13th Annual OSC Readiness Training Program

Composition and Behavior of Ethanol Gasolines

Presenter: Jim Weaver US Environmental Protection Agency National Exposure Research Laboratory Athens, Georgia Rest of the second

Outline

- Historical Usage of Ethanol
- Phase behavior of ethanol/gasoline blends
- Composition of Fuel Ethanol Samples
- Field Examples: Land and Water
- Modeling Examples

Alternate Marketing Strategies

OSC Readiness 2010

Ethanol Usage in Gasoline

Historic

- o Known as an octane booster since the 1920s
- o Used in upper mid west at least during 90s
- o Oxygenates required in reformulated gasoline 1995-2006
- o Increased usage because of MTBE bans after 2000
- Mandated
 - o Energy Policy Act 2005
 - o Energy Independence and Security Act of 2007
 - o Some state rules

Terminology

- Following ASTM D 4806 08a Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel.
 - o **Denaturant** -- a material added to fuel ethanol to make it unsuitable for beverage use, but not for unsuitable for automotive use.
 - o *Fuel Ethanol* -- ethanol with impurities common to its production including water but not denaturants.
 - o **Denatured Fuel Ethanol** fuel ethanol made unfit for beverage use by the addition of denaturants.
 - o *Higher Molecular Weight Alcohols* aliphatic alcohols of general formula CnH2n+10H with n from 3 to 8.

Ethanol and Gasoline Blends

- E100: Non-denatured fuel ethanol
- E95: Denatured fuel ethanol
 - o ASTM 4806
 - Min 92% ethanol
 - Denaturants: 2% to 5%
 - Natural gasoline
 - o Gasoline components
 - o Unleaded gasoline
- E85: "Flex Fuel" ASTM D 5798 o Three ethanol classes: 70%, 74%, 79%
- E10: "may contain 10% ethanol" o ~90% gasoline
- "E00" "ethanol free gasoline"

Overview from producers to consumers

- Producers
 - o Distill to 190 proof
 - o Dry to 200 proof (molecular sieve)
 - o Denature
- Transporters
 - o Not to go in U.S. pipelines (exception for Central Florida)
 - o Therefore: barges, trucks, trains
- Distributers (from terminals)
 - o Separate Ethanol Tank
 - o Splash Blending
 - Add gasoline blending component ("RBOB"), ethanol, and additives let mix in tanker as delivery is made
- Users
 - o Compatible Tanks, Pipes, Dispensers?
 - o Water Bottoms?
 - o Auto issues?

ASTM SPEC

- Ethanol > 92.1%
- Water < 1%
- Methanol < 0.5%
- Solvent-wasted gum < 5 mg/100 mL
- Denaturant 1.96% to 5%
- Inorganic Chloride < 10 mg/L

A Word on Taxes

- 2008 Food, Conservation, and Energy Act (Public Law 110-123)
 - o January 1, 2009
 - o full ethanol production credit only if denaturant content < 2%.
- U.S. Internal Revenue Service
 - o temporarily allowing credits for denaturant(s) < 2.5% of the fuel ethanol
 - o Notice 2009-06

Denaturants

- ASTM also specifies **prohibited** denaturants:
 - o (adverse effects on fuel stability, automotive engines, and fuel systems)
 - o hydrocarbons with an end boiling point above 225 °C,
 - o methanol not meeting ASTM D1152,
 - o pyrroles, turpentine, ketones, and tars.

Terminology

- Following the Code of Federal Regulations (40 CFR) Part 80 – Regulation of Fuels and Fuel Additives:
 - o Reformulated Gasoline (RFG) is any gasoline whose formulation has been certified under 40 CFR § 80.40 and which meets each of the standards and requirements prescribed under 40 CFR § 80.41.
 - From 1995 until 2006, RFG was required to contain 2 % by weight oxygen-containing compounds ("oxygenates")
 - *Benzene* < 1%
 - o Conventional Gasoline (CG) is any gasoline which has not been certified under 40 CFR § 80.40.
 - o **Oxygenated Gasoline (OG)** is any gasoline which contains a measurable amount of oxygenate.

Reformulated and Conventional Gasoline in the US

DOE Production Data

Phase Behavior

- Phase Separation
 - o Gasoline adsorbs water up to a point where phase separation occurs
 - Gasoline ~0.1%
- Volume Changes
 - o Ethanol/E85 volume reduction with water addition

OSC Readiness 2010

Videos

• Dyed Water Added to E85

- o Initially water is absorbed by E85
- o Initially no increase in volume
- o E85 breaks into "gasoline" and aqueous/ethanol phase

• E85 added to water

- o Quiescent E85 jets into water
- o Cloudy surfactant layer over clear water
- o Gasoline accumulates on surface
- o In moving system gasoline "rides" surface

Dyed water and "gasoline" after phase separation

OSC Readiness 2010

Gasoline on surface, Accumulating at edges

11

WA

Ethanol Components

Name	Formula	CAS. Number	Concentration (wt. %)	
			Wet Mill Sample	Dry Mill Sample
Water ⁽¹⁾	H ₂ O	7732-18-15	0.65	0.08
Methanol	CH ₄ O	67-55-1	0.07	0.06
Ethanol ⁽²⁾	C_2H_6O	64-17-5	97.89	99.75
1-Propanol	C ₃ H ₈ O	71-23-8	0.03	0.08
Isobutyl Alcohol	$C_4H_{10}O$	78-83-1	0.10	0.08
Methyl 1-Butanol	C ₅ H ₁₂ O	137-32-6	0.06	0.01
Methyl 1-Butanol	C ₅ H ₁₂ O	123-51-3	0.21	0.02
Ethyl Acetate	$C_4H_8O_2$	141-78-6	0.02	
1,1-Diethoxyethane	$C_6 H_{14} O_2$	105-57-7	0.28	//

⁽¹⁾ Determined by Karl Fischer titration ⁽²⁾Determined by remainder of other compounds

February 1-4, 2010 | Orlando, Florida

2

3

www.oscreadiness.org

31

Observed Ethanol Concentrations in Gasoline

Northrop-Grumman (successor to NIPER) Bartlesville, Oklahoma

Conventional Gasoline

Northrop-Grumman (successor to NIPER) Bartlesville, Oklahoma

Reformulated Gasoline

Cosolubility

Ethanol increases the aqueous solubility of petroleum hydrocarbon

- o Dependent on
 - Ethanol concentration in water
 - Petroleum hydrocarbon concentration in gasoline
- o Theory developed by Heerman and Powers, 1998
 - Example:
 - o Gasoline containing 1% benzene, mixed with denatured alcohol
 - Alcohol denatured with gasoline containing 1% benzene
 - o Benzene mass not limiting

Estimated Benzene Concentration

OSC Readiness 2010

Spill to Land, Info. Courtesy of Dr. Roy Spalding, U of Nebraska

Balaton, Minnesota

OSC Readiness 2010

Balaton, Minnesota

July 28, 2004 ~90,000 Gs of d-ethanol released ~10,000 Gs residual ethanol after product removal and soil excavation

D. Oxygen: 4.3 Years After Derailment

- Long delay in ground water impact
- Ethanol hanging up in vadose zone for undetermined reasons
- Methane at water solubility
- Similar behavior to two other sites under investigation

E10 Releases to Land

- Formation of groundwater plumes
- Biotransformation of ethanol causes extension of BTEX plumes
 - o Order of 2x length
- Simulation (next slide) requires accounting for electron acceptors/donors: O₂, NO₂, Fe⁺⁺⁺, SO₄, CO₂

Modeled RFG (w MTBE) vs E10

- Plan views:
- Flow is to the left

MTBE/Benzene: low biodegradation of MTBE, benzene plume is degraded, and limited in extent

E10/Benzene, High degradation of ethanol, benzene plume is expanded in extent

Spill to Broadland Creek May 17, 2008 Info. Courtesy of Kim McIntosh, SD-DENR

- Dry Mill plant in Huron, South Dakota
- Transfer line hose broke during filling of tank car
- Approx. 6000 gallons of ethanol released
- 100s of fish killed in creek o Minnows, bullhead, carp
- Recreational lake closed for 10 days

Response

- Deploy boom and aerators 3 mi downstream
- Daily check of temperature, dissolved oxygen, pH, conductivity
 - o 5/20/2008 am D.O. 0.2 to 10.6 mg/L
 - o 5/21/2008 am D.O. 0.3 to 5.4 mg/L
 - o 5/21/2008 pm D.O. 1.0 to 7.6 mg/L
 - o 5/22/2008 am D.O. 1.0 to 6.0 mg/L
 - o 5/22/2008 pm D.O. 1.2 to 5.7 mg/L (downstream)
 - o 5/22/2008 pm D.O. 0.4 to 8.0 mg/L
 - o 5/23/2008 am D.O. 1.0 to 6.6 mg/L (upstream)
 - o 5/23/2008 pm D.O. 0.3 to 5.8 mg/L
 - o 5/23/2008 pm D.O. 0.1 to 5.6 mg/L (downstream)
 - o 5/24/2008 am D.O. 0.2 to 5.9 mg/L
 - o 5/27/2008 am D.O. 1.0 to 8.0 mg/L
- Moved aerators as plume moved downstream

Huron, S.D., May 17, 2008

Comments

- No gasoline observed
- 4 water samples for VOCs 5/21

 o BTEX, tri-methylbenzenes, ethanol, methanol
 o Most results ND, one sample ethanol at 6800 ppb
- Generally increased D.O. by 5/27/2008
- Fish kill happened before oxygen sparging

 Does the depletion of oxygen kill the fish?
 Does the ethanol + hydrocarbons kill the fish?
 - (replenishing the D.O. may not save the fish)

Conclusions

- Ethanol rapidly replaced ethers in mid 2006 in reformulated gasoline
- Ethanol is used in about 75% of U.S. gasoline.
- Fuel ethanol contains several impurities including higher molecular weight alcohols
 - o 3 to 5 carbon atoms
 - o ...But at concentrations < 1/4 percent

OSC Readiness 2010

Conclusions

 E85 and E95 adsorb about 20%-30% of own volume in water before phase separating

 Fuel Ethanol doesn't phase separate
 E10 phase separates at about 0.5% water

Conclusions

- Spills of denatured alcohol to land based on three field studies:
 - o Hangs up in the vadose zone
 - o Methane at max solubility
 - o Impacts to ground water delayed
- E10 Releases cause extended BTEX plumes
- Spills to water (Broadlands Ck)
 - o No observed gasoline slick from denatured alcohol
 - o Loss of dissolved oxygen major impact

Honeycutt Creek/Middle Oconee River Athens, Georgia

- Scenario:
 - o Small creek that drains area near fuel terminal
 - o Oil spill in 2003 (14K gallons mixed gasoline, diesel, waste oil)
 - o Approx 3 miles downstream intercepts Middle Oconee River
 - o Drinking Water Intake for Athens, Georgia at confluence of Honeycutt Creek and Middle Oconee River
 - o River continues to Lake Oconee 27 miles down river
 - Recreational lake lots of fishing

Data

- Hypothetical Release Scenario
- Composition and Phase Separation Data from Laboratory
- Stream network geometry from USGS DEMs
- Flows
 - o Un-gauged Honeycutt Creek flow and geometry from a day's work
 - o Middle Oconee River flows and discharge stage from USGS gages

OSC Readiness 2010

USGS Station Geometry

- Depth and Width of River/Streams are necessary o Determines dilution of dissolved chemicals
- Velocity
 - o Determines transport rate
- USGS surveys stations each year
 - o Continual change due to scouring and sedimentation
 - o Our protocol is to use the latest data for a given channel size

USGS Velocity/Area Data

February 1-4, 2010 | Orlando, Florida | www.oscreadiness.org

56

Model Approach

- Use measured flows to drive transport model
- Lagrangian approach to gasoline slick transport
 - o Cosolvancy calculation for BTEX and other petroleum hydrocarbons
 - o All ethanol washes out of fuel
 - Supported by experimental results
 - o Gasoline evaporates based on time on river
- Eulerian-lagrangian approach to ethanol/BTEX/oxygen transport
 - o Accurate solution of the transport equation necessary to correctly simulate reaction
 - o Implemented via a flexible/extensible approach

Oil Slick Extent

Reactive Transport for Ethanol/BTEX and oxygen

- Ethanol degrades aerobically in the presence of oxyger
- Approximately 2 g of O₂ required to mineralize 1 g of ethanol
- Oxygen is supplied from
 - o Ambient dissolved oxygen concentration in water
 - o Re-aeration from the atmosphere
 - o Oxygenated inflows

Test Problem to Illustrate Appropriate Stoichiometry

DSC Readiness 2010

Next Steps

- Assembling data for Rockford, III spill
- Increased efficiency in the model is needed in order to simulated 100+ river miles
- Linkage with bioaccumulation/toxicity model to estimate fish kill due to ethanol + hydrocarbon toxicity
- Others

National Exposure Research Laboratory

- Although this work was reviewed by EPA and approved for presentation, it may not necessarily reflect official Agency policy.
- Thanks to:
 - o Mark Toso, Minnesota PCA,
 - o Cheryl Dickson, Northrop-Grumman,
 - o Kim McIntosh, South Dakota DENR,
 - o Dr. Roy Spalding, University of Nebraska,
 - o Dr. Illena Rhodes, Shell Global Solutions
- Contact: <u>weaver.jim@epa.gov</u>
- EPA report, April 2009:
 - 0 Composition and Behavior of Fuel Ethanol, EPA 600/R-09/037
 - o from www.epa.gov/athens/publications