Strategies for the Green Synthesis of Organics and Nanomaterials

Rajender S. Varma

Sustainable Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio 45268, USA. E-mail: Varma.Rajender@epa.gov

The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.¹ The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions² are the primary beneficiaries as exemplified by the synthesis of *N*-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in aqueous media in conjunction with microwave (MW) irradiation.²

Vitamins B₁, B₂, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.^{3a} Shape-controlled synthesis of noble nanostructures *via* MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.^{3b} A general method has been developed that accomplishes the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems such as Pt, Cu, and In; bimetallic systems, namely Pt-In, Ag-Pt, Pt-Fe, Cu-Pd, Pt-Pd and Pd-Fe;^{3c} and SWNT, MWNT, and C-60.^{3d} The strategy is extended to the formation of biodegradable carboxymethyl cellulose (CMC) composite films with noble nanometals;^{3e} such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach^{3f} which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).^{3g} MW hydrothermal process delivers magnetic nanoferrites⁴ and micro-pine structured catalysts are also obtainable in water from readily available metal salts.⁵ The sustainable generation of nano particles and their applications in catalysis^{6,7} and environmental remediation⁸ will be highlighted.

- V. Polshettiwar, R.S. Varma, Acc. Chem. Res., 41, 629 (2008); ibid, Chem. Soc. Rev., 37, 1546 (2008); ibid, Curr. Opin. Drug Discov. Devel., 10, 723 (2007); ibid, Pure App. Chem., 80, 777 (2008); C.R. Strauss, R.S. Varma, Top. Curr. Chem., 266, 199 (2006); R.S. Varma, Tetrahedron, 58, 1235 (2002); R.S. Varma, Green Chem., 1, 43 (1999).
- [2] V. Polshettiwar, R.S. Varma, *Tetrahedron Lett.*, 49, 879 (2008); ibid, *Tetrahedron Lett.*, 49, 397 (2008); ibid, *J. Org. Chem.*, 72, 7420 (2007); ibid, *Tetrahedron Lett.*, 48, 5649 (2007); ibid, *Tetrahedron Lett.*, 48, 7343 (2007; Y. Ju, R.S.Varma, *J. Org. Chem.*, 71, 135 (2006).
- [3] (a) M.N. Nadagouda, R.S. Varma, Green Chem., 8, 516 (2006); Green Chem., 10, 859 (2008); Crystal Growth Design, 7, 2582 (2007); (b) ibid, Crystal Growth Design, 7, 686 (2007); (c) ibid, Macro. Rapid Commun., 2007, 28, 465 (2007); (d) ibid, Macro. Rapid Commun., 2007, 28, 842 (2007); (e) ibid, Biomacromolecules, 8, 2762 (2007); (f) ibid, Macro. Rapid Commun., 29, 155 (2008); (g) ibid, Crystal Growth Design, 8, 291 (2008).
- [4] B. Baruwati, M.N. Nadagouda, R.S. Varma, J. Phys. Chem. C., 112, 18399 (2008).
- [5] V. Polshettiwar, M.N. Nadagouda, R.S. Varma, Chem. Commun., 6318 (2008).
- [6] V. Polshettiwar, R.S. Varma, Chemistry: Europ. J. 2009, 15, 1582 (2009).
- [7] V. Polshettiwar, B. Baruwati, R.S. Varma, *Green Chem.*, *11*, 127 (2009); ibid, *ACS Nano*, *3*, 728 (2009); ibid, *Chem. Commun.*, 1837 (2009).
- [8] G. E. Hoag, J. B. Collins, J. L. Holcomb, J. R. Hoag, M. N. Nadagouda, R. S. Varma: J. Mater. Chem., 2009, DOI: 10.1039/b909148c.