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Background

• Arsenic contamination in groundwater and soil is widespread
from both natural and anthropogenic sources

• There have been great interests in the remediation of certain
organic and inorganic contaminants such as chlorinated
solvents and chromate using zerovalent iron as a permeable
reactive barrier (PRB) medium

• Mechanisms of interaction of arsenic between the iron and
iron oxides are not fully understood and environmental
factors are not well evaluated
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What is a PRB – Permeable Reactive Barrier?

• In situ groundwater remediation technology
• Reactive material placed in the flow path of contaminants
• Flexible: reactive media, contaminant types (metals & organics),

variable configurations possible
• No energy input required; uses natural hydraulic gradients

to transport contaminants to a treatment zone
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waste

treated
water

PRB

Contaminants treated with PRBs Reactive media used in PRBs

Organics: e.g., PCE, TCE
Inorganics: e.g., Cr, Pb, Cd, As, Nitrates
Radionuclides: U, Sr

Iron metal, slag
Organic carbon: e.g., compost
Limestone
Zeolites
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Objectives

• To evaluate removal kinetics of arsenate and arsenite in the
zerovalent iron media and iron oxides media in batch tests

• To evaluate the potential use of iron as permeable reactive
barrier materials for in situ arsenic remediation in
groundwater in column tests

• To investigate the environmental factors such as time, pH,
and competing anions that affect the interactions of arsenic
with the permeable reactive barrier media
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Materials

• Four zerovalent iron (Fe0) specimen: Fisher, Peerless, Master
Builders, Aldrich

• One magnetite (Fe3O4) from Phoenix Environmental Ltd

• Six magnetite and three hematite (α- Fe2O3) specimen from
Connelly-GPM, Inc

• Synthetic goethite (α-FeOOH)

• Synthetic birnessite (δ- MnO2)
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Methods for Batch Tests

• In the Fe0 system, one g of Fe0 was reacted with 42 mL of 2 mg L-1

As(V), As(III) or As(V+III) (1:1) in 0.01 M NaCl in head-space-free
centrifuge tubes for up to 5 days

• In the Fe oxide system, 0.1 g of oxides was reacted with 2 mg L-1

As(V), As(III) or As(V+III) (1:1) in 0.01 M NaCl in head-space-free
centrifuge tubes for 24 h. The pH of suspensions was adjusted with
HCl or NaOH

• The suspensions were centrifuged, filtered, and analyzed for As(V)
and As(III). The pH and Eh were determined for unfiltered
suspensions

• Total dissolved As was determined by ICP-AES. Speciation of As(V)
and As(III) was accomplished by IC-GFAAS or IC-HG-AFS
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Methods for Batch Tests

• In the phosphate displacement experiment, sorbents were
reacted with As(V), As(III), or As(V+III) (1:1) for 1, 30, and 60
days. The solution was replaced with 5 mM NaH2PO4 in 0.01
M NaCl and shaken for 24 h. The phosphate extraction was
repeated

• Some materials were reacted with either As(V) or As(III) at
high concentrations (500 or 1000 mg L-1) and washed with
acetone, dried and stored in Ar gas for x-ray photoelectron
spectroscopic (XPS) study

• Semiquantitative mineralogical analysis was conducted
using x-ray diffraction. The surface area was determined by
BET N2 adsorption analysis
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Specific Surface Area and HNO3 – HCl Extractable Mn in Sorbents

Fisher Iron

Peerless Iron

Master Builders Iron

Aldrich Iron

Magnetite (Phoenix)

Magnetite (Connelly CC-1048)

Hematite (Connelly CC-1049)

Surface Area
(m2 g-1)

0.091

2.53

2.33

0.19

2.43

11.2

5.17

Mn Conc
(mg kg-1)

45

5255

5645

3770

4439

1974

694

Material
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Phosphate Displacement
of Sorbed As on Peerless Fe0
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As Removal by Fe0

• As concentration decreased with increasing time, and was
mostly below 0.05 mg L-1 in 5 days in NaCl solution

• As removal rates follow the order : Fisher Fe0 > Peerless =
Master Builders > Aldrich Fe0. The same order was observed
for trichloroethylene dechlorination by these same metals
from a previous study

• As(III) was partially oxidized to As(V); whereas As(V) was not
significantly reduced within 5 days

• The pH and Eh reached steady state with time

• More As(III) is removed than As(V) by Peerless Fe0 at pH 9-10
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Anion Effects on As Removal by Fe0

• Sulfate at 1 mM did not affect As(V) removal by Peerless Fe0

compared to 10 mM NaCl

• Phosphate, silicate, chromate, and molybdate caused strong
inhibition to As removal, followed by nitrate and carbonate

• Borate and sulfate only caused slight decrease in As(III)
removal

• Peerless Fe0 may be an excellent permeable reactive barrier
medium for a suite of mixed inorganic contaminants
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Phosphate Displacement
of Sorbed As on Magnetite (CC-1048)
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Phosphate Displacement
of Sorbed As on Hematite (CC-1049)
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Removal of As by Metal Oxides

• As(V) sorption envelopes for Phoenix magnetite shifted to
higher pH region when the mass of oxides was increased

• On a mass basis, goethite was the most effective sorbent

• All the added As(III) in the birnessite suspension was
oxidized to As(V) that resulted in the almost identical
sorption envelopes for both added As(V) and As(III)

• As(III) was oxidized significantly to As(V) in the magnetite
and hematite suspensions at pH > 6. Minor amounts of
manganese dioxide present in the Fe oxides might be
responsible for the oxidation
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Binding Energy (eV)
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Speciation of Sorbed As on Peerless Iron
by X-ray photoelectron spectroscopy
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49

XPS Results

• No As(III) was detected on either Peerless iron or magnetite
at 5 days when As(V) was the initial species in the solution

• As(III) was detected at 30 and 60 days when As(V) was the
initial species in the solution. This indicates a slow reduction
of adsorbed arsenate on the surface

• Oxidation of added arsenite occurred on both Peerless iron
and magnetite. A steady distribution of As(V) and As(III)
seemed to be achieved at 60 days on Peerless iron

50 Effluent
Containment
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SEM Micrograph of Peerless Iron after Column Test

Carbonate green rust
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57 58

Green Rust: Structure, Composition, and
Environmental Importance

• Compositionally variable, mixed valance Fe(II)/Fe(III)
layered hydroxides

• Interlayer anions: Cl-, SO4
2-, CO3

2-, etc

• End member: Fe4
IIFe2

III(OH)12SO4.nH2O

• End member: Fe4
IIFe2

III(OH)12CO3.nH2O

• Forms in reducing/transitional environments

• Major iron corrosion products

59

GRCO3 = 0.8 nm
GRSO4 = 1.1 nm

Fe6(OH)12SO4 + CO3
2- = Fe6(OH)12CO3 + SO4

2-

K1 = [SO4
2- / CO3

2-] · [Fe6(OH)12CO3 / Fe6(OH)12SO4] = 103.1

GR free energy data from Bourrié et al. (1999)
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Conclusions

• All the zerovalent iron samples and iron oxides with the
exception of Aldrich iron showed effective removal of both
As(V) and As(III) from water

• Greater sorption occurred when the residence time was
increased

• Surface adsorption was likely the major process of As
removal

• Coexistence of As(V) and As(III) on Peerless iron surface was
probably caused by the presence of both reducing species
(Fe0 and Fe2+), and an oxidizing species (MnO2)

• Phosphate, silicate, molybdate, and chromate inhibited As
sorption with sulfate showing insignificant effect

• Zerovalent iron is a promising material that can be used in a
PRB for groundwater As remediation

63

Questions?


