Improved Forecasting of Next Day Ozone Concentrations in the Eastern U.S.

David Holland, U.S. EPA Joint work with S. Sahu and C. Yip (U. of Southhampton)

> ASA Joint Statistical Meetings, 2010 Vancouver, Canada

Modeling Goals

- For U.S. EPA AIRNow real-time operational system, provide a forecast spatial map of next day daily 8-hr maximum O₃ concentrations
 - Using gridded numerical model output and point air monitoring data
- Map needed soon after last hourly O₃ measurement of previous day (i.e. 11pm)
- What we have done:
 - Using a small test data set (Aug 2-14, 2005), have developed several forecast maps and validation statistics
 - Evaluated several models based on comparative fits
 - Results appear to be encouraging

Modeling Overview

- Bayesian space-time model uses point monitoring data and gridded eta-CMAQ forecast data in a regression structure avoiding:
 - avoids change of support problem of some fusion approaches; does not require integration of the observed point level monitoring process to the grid level one
 - avoids modeling ALL eta-CMAQ data and overwhelming information in monitoring data;
- Solve 'change of support' problem by inferring on spatial process at a point level given information at both the areal and point level

Ozone (O₃) Pollution

- Ground level O₃: adverse health effects, can cause respiratory problems
- O₃ is a secondary pollutant
- Sunlight + VOC + $NO_x \rightarrow O_3$
- Interested in daily 8-hr maximum O₃ levels:
 - Maximum of averages formed by 8 successive hourly O_3 levels in a day

Sources of Spatial Data

O₃ Monitoring Data:

- Hourly data from 390 real-time monitoring sites in the eastern U.S.
 - Calculate maximum of all 8-hr avg's within a day
- Use data from 350 sites for modeling (estimation and forecasting)
- Set aside data from 40 sites for validation
- Test data for 15 days, August 2-14, 2005
- Some missing data
- Eta CMAQ Hourly O₃ Forecast Output:
- High resolution 12 km gridded output over the eastern U.S. (~10,000 grid cells)
 - Calculate daily 8-hr maximum
- Includes next day forecast

Use of Data in Model

- Model the daily 8-hr maximum data for a running window of 7 consecutive days during the two weeks
 - weekly cycle arbitrarily chosen, could include more distant data, but initial modeling results show no improvement in forecasts
- Forecast next days spatial pattern of maximum 8-hr average concentrations
- For each monitoring site, we find the nearest eta CMAQ grid cell centroid to use as a covariate
- Finally, randomly sample 3000 CMAQ grid locations to use as a predictive grid; just illustrative for now

Diurnal Pattern

Observed O₃ (tan) vs. Eta-CMAQ O₃ (blue)

Locations of Model Fitting and Validation sites (left), Predictive grid (right)

Modeling Details

• Model developed here is motivated by Sahu, Gelfand, and Holland (2007), J. American Stat. Assoc., 107, 1221-34.

Square-Root O3:

- Observed = $\overline{Z}(\mathbf{s},t)$ at location **s** and time *t*.
- Develop model for n sites denoted by s₁,...,s_n for a running window of *t*=1,...,T=7 days
- True square-root $O_3 = O(s,t)$.

Measurement Error Model: Data represent true concentration plus

random measurement error

$$Z(\mathbf{s},t) = O(\mathbf{s},t) + \varepsilon(\mathbf{s},t)$$
$$\varepsilon(\mathbf{s},t) \sim N(0,\sigma_{\varepsilon}^{2}).$$
for $i = 1,...,r$; $t = 1,...,T$

 $\varepsilon_l(\mathbf{s},t)$ is a white noise process capturing the 'nugget' effect with variance σ_{ε}^2 .

Forecast Model

 $O(\mathbf{s}_i, t) = \xi + \rho O(\mathbf{s}_i, t-1) + \left(\beta_0 + \beta(\mathbf{s}_i^*)\right) x(\mathbf{s}_i^*, t) + \eta(\mathbf{s}_i, t)$

- ξ is a constant mean across space and time
- $\rho O(\mathbf{s}_i, t-1)$ is autoregressive (0 < ρ < 1)
- $(\beta_0 + \beta(\mathbf{s}_i^*))\mathbf{x}(\mathbf{s}_i^*, t)$ spatially varying regression term using Eta-CMAQ as a covariate; \mathbf{s}_i^* denotes CMAQ grid cell containing \mathbf{s}_i

-
$$\beta \sim N(\mathbf{0}, \Sigma_{\beta})$$
, where $\Sigma_{\beta}(i, j) = \sigma_{\beta}^2 \rho_{\beta}(\mathbf{s}_i - \mathbf{s}_j; \phi_{\beta})$

η(s_i,t) is a spatially correlated, but independent in time error term.

-
$$\eta \sim N(\mathbf{0}, \Sigma_{\eta})$$
, where $\Sigma_{\eta}(i, j) = \sigma_{\eta}^2 \rho_{\eta}(\mathbf{s}_i - \mathbf{s}_j; \phi_{\eta})$

• Use cross-validation method to decide on including $\beta(\mathbf{s}_i^*)$

Inference Using the Posterior

Using vector notation, e.g. $\mathbf{O}_{t} = (O(\mathbf{s}_{1}, t), ..., O(\mathbf{s}_{n}, t))'$

Let $\boldsymbol{\vartheta}_{t} = \boldsymbol{\xi} \boldsymbol{1} + \boldsymbol{\rho} \boldsymbol{O}_{t-1} + \boldsymbol{\beta}_{0} \boldsymbol{x}_{t} + \boldsymbol{X}_{t} \boldsymbol{\beta}$ for $t=1,\ldots,\mathsf{T}, \ \boldsymbol{\theta} = \left\{\boldsymbol{\beta}_{0}, \boldsymbol{\beta}, \boldsymbol{\rho}, \boldsymbol{\sigma}_{\varepsilon}^{2}, \boldsymbol{\sigma}_{\eta}^{2}, \boldsymbol{\sigma}_{\beta}^{2}, \boldsymbol{\xi}\right\}$

w denote all unknowns: \mathbf{O}_t , missing data $z^*(\mathbf{s}_i, t)$, and non-missing data $z(\mathbf{s}_i, t)$

Then, the log of the posterior distribution, $\log \pi(\theta, \mathbf{w} | \mathbf{z})$, is

$$-\frac{nT}{2}\log(\sigma_{\varepsilon}^{2}) - \frac{1}{2\sigma_{\varepsilon}^{2}}\sum_{t=1}^{T} (\mathbf{Z}_{t} - \mathbf{O}_{t})'(\mathbf{Z}_{t} - \mathbf{O}_{t}) - \frac{nT}{2}\log(\sigma_{\beta}^{2})$$
$$-\frac{1}{2\sigma_{\eta}^{2}}\sum_{t=1}^{T} (\mathbf{O}_{t} - \boldsymbol{\vartheta}_{t})'S_{\eta}^{-1}(\mathbf{O}_{t} - \boldsymbol{\vartheta}_{t}) - \frac{nT}{2}\log(\sigma_{\beta}^{2}) - \frac{1}{2\sigma_{\beta}^{2}}\boldsymbol{\beta}'S_{\beta}^{-1}\boldsymbol{\beta} + \log(\pi(\boldsymbol{\theta}))$$

 ξ, β_0 are independently $N(0, 10^4), \rho \sim N(0, 10^4), I(0 < \rho < 1)$ $1/\sigma_{\varepsilon}^2, 1/\sigma_{\eta}^2, 1/\sigma_{\beta}^2$ are independently *G*(2,1) to have a proper prior

Prediction Details

- First predict at any new locations in t = 1, ..., T
- From measurement error model:

$$Z(\mathbf{s}',t) \sim N(O(\mathbf{s}',t),\sigma_{\varepsilon}^2)$$

- $O(\mathbf{s}', t+1?)$ can only be sequentially determined using previous $O(\mathbf{s}', t)$ up to time *t*.
- Posterior predictive distribution of $Z(\mathbf{s}',t)$ is obtained by Integrating over all unknown quantities:

$$\pi (Z(\mathbf{s}',t) | \mathbf{z}) = \int \pi (Z(\mathbf{s}',t) | O(\mathbf{s}',[t],\sigma_{\varepsilon}^2) \pi (O(\mathbf{s}',[t] | \beta(\mathbf{s}'), \mathbf{\theta}, \mathbf{w}))$$
$$\times \pi (\beta(\mathbf{s}') | \mathbf{\theta}) dO(\mathbf{s}',[t]) d\beta(\mathbf{s}') d\mathbf{\theta} d\mathbf{w}$$

Prediction (cont.)

- MCMC methods are used to sample the posterior
- Draws from the posterior distribution π(θ | z, w) and the conditional distribution π(β(s') | θ) facilitate evaluating the integral in the joint posterior
- In summary, we implement the following algorithm to predict $Z(\mathbf{s}', t), t = 1, ..., T$.
 - 1. Draw a sample $\theta^{(j)}, \mathbf{w}^{(j)}, j \ge 1$ from the posterior
 - 2. Draw $\beta^{(j)}(\mathbf{s}')$ using $\beta(\mathbf{s}'|\mathbf{\theta})$
 - 3. Draw $\mathbf{O}^{(j)}(\mathbf{s}', [t])$ sequentially using $\mathbf{O}(\mathbf{s}', t) | \beta(\mathbf{s}'), \mathbf{O}_t, \theta, \mathbf{w}$
 - Note that the initial value O^(j)(s',0) is a constant for all
 s'

Prediction (cont.)

4. Finally draw
$$Z^{(j)}(\mathbf{s}',t)$$
 from $N(O^{(j)}(\mathbf{s}',t),\sigma_{\varepsilon}^{2(j)})$

Median is used as a summary measure to preserve 1:1 relationship between O, Z and O^2, Z^2 .

Analysis/Results

- Under weak prior assumptions, cannot estimate all covariance parameters, $\sigma_{\varepsilon}^2, \sigma_{\eta}^2, \sigma_{\beta}^2, \phi_{\eta}, \phi_{\beta}$, consistently:
 - hence, we use set-aside data to select decay parameters $\phi_{\!\eta}, \phi_{\!\beta}$
 - use a 2-dimensional grid of reasonable ϕ_η, ϕ_β values to optimize MSE
- Only a few $\beta(\mathbf{s}_i)$ were significant:
 - Based on Bayesian model selection criterion of Gelfand and Ghosh (1998), we decided to exclude this term
 - any sort of local lack-of-fit may be compensated by $\eta(\mathbf{s}_{\mathbf{i}},t)$
- Does not mean that eta-CMAQ has no spatial-temporal bias; if *goal is to estimate bias*, consider eliminating $\rho O(\mathbf{s}_i, t-1)$ from model

Mean-square errors

Validation Days	Eta CMAQ	<u>β(s)</u> ≠0	<u>β(s)=0</u>
Aug 2-9	229.6	84.4	50.5
Aug 3-10	246.4	58	50
Aug 4-11	260.5	77.8	64.5
Aug 5-12	253.4	99.1	62.1
Aug 6-13	240.6	72.5	45.4

Hit and False Alarm Rates

- Hit: defined as event where both the validation observation and forecast are either greater or less than 75 *ppb*
- False Alarm: observation is less than 75 *ppb*, but forecast is greater than 75 *ppb*

Hit and False Alarm percentages for O₃ exceeding 75 ppb

	Eta-CMAQ		Model: $\beta(\mathbf{s}) = 0$	
	<u>Hit</u>	<u>False Alarm</u>	<u>Hit</u>	False Alarm
Aug 2-9	81.7	17.1	90.9	4.9
Aug 3-10	79.6	19.4	92.7	3.7
Aug 4-11	78.9	20.0	93.9	2.6
Aug 5-12	80.7	18.8	93.4	1.5
Aug 6-13	79.9	19.6	93.0	2.5

Hourly Validation, Aug 11 obs data (red), Eta-CMAQ (tan), Forecast (black)

Hourly Validation, Aug 11 obs data (red), Eta-CMAQ (tan), Forecast (black)

Validation: daily to Aug 11 data (red), Eta-CMAQ (tan), Forecast (black)

Validation: daily to Aug 12 data (red), Eta-CMAQ (tan), Forecast (black)

Example 2 Forecast Maps for August 9 Eta-CMAQ (left), Forecast model β (s)=0 (right)

Forecast Maps for August 9 Eta-CMAQ (left), Forecast model β (s)=0 (right)

Lengths of 95% Confidence intervals for forecasts on Aug 9 (left) and Aug 12 (right)

Conclusions/Future Directions

- Model improves upon forecast results from Eta-CMAQ output
- High resolution model seems adequate for fast EPA AirNow implemention
- Can attach prediction uncertainties to forecasts
- In process of developing a real-time forecast system using this model
- Companion effort, predict current 8-hr average O3 levels based on predictions for each of the 4 previous hours, current hour, and for the next 3 hours