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Modeling Goals

• For U.S. EPA AIRNow real-time operational system, 
provide a forecast spatial map of next day daily 8-hr 
maximum O3 concentrations 
- Using gridded numerical model output and point air 

monitoring data
• Map needed soon after last hourly O3 measurement of 

previous day (i.e. 11pm)
• What we have done:

– Using a small test data set (Aug 2-14, 2005), have 
developed several forecast maps and validation statistics

– Evaluated several models based on comparative fits
– Results appear to be encouraging 



Modeling Overview
• Bayesian space-time model uses point monitoring 

data and gridded eta-CMAQ forecast data in a 
regression structure avoiding:
- avoids change of support problem of some 

fusion approaches; does not require integration 
of the observed point level monitoring process to 
the grid level one

- avoids modeling ALL eta-CMAQ data and 
overwhelming information in monitoring data;

• Solve ‘change of support’ problem by inferring on 
spatial process at a point level given information at 
both the areal and point level



Ozone (O3) Pollution

• Ground level O3: adverse health effects, can cause 
respiratory problems 

• O3 is a secondary pollutant
• Sunlight + VOC + NOx O3

• Interested in daily 8-hr maximum O3 levels:
- Maximum of averages formed by 8 

successive hourly O3 levels in a day

→



Sources of Spatial Data
O3 Monitoring Data:
• Hourly data from 390 real-time monitoring sites in the eastern 

U.S.
- Calculate maximum of all 8-hr avg’s within a day

• Use data from 350 sites for modeling (estimation and 
forecasting)

• Set aside data from 40 sites for validation
• Test data for 15 days, August 2-14, 2005
• Some missing data

Eta CMAQ Hourly O3 Forecast Output:
• High resolution 12 km gridded output over the eastern U.S. 

(~10,000 grid cells)
- Calculate daily 8-hr maximum

• Includes next day forecast



Use of Data in Model
• Model the daily 8-hr maximum data for a running window of 7 

consecutive days during the two weeks

- weekly cycle arbitrarily chosen, could include more 
distant data, but initial modeling results show no 
improvement in forecasts  

• Forecast next days spatial pattern of maximum 8-hr average 
concentrations

• For each monitoring site, we find the nearest eta CMAQ grid 
cell centroid to use as a covariate 

• Finally, randomly sample 3000 CMAQ grid locations to use as 
a predictive grid; just illustrative for now



Diurnal Pattern



Observed O3 (tan) vs. Eta-CMAQ O3 (blue)



Locations of Model Fitting and Validation sites 
(left), Predictive grid (right)



Modeling Details
• Model developed here is motivated by Sahu, Gelfand, and 

Holland (2007), J. American Stat. Assoc., 107, 1221-34.

Square-Root O3:
• Observed =            at location s and time t. 
• Develop model for n sites denoted by s1,…,sn for a running 

window of t=1,…,T=7 days
• True square-root O3 = 
Measurement Error Model: Data represent true concentration plus

random measurement error

is a white noise process capturing the ‘nugget’ effect
with variance 

( , )sZ t

( , ).sO t

2
( , ) ( , ) ( , )

( , ) (0, ).
1,... ; 1,...,

ε

ε
ε σ
= +

= =

s s s
s 

Z t O t t
t N

i n t Tfor
( , )l tε s

2.εσ



Forecast Model
( )ξ ρ β β η= + − + + +s s s s si i i iO t t x t t* *

i 01( , ) ( , ) ( ) ( , ) ( , )O  

•  ξ  is a constant mean across space and time 
• 1( , )ρ si tO -  is autoregressive (0 < ρ < 1) 

•  ( )* *
0 ( ) x( , )β β+ s si i t  spatially varying regression term using  

Eta-CMAQ as a covariate;  denotes CMAQ grid cell 
containing  

- 2( , ), where ( , ) ( ; )β β β β ββ σ ρ φ−Σ Σ =0 s s i jN i j  

• is a spatially correlated, but independent in time error 
term. 

- 2( , ), where ( , ) ( ; )η η η η ηη σ ρ φ−Σ Σ =0 s s i jN i j  

• Use cross-validation method to decide on including *( )β si  



Inference Using the Posterior
Using vector notation, e.g. t 1( ( , ),..., ( , )) '=O s snO t O t  

Let t 1 0 t tXξ ρ β−= + + +1 O xtϑ β  for t=1,…,T, { }2 2 2
0 , , , , , ,ε η ββ ρ σ σ σ ξ=θ β  

      w denote all unknowns: Ot , missing data *( , )siz t , and  

      non-missing data ( , )siz t  

Then, the log of the posterior distribution, log ( , | )π w zθ , is 
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0,ξ β  are independently 4(0,10 )N , 4N(0,10 ), I(0 1)ρ ρ< <  
2 2 21 ,1 ,1ε η βσ σ σ  are independently G(2,1) to have a proper prior 



Prediction Details
• First predict at any new locations in t = 1, ….., T 
• From measurement error model: 

                         ( )2( ', ) ( ', t), εσZ t N Os s  

-   ( ', )O t +1?s  can only be sequentially determined using 

  previous ( ', )O ts  up to time t. 

• Posterior predictive distribution of ( ', )Z ts  is obtained by 
Integrating over all unknown quantities: 

( ) ( ) ( )2( ', ) | ( ', ) | ( ',[ ], ( ',[ ] | ( '), ,επ π σ π β= ∫Z t Z t O t O ts z s s s s wθ  

                      ( )( ') | ( ',[ ]) ( ')π β β× dO t d d ds s s wθ θ  



Prediction (cont.) 

• MCMC methods are used to sample the posterior  
• Draws from the posterior distribution ( | , )π z wθ  and the 

conditional distribution ( ( ') | )π β s θ  facilitate evaluating the 
integral in the joint posterior 
 

• In summary, we implement the following algorithm to 
predict ( ', ), 1,..., .=Z t t Ts   

 
1. Draw a sample ( ) ( ), , 1≥j j jwθ  from the posterior  
2. Draw ( ) ( ')β j s  using ( ' | )β θs  
3. Draw ( ) ( ',[ ])j tO s  sequentially using ( ', ) | ( '), , ,β ttO s s O wθ  

- Note that the initial value ( ) ( ',0)jO s  is a constant for all 
's  



Prediction (cont.)

4. Finally draw 
( ) ( ', )jZ ts   from ( )( ) 2( )( ', ), εσ

j jN O ts  
 

Median is used as a summary measure to preserve 1:1 
relationship between ,O Z  and 2 2,O Z  



Analysis/Results
• Under weak prior assumptions, cannot estimate all covariance 
     parameters, 2 2 2, , , , ,ε η β η βσ σ σ φ φ  consistently: 

 hence, we use set-aside data to select decay 
parameters ,η βφ φ  

 use a 2-dimensional grid of reasonable ,η βφ φ  values to  
 optimize MSE  

●   Only a few i( )β s  were significant: 
 Based on Bayesian model selection criterion of  Gelfand 

and Ghosh (1998), we decided to exclude this term 
 any sort of local lack-of-fit may be compensated by 

i( , )tη s  
●   Does not mean that eta-CMAQ has no spatial-temporal 

bias; if goal is to estimate bias, consider eliminating 
i , 1)ρ −sO( t  from model 



Mean-square errors

Validation Days Eta CMAQ β(s)≠0 β(s)=0

Aug 2-9 229.6               84.4         50.5
Aug 3-10 246.4               58            50
Aug 4-11 260.5               77.8         64.5
Aug 5-12 253.4               99.1         62.1
Aug 6-13 240.6               72.5         45.4



Hit and False Alarm Rates
• Hit: defined as event where both the validation observation and 

forecast are either greater or less than 75 ppb
• False Alarm:  observation is less than 75 ppb, but forecast is 

greater than 75 ppb

Hit and False Alarm percentages for O3 exceeding 75 ppb

Eta-CMAQ                 Model: β(s) = 0
Hit False Alarm Hit False Alarm

Aug 2-9 81.7 17.1 90.9 4.9
Aug 3-10 79.6 19.4 92.7 3.7
Aug 4-11 78.9 20.0 93.9 2.6
Aug 5-12 80.7 18.8 93.4 1.5
Aug 6-13 79.9 19.6 93.0 2.5



Hourly Validation, Aug 11
obs data (red), Eta-CMAQ (tan), Forecast (black)



Hourly Validation, Aug 11
obs data (red), Eta-CMAQ (tan), Forecast (black)



Validation: daily to Aug 11
data (red), Eta-CMAQ (tan), Forecast (black) 



Validation: daily to Aug 12
data (red), Eta-CMAQ (tan), Forecast (black) 



Forecast Maps for August 9
Eta-CMAQ (left), Forecast model β(s)=0 (right)



Forecast Maps for August 9
Eta-CMAQ (left), Forecast model β(s)=0 (right)



Lengths of 95% Confidence intervals for 
forecasts on Aug 9 (left) and Aug 12 (right)



Conclusions/Future Directions
• Model improves upon forecast results from Eta-CMAQ output 

• High resolution model seems adequate for fast EPA AirNow
implemention

• Can attach prediction uncertainties to forecasts

• In process of developing a real-time forecast system using this 
model

• Companion effort, predict current 8-hr average O3 levels based 
on predictions for each of the 4 previous hours, current hour, 
and for the next 3 hours
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