

Biomass Burning Emissions – The Importance of Reducing Uncertainties for Improved Regulatory Decision; an EPA Perspective

James Szykman - US EPA, ORD, NERL, ESD Joe Kordzi- USEPA, Region 6 George Pouliot and Tom Pierce – US EPA, ORD, NERL, AMAD Tom Pace and Tesh Rao – USEPA, OAR, OAQPS

Wildland Fire Emissions in Chemical Transport Models: Improving Input Resolution I A42D AGU Fall Meeting San Francisco, CA December 17, 2009

United States Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

December 11, 2009

Biomass Burning Emissions – The Importance of Reducing Uncertainties for Improved Regulatory Decision; an EPA Perspective

Outline Talk

- Why is EPA interested in biomass burning?
- History of biomass burning in EPA's National Emission Inventory (NEI)
- Some areas of focus for reducing uncertainty

	Primary Standards		Secondary Standards	
Pollutant	Level	Averaging Time	Level	Averaging Time
Carbon Monoxide	9 ppm (10 mg/m ³)	8-hour ⁽¹⁾	None	
	35 ppm (40 mg/m ³)	1-hour (1)		
Lead	0.15 µg/m ^{3 (2)}	Rolling 3-Month Average	Same as Primary	
	1.5 µg/m ³	Quarterly Average	Same as Primary	
Nitrogen Dioxide	0.053 ppm (100 µg/m ³)	Annual (Arithmetic Mean)	Same as Primary	
Particulate Matter (PM ₁₀)	150 µg/m ³	24-hour <u>(3)</u>	Same as Primary	
Particulate Matter (PM _{2.5})	15.0 µg/m ³	Annual ⁽⁴⁾ (Arithmetic Mean)	Same as Primary	
	35 µg/m ³	24-hour (5)	Same as Primary	
Ozone	0.075 ppm (2008 std)	8-hour (6)	Same as Primary	
	0.08 ppm (1997 std)	8-hour (7)	Same as Primary	
	0.12 ppm	1-hour (8)	Same as Primary	
Sulfur Dioxide	0.03 ppm	Annual (Arithmetic Mean)	0.5 ppm (1300 µg/m ³)	3-hour ⁽¹⁾
	0.14 ppm	24-hour (1)		

National Ambient Air Quality Standards

How Fire Enters Into EPA's Research,

Regulatory Structure and Air Quality Decisions

United States Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

A Brief History of Fire Emissions Tracking by EPA

- Prior to 2002 fire year, fire emissions relied on rudimentary allocation of USFS/DOI ground-based report of fires (many fires missing or mis-characterized)
- 2002 Fires treated as point sources
 - -Average daily emissions & 1st-day-of-fire location
 - –QA & gap-filling was done on a 1-time basis at cost > \$1M
 - Daily, spatially resolved fire emissions data is a continuing need – not just for 2002 - Cost effective method needed
- 2003-2006 Fire EI prepared now using NOAA-HMS data
 - -Fire emissions & daily geo-location
 - First use of SMARTFIRE....

Spatial coincidence in satellite- and ground-based fire data

Agriculture Only

Satellite- and Ground-based Fire Data

Agricultural, State, Federal and Private Ground-based Fire Data

GOES WF-ABBA fire detections appear to capture smaller agriculture fires. Oregon, July 2002

Soja et. al., 2007 16th EPA Emission Inventory Conference

United States Environmental Protection Agency SOJA et. al., 2007 TO EFA ETTISSION Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

Differences Between MODIS and HMS

- Because HMS includes GOES and AVHRR derived fire pixels in addition to MODIS, it detects more fires overall.
- This is especially true in the southeast, where fires are often small and/or short lived.
- In addition to the increased coverage, HMS provides human quality control.

Significance of biomass burning in EPA's NEI

AQ Management of PM2.5, Ozone & HAPs

- -PM & O₃ NAAQS ~ 24 hr (or less) averaging time
- -Some HAPS (e.g., acrolein) associated with short term exposures

Forecasting

-Fire impacts ~ consideration in AirNow forecasts

Fire emissions needed for both

- -20% of PM2.5 in 48-State EI
- -VOC, NOx important to Ozone formation
- -Selected HAPs also important

National Emission Inventory Sources of PM2.5

■ Other Sources PM2.5 ■ Biomass Burning PM2.5

Characterization and Modeling of Emissions

Uncertainties inherent in emission estimation influence the predictive accuracy of air quality models

- Characterize the relative contribution of anthropogenic and natural emissions to air quality degradation
- Anthropogenic emission estimates derived from EPA National Emission Inventory (NEI)
 - Improving spatial and temporal variability of source emissions affected by meteorological variability (e.g., plume rise, mobile emissions)
- Develop techniques to quantify emissions from non-traditional sources
 - Natural emissions (e.g., biogenic VOCs and NO_x, sea-salt, wildfires, dust)
 - Non-regulated sectors (e.g., seasonal and spatial variability in NH₃ emissions)

Combined satellite-ground based wildfire emission estimation: PM_{2.5} enhancement

Annual PM_{2.5} Primary Emissions

Annual Average PM_{2.5} Wildland Fire Emission Density (2003 – 2006)

United States Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

Monthly Wildland Fire PM_{2.5} Emissions (2003-2006)

♣FPA

United States

Environmental Protection

United States Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

Daily Area Burned vs. PM_{2.5} Emissions

SMARTFIRE vs. MODIS vs. ICS-209 Area Burned

Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

A Large Number of Small Fires

Burned area derived from GOES data in 2006

-120-110-100-90 -80-110-100-80 -120-90 -70 10-16 (km2) <1 1-4 4-10

While wildfires dominate total biomass burning emissions significant agricultural burning in the South East US will likely require use of sub-pixel characterization to get accurate emission estimates.

Environmental Protection

Agency

Zhang and Kondragunta, RSE, 2008

MODIS Land Cover Map

Evergreen Needleleaf Forest Evergreen Broadleaf Forest Deciduous Needleaf Forest Deciduopus Broadleaf Forest Mixed Forests Closed Shrublands **Open Shrublands** Woody Savannas Savannas Grasslands Permanent Wetlands Croplands Urban and Built-up Cropland/Natural Vegetation Mosaic Snow and Ices Barren or Sparsely Vegetated

While wildfires dominate total biomass burning emissions significant agricultural burning in the South East US will likely require use of sub-pixel characterization to get accurate emission estimates.

•Percent of "reported" area burned in the WRAP region, 2002

- •22% agricultural lands;
- •16% non-federal rangelands; and
- •63% private, state and federal lands

United States Environmental Protection Agency

Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division Soja et al., JARS 2009

Comparison of CMAQ results for August 2002

- Difference in daily average PM2.5 concentrations between the four fire cases and the no fire case
- Compared model predictions with IMPROVE and STN observational networks, which measure PM2.5 every third day
- Compared the "NOFIRE" case with each inventory

August 1,2002 1:00:00 Min=-0 at (15,76), Max=183 at (20,76)

earch Laboratory, Environm

Min=-0 at (129,70), Max=40 at (16,75)

Min=-0 at (85,28), Max=213 at (16,75)

148

Aug 2002 Difference ORD

PM2.5 Concentration Difference 36km grid

Domain Wide Aug 2002 25th and 75th Percentiles with Mean for PM2.5

Aug 2002 PM2.5 Modeled (NOFIRE and NEI) vs Observed

All fire inventories reduce the bias but do not improve correlation for the IMPROVE network August 2002

	R	RMSE	NMB (%)	NME (%)
NO FIRE	0.75	5.6	-38	46
NCAR	0.25	18.7	-5	52
NESDIS	0.75	5.3	-31	42
NEI	0.62	6.3	-28	43
ORD	0.49	8.3	-23	47

- Results are for one month at 36km. A longer simulation at higher resolution may show better results
- Plume heights and wind fields may be very important in capturing transport – was the plume injected below or above boundary layer?
- Plume rise algorithm needs refinement and improvement
- Most of the plume from the largest fire (Biscuit Fire) remained over the Pacific Ocean or did not impact monitors
- Fire inventories are being improved-need to examine other time periods with newer data.
- August 2002 had the most overlap of all methods but satellite sensors not fully calibrated

NASA B200 and High Spectral Resolution Lidar (HSRL): United States Measurements of Myrtle Beach Fires on April 24 for **Plume Height and Aerosol Extinction Measurements**

Agencv

April 23 US EPA requests HSRL overflights of SC fires using NASA B200 King Air

Existing HSRL configuration allowed for rapid deployment from NASA LaRC on April 24

Measurements data to be added to database for modeling studies on fire plume rise and aerosol extinction for biomass emission estimates.

B-200-HSRL Overflights of SC Highway 31 Fire (17:45 -19:20 UTC APR 24)

MODIS-TERRA AOD captures aerosols from SC fires - 15:30 UTC APR 24

April 24th Morning and Afternoon B200 flights HSRL captures the increase in afternoon aerosols

0.5

0.4

AOT (532 nm)

0.1

n

18.8

18.6

34.06

34 87

-78.65

35.48

-78.04

24-Apr-2009

0.4

0.3 (none) 0.2

NLať

ELon

B200 HSRL - Column Aerosol Optical Thickness

United States Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

Measurements of Smoke on April 24, 2009 Afternoon Flight

United States Environmental Protection Agency

Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division

Disclaimer

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

United States Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division