples from their respective posterior distributions (for

definitions, see Press, 2003); Bolstad 2004; Chapter 4 and

Section 4.6, respectively) using Markov chain Monte Carlo

(MCMC) procedures in the software program WinBUGS (Lunn

et al., 2000). We ran each MCMC chain until it reached

convergence, indicated by a potential scale reduction factorbR ¼ 1.0 (Gelman et al., 2004, pg. 297). Computer code for our

Bayesian model is included in the appendix.

2.5. Model confirmation

We evaluate the predictive performance of the conventional

MPN-based model and our proposed “raw” data-based model

using a “leave-one-out” cross-confirmation procedure (for

details, see Efron and Tibshirani, 1993, pps. 240e241). We

recognize that while this procedure is commonly referred to

as validation, we prefer the term confirmation, since valida-

tion implies an ascertainment of truth, and only applies when

themodel is compared to independent observations (Reckhow

and Chapra, 1983).

To confirm the MPN-based model, we begin by using the

“leave-one-out”-based parameter sets to predict MPN values at

each time step. This approach is based on the common

assumption that the MPN-based model, because it is calibrated

usingMPN values from the IDEXXQuanti-Tray�/2000 procedure,

implicitly predicts MPN values (as opposed to FIB concentration

valuesorCFUvalues).Wethenconstruct95%prediction intervals

(Weisberg, 2005) for each MPN value using the 0.025 and 0.975

quantiles of the predictive probability distribution implied by the

model in equation (5). Finally, we calculate the fraction of

observed MPN values within each interval.

We confirm our proposed “raw” data-based model by

following the logic of equations (6)e(9). First, we use the “leave-

one-out” parameter sets to simulate 10,000 samples from the

FIB concentration (c) probability distribution (equations (6) and

(7)) at each time step t.We then simulate the pattern of positive

wells ( y1, t, y2, t) from an IDEXX Quanti-Tray�/2000 procedure

(equations (6) and (7)) for each simulated sample and calculate

theMPN value following (Woodward, 1957; Hurley and Roscoe,

1983). Using the 10,000 simulatedMPN values for each time t in

each experiment we then construct a 95% MPN prediction set

which, following Gronewold and Wolpert (2008), is defined as

the set of highest probability MPN values for which the

cumulative probability mass is at least 0.95. Finally, we

calculate the fraction of observed MPN values which coincide

with each discrete 95% prediction set.

3. Results

3.1. FIB concentration analysis and inactivation rate
assessment

Our water quality analysis results indicate that inoculated

samples corresponding to “high” and “moderate” EC and ENT

Fig. 1 e Graphical representationoffirst-orderFIB lossmodel

and the IDEXX Quanti-Tray�/2000 procedure. Dashed lines

bound variables and parameters (both ovals) and constants

(rectangles) in our proposed “raw” data-basedmodel

equations (6)e(9), while the shaded regions include

variables, parameters, and constants in the conventional

MPN-basedmodel equations (4) and (5). Single-lined arrows

lead to stochastic (i.e. defined by a probability distribution)

model variables and parameters, while double-lined arrows

lead to deterministic model variables.

wat e r r e s e a r c h x x x ( 2 0 1 0 ) 1e1 3 5

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

WR8236_proof ■ 30 August 2010 ■ 5/13

Please cite this article in press as: Gronewold, A.D., et al., Addressing uncertainty in fecal indicator bacteria dark inactivation
rates, Water Research (2010), doi:10.1016/j.watres.2010.08.029

http://dx.doi.org/10.1016/j.watres.2010.08.029
http://dx.doi.org/10.1016/j.watres.2010.08.029
Original text:
Inserted Text
 through 

Original text:
Inserted Text
 through 

Original text:
Inserted Text
 through 



concentrations decrease at rates approximately represented

by a log-linear model, although the rate of decrease appears

greater for higher starting concentrations (first and fourth

rows in Fig. 2). Dynamics for relatively low EC and ENT

concentrations, however, are less clear, in part because the

rate of change appears to fluctuate across different sampling

dates, and in part because the uncertainty in monitoring data

is more pronounced at low concentrations (third and sixth

rows in Fig. 2).We also note that the native bacteria organisms

in the baseline sample may be from a different population

than those in the “high” and “moderate” concentration

samples, and that this difference may limit our comparison

between the corresponding inactivation rates.

Our inactivation rate assessment (i.e. model calibration)

results (Fig. 3) indicate that EC dark inactivation rates (left two

panels) decrease as initial EC concentration decreases, and

this relationship is consistent across sample depth and

between the two model calibration procedures. In particular,
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Fig. 2 e EC (top 3 rows) and ENT (bottom 3 rows) MPN values (in organisms per 100 ml) at times t (days) after inoculation.

Rows within each FIB type correspond to “high”, “moderate”, or “baseline” post-inoculation concentrations. Columns

correspond to months when in situ samples were collected from the NRE. Samples collected from the surface are

represented by red circles. Samples collected from the bottom are represented by blue triangles. Split samples are

distinguished as sample A (hollow shapes) and sample B (filled shapes).
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our results indicate that EC dark inactivation rates are likely to

be negative at concentrations at or below approximately

30e50 organisms per 100 ml (suggesting the potential for

sustained populations or regrowth at low concentrations). Our

results also indicate that the “raw” data-based model leads to

slightly narrower credible interval estimates for EC dark

inactivation rates (black horizontal lines) when compared to

confidence intervals derived from the conventional MPN-

based model (grey horizontal lines).

The relationship between ENTdark inactivation rates (right

panels in Fig. 3) and initial concentration, depth, and model

selection is not as clear. Most noticeably, our results indicate

that the magnitude and uncertainty associated with ENT dark

inactivation rate estimates depends on the model fromwhich

the estimate was derived. In particular, uncertainty in ENT

dark inactivation rates derived from the MPN-based model

(grey lines) is relatively consistent across all extrinsic factors,

while the uncertainty in estimated ENT dark inactivation rates

derived from our “raw” data-based model (black lines)

increases as FIB concentration decreases. Furthermore, while

our results do not indicate a significant overall trend in the

magnitude of ENT dark inactivation rates relative to initial ENT

concentration, they do indicate that ENT dark inactivation

rates derived from the conventionalMPN-basedmodelmay be

significantly lower at ENT concentrations close to 1 organism

per 100 ml when compared to higher ENT concentrations.

Finally, our results indicate that the two calibrationmodels

lead to very different estimates of model residual standard

deviation (s, s0) and that the magnitude of the difference

depends on which FIB organism is studied (Fig. 4). For

example, the residual standard deviation in the MPN-based

model ranged between 0.72 and 1.1 when using EC data (grey

lines in top panel, Fig. 4) and between 0.75 and 1.15 when

using ENT data (grey lines in bottompanel, Fig. 4). The residual

standard deviation in the “raw” data-based model, mean-

while, ranged between 0.6 and 0.96 when using EC data (black

lines in top panel, Fig. 4) and between 0.12 and 0.35 using ENT

data (black lines in bottom panel, Fig. 4).

3.2. Model confirmation

Model confirmation results for 20 representative EC samples

are presented in Fig. 5, which compares ECMPN values (circles

in Fig. 5 with duplicates, if analyzed, distinguished by color)
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Fig. 3 e Relationship between FIB dark inactivation rate estimates (k) and measured (as opposed to “target”) initial FIB
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interval estimates (horizontal lines) were derived from experiments with either “high” (top black and grey lines in each
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with cross-confirmation 95% confidence intervals derived

from the MPN-based model (left-hand panel) and 95%

prediction sets derived from the “raw” data-based (i.e.Baye-

sian) model (right-hand panel). Sample 1, for example, which

was not analyzed in duplicate, yielded an MPN value of 31

organisms per 100 ml (bottom blue dot in both panels of Fig. 5)

which is within the 95% prediction intervals derived from the

conventional MPN-based model, and coincides with an MPN

value in the 95% prediction set derived from the “raw” data-

based model.

Of the 137 samples analyzed (72 samples, 65 analyzed in

duplicate) for both EC and ENT concentration, 118 (86%) EC

MPN values and 124 (91%) ENT MPN values were within 95%

crosseconfirmation prediction intervals derived from the

conventional MPN-based model. Similarly, 125 (91%) EC MPN

values and 121 (88%) ENT MPN values coincided with 95%

prediction sets derived from our “raw” dataebased model.

4. Discussion

Wehavepresentedtwoapproaches tocalibratingafirst-orderFIB

loss model to assess FIB dark inactivation rates, and have

demonstrated that the magnitude and uncertainty of the

assessed ratesmay vary depending on FIB species and initial FIB

concentration, but that these relationshipsmight be contingent

upon how the inactivation rate model is calibrated and, conse-

quently, how uncertainty is expressed in the estimated inacti-

vation rate. Applicability of these findings beyond the scope of

this study (to largeescale water quality model-based assess-

ments, for example), however, depends not only on environ-

mental conditions (such as sunlight intensity and salinity,

among others) but also on the predictive performance of the

calibration models from which they were derived (Gronewold

Fig. 4 e 95% (thin lines) and 50% (thick lines) intervals for

model residual standard deviation (s) from the “raw” data-

based model (black lines) and the conventional MPN-based

model (grey lines). Results are presented separately for

models calibrated to EC data (top panel) and ENT data

(bottom panel).

Fig. 5 e Model confirmation results for 20 representative (of 72 total) EC analysis events, including 95% prediction intervals

derived (via cross-confirmation) from the MPN-based model (horizontal black lines in left panel) and 95% prediction sets

derived from the “raw” data-based model (grey circles in right panel). The diameter of the grey circles in the right panel is

proportional to the probability mass of the corresponding MPN value Gronewold and Wolpert (2008). Observed MPN values

are represented by red and blue circles (with duplicates distinguished by color). Samples 1e6 were not analyzed in

duplicate.
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et al., 2009). Indeed, bothmodel calibration procedures appear to

lead to reasonable confirmation results (proposed 95% intervals

and sets collectively include 86e91% of all MPN values), yet we

suspect that the inabilityof these intervals tocapturemoreof the

variability in MPN values is strongly associated with how the

MPNand “raw”data fromaserial dilution analysisprocedure are

used (or not used) in model inference. Consequently, under-

standinghowandwhytheMPNmightcontributetopoorer-than-

expected model performance and, conversely, how the use of

“raw” data might address those causes, has significant implica-

tions for both “real-world” (i.e. management action-based) and

research-oriented applications.

Tobegin,wenote that 95%prediction intervals derived from

the conventional MPN-based model (left-hand panel in Fig. 5)

are commonly assumed to reflect all sources of variability in

MPNvalues, including thosearising fromFIB fateand transport,

and through the MPN analysis procedure. The conventional

MPN-based model, however, is often calibrated using average

MPNvalues from two split samples (a practicewe follow in this

study). Thus, the95%prediction intervals in the left-handpanel

in Fig. 5 are, in fact, prediction intervals for the average MPN

value, and the fact that a relatively high percentage (86e91%,

depending on FIB species) of the non-averaged MPN values (i.e.

blue and red circles inFig. 5) arewithin these intervals indicates

that the MPN-based model may lead to unnecessarily large

prediction intervals and, potentially, to overly-conservative

management decisions. In contrast, the “raw” data-based

model did not utilize average values, and instead treated the

pattern of positive wells from the serial dilution analysis as

independent observations arising from a common FIB

concentration, an approach which ultimately allows us to

propagateuncertainty in theFIBconcentrationestimate intoan

estimated inactivationrate, aquantificationofmodel errorand,

ultimately, into a model-based forecast of likely MPN values.

Another complication in the conventional MPN-basedmodel

is the absence of a protocol for reporting anMPN value when an

IDEXXkit (or other serial dilution analysis test) yields no positive

wells in either dilution series (i.e. y1 ¼ y2 ¼ 0), yet we recognize

this result is often reported as an MPN value � 1.0 organism per

100 ml (i.e. the MPN value when only one well from only one

dilution series is positive). Following Gronewold and Wolpert

(2008), we argue that a result of all wells negative is best

explained by a concentration of 0 organisms per 100ml, though

other values are possible, and the corresponding MPN values

should be 0 organisms per 100ml (for details, see Hurley and

Roscoe, 1983; McBride, 2003). Of course, an MPN value of

0 organisms per 100ml is incompatible with the conventional

MPN-basedmodel (equation (2)) because the logarithmof 0 isnot

finite.Furthermore, therangeof feasibleMPNvalues inthisstudy

is limitedbecausetheMPNprobabilitydistributionis intrinsically

discrete, and because a 1:10 dilution factorwas used in the study

design, limiting the range of potential MPN values. Thus, while

the discrete nature of the MPN probability distribution and the

value assigned to an “allwells negative” result clearly impact our

water quality analysis results andpotential assessmentsderived

from those results, neither is adequately reflected in the MPN-

basedmodel confidence intervals (left panel Fig. 5). For example,

all of theMPN-basedmodel intervals implyacontinuousrangeof

potential MPN values with the most likely values closest to the

center of each interval. The “raw” data-based model, however,

correctly reflects the discrete multi-modal nature of the MPN

probabilitydistributionby includingonlyvalueswhich, giventhe

designof the testingprocedure,are feasible.Asaresult, the“raw”

data-based model prediction sets represent a more effective,

defensible, and realistic approach to assessingmodel predictive

performance.

To further clarify this point, we compare two approaches to

calculating the predictive distribution of the MPN for a hypo-

thetical “true” FIB concentration with a lognormal LN(c jm ¼ ln

300, s ¼ 0.16) probability distribution (Fig. 6). The first

approach assumes that the MPN and FIB concentration (c) are

exchangeable and, therefore, have the same predictive

distribution. This approach to calculating the MPN predictive

distribution is consistent with the logic of equations (4) and

(5), and is represented in Fig. 6 by a curved black line (MPN

predictive distribution) and shaded grey area (MPN 95%

prediction region). The second approach uses equations (6)

and (7) to simulate the pattern of positive wells from an

IDEXX Quanti-Tray�/2000 test, and then calculates (for each

simulated pair of positive wells) an MPN value. The predictive

distribution of the MPN based on the second approach is

represented in Fig. 6 by vertical lines. All red vertical lines

(regardless of height or location) represent the MPN 95%

prediction set, defined as the set of highest probability MPN

values for which the cumulative probability is at least 0.95

(Gronewold and Wolpert, 2008). Black vertical lines represent

MPN values outside of the MPN 95% prediction set.

Fig. 6 suggests that thediscrepancies betweenexpectedand

observedmodelpredictiveperformance inFig. 5maybecaused
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Fig. 6 e Comparison between two approaches to

calculating the predictive distribution of the MPN for

a hypothetical FIB concentration c with a lognormal LN

(cjm [ ln 300, s [ 0.16) probability distribution. The MPN

predictive distribution and 95% prediction intervals

associated with this FIB concentration based on the

conventional MPN model are represented by the curved

black line and the grey shaded area, respectively. The MPN

distribution (for the same FIB concentration c) derived from

our “raw” data-based model is represented by vertical

lines. All red vertical lines (regardless of height or location)

represent the MPN 95% prediction set, defined as the set of

highest probability MPN values for which the cumulative

probability is at least 0.95 Gronewold and Wolpert (2008).

Black vertical lines represent MPN values outside of the

MPN 95% prediction set.
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byproblemsassociatedwithusing theMPNandtheMPN-based

model, a findingwith significant implications forwater quality

assessments and management decisions. In particular, the

relatively high number (and height, indicating probability

mass) of vertical red lines in Fig. 6 which fall to the right or left

of the shaded (grey) region indicates there is a significant

chance for an MPN value to be both outside the prediction

interval derived from the conventional MPN-based model and

within the 95% prediction set of the proposed “raw” data-based

model. Adjacent vertical red lines with very different heights

reflect the multi-modal discrete nature of the MPN probability

distribution. The vertical black lines in Fig. 6within the shaded

grey region indicate it is possible for anMPN value to bewithin

the 95% prediction interval of the conventional MPN-based

model yet not within the 95% prediction set derived from our

proposed “raw” data-based model. These discrepancies are

unacceptable towaterqualitymanagersmakinghumanhealth

risk-based management decisions.

Aside from explicitly addressing these complications

associated with modeling MPN values and providing a more

realistic basis for assessingmodel predictive performance, our

proposed “raw” data-based modeling approach explicitly

distinguishes between intrinsic bias and variability introduced

through a serial dilution analysis procedure (as discussed in

Best andRayner, 1985;Garthright, 1993, 1997), andvariability in

FIB fate and transport. These two sources of variability affect

inactivation rate estimates and model forecasts in very

different ways, yet they are not distinguishable in the

conventional MPN-based model (equations (2) and (3)), poten-

tially leading to overly conservative prediction intervals (see,

for example, the relatively high calculated valueof the residual

error standard deviation for the ECMPN-basedmodel in Fig. 3)

and an inappropriate level of confidence in the estimate of the

inactivation rate (as indicated by the variability in thewidth of

ENT inactivation rate confidence intervals in Fig. 3).

Advantages of the proposed “raw” data-based model arise,

in part, from an explicit acknowledgement that the pattern of

positive wells from any serial dilution analysis experiment is

a sufficient statistic (for definitions, see Bernardo and Smith,

1994, pp. 191e192) which can expressed in a probabilistic

framework through a binomial probabilistic distribution. In

other words, the pattern of positive wells (along with the

dilution factor, and volume of each well) contains all of the

information necessary to quantify the likelihood function for

the “true” FIB concentration c. In contrast, the MPN is not

a complete summary of that information.We argue, therefore,

that there is little relative benefit to the existing practice of

calculating and reporting anMPN valuewhen compared to the

less commonpractice of reporting the pattern of positivewells

(or tubes) alone. This approach, of course, would allow

modelers and water resource managers alike to better

understand the sources of uncertainty and variability in water

quality measurements, and to more appropriately propagate

them into model parameter estimates and model forecasts.

Finally, the “raw” data-based model could be improved by

assuming that the dispersion of FIB cells in a sample aliquot is

greater than that represented by equations (6) and (7), which are

basedon theassumption that thenumberof FIB cells in a sample

has a Poisson Po(l) probability distribution with mean and vari-

ance l. Previous authors (El-Shaarawi et al., 1981; Christian and

Pipes, 1983, for example) have suggested that the dispersion of

organisms in a sample aliquot may be more appropriately

reflected by a negative binomial probability distribution. We

leaveexplorationof thenegativebinomialmodeland itseffecton

inactivation rate assessments for future research, but suspect

that it might improvemodel performance.

Ongoing and future opportunities for applyingourmodeling

approach are found in a broad range of environmental and

public health-related disciplines. For example (Harris et al.

(1998), utilize MPN data in the analysis of planktonic diatom

concentrations in sediment samples and cite similar studies

using MPN calculations (e.g. Larrazabal et al., 1990; An et al.,

1992). (Eckford and Fedorak (2005) use an MPN method to

assess nitrate-reducing bacteria growth in oil fields, and (Fegan

etal. (2004) presentaseriesof studiesenumeratingE. coli0157 in

cattle feces using MPN procedures. Additional examples of

MPN-based environmental assessment include soil and

groundwater composition analysis (Menyah and Sato, 1996;

Papen and von Berg, 1998) and aquifer contamination studies

(Bekins et al., 1999). A specific example of an MPN-based

assessmentof fecal contamination in recreationalwaterbodies

is theOregonBeachMonitoringProgram(Neumannetal., 2006).

This program, while acknowledging environmental conditions

as potential sources of data variability, applies MPN point esti-

mates of FIB concentration rather than probabilistic estimates,

and therefore represents the type of study which could utilize,

and potentially be improved by, our modeling strategy.

5. Conclusions

The following is a list of conclusions drawn from our study:

� FIB dark inactivation rates may vary with initial FIB concen-

tration, but the relationship depends on FIB species, and the

choice of a calibration model. We find, for example, that EC

dark inactivation rates tend to decrease as initial EC

concentrationsdecrease, but that ENTdark inactivation rates

are relatively consistent acrossdifferent ENTconcentrations.

� Wehave demonstrated potential benefits of a newmodeling

strategy which uses the pattern of positive wells or tubes

from a serial dilution FIB quantification experiment as “raw”

data in a FIB water quality assessment. This approach helps

propagate uncertainty in FIB concentration estimates into

inactivation rates and model-based water quality forecasts

while potentially simplifying the data recording process.

� Our proposed “raw” data-based model represents a more

general class of Bayesian hierarchical and multi-level

modelingstrategies (foradetaileddescription, seeGelmanand

Hill, 2007) which provide an ideal structure for encoding the

patternof positivewellsor tubes fromaserial dilutionanalysis

experiment as random variables. This model structure also

allows us to infer inactivation rates (and other model param-

eters) by combining previously documented values with

empirical evidence fromour own study using Bayes’ theorem.

� We have demonstrated that our proposed “raw” data-based

modeling approach performs as well as (if not better than)

a conventional MPN-based model, yet avoids much of the

burden of appropriately interpreting MPN values and their

confqidence limits.
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� Laboratory-scale inactivation rate estimates are not neces-

sarily transferable to more complex “real-world” mecha-

nistic models. These estimates, instead, should be critically

evaluated depending on themodeling context in which they

were derived. Minor variations in how uncertainty is

addressed, for example, can lead to very different parameter

estimates for a given model, and can subsequently effect

empirical relationships, model forecasts, and model-based

management decisions.
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Appendix

The following code was used in WinBUGS to calibrate the

proposed “raw” data-based (Bayesian) model:
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