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Abstract
Cultures of primary human hepatocytes have been shown 
to be dynamic in vitro model systems that retain liver-like 
functionality (e.g. metabolism, transport, induction). We 
have utilized these culture models to interrogate 309 
ToxCast chemicals. The study design characterized both 
concentration- and time-response effects of these chemicals 
across two preparations of human hepatocytes by mRNA 
expression, CYP1A enzymatic activity (EROD), and cell 
morphology. mRNA expression was determined using 
quantitative nuclease protection assays (qNPA™) with the 
Omix™ Imaging System (HTG, Tucson, AZ). Fourteen liver-
related human gene targets ABCB1, ABCB11, ABCG2, 
SLCO1B1, CYP1A1, CYP1A2, CYP2B6, CYP2C9, CYP2C19, 
CYP3A4, UGT1A1, GSTA2, SULT2A1, HMGCS2 (Figure 1) 
were monitored based on their role in liver xenobiotic 
metabolism, hepatic transport, and sensitivity to receptor 
pathways (AhR, CAR, PXR, PPARα, FXR). These data were 
analyzed relative to negative and positive control receptor 
activators.  These data were fit to sigmoidal concentration-
response model (Hill equation) to generate important 
potency and efficacy parameters (e.g EC50, Emax, Hillslope, 
R2 etc…).  Concordance analysis was performed on the 
internal replicate ToxCast chemicals to assess the 
reproducibility of the assays.  

In addition, techniques from machine learning were 
leveraged to cluster compounds having similar gene 
response profiles. The concentration-response of a 
compound was abstracted as a vector (rather than classical 
scalar representations associated with standard microarray 
analysis) and used in algorithms such as K-means and 
algometric clustering, as well as creating representative 
phylogenies. Unique to this approach is the ability to assess 
if compounds behave similarly in a temporal sense. Using 
this methodology we were able to correlate how a 
chemical’s behavior compares with other compounds 
through time, as well as correlating gene targets with one 
another. These chemical signatures were further correlated 
with in vivo endpoints in relative risk assessments to define 
in vitro profiles that appear to be related to phenotypic 
outcomes.

Results Figure 6: Gene Correlations
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Pearson correlation between all 14 gene targets 
across 3 time points.  The statistic used in 
calculating the correlation was the dynamic range 
(Emax – Emin) of a gene’s response.  The above 
table contains notable correlations.

Gene 1 (time) r Gene 2 (time)

CYP1A1 (24) .9445 CYP1A2 (24)

ABCB11 (48) .9053 SLCO1B1 (48)

ABCB11 (48) .8859 ABCG2 (48)

ABCG2 (48) .8645 SLCO1B1 (48)

CYP1A1 (24) .8610 CYP1A2 (48)

ABCB1 (48) .8515 ABCG2 (48)

CYP1A1 (6) .8312 CYP1A2 (24)

CYP1A2 (24) .8220 CYP1A2 (48)

ABCB1 (48) .6156 CYP3A4 (48)

CYP2C9 (24) -.2103 HMGCS2 (6)

Notable Gene Correlations

Figure 1: Gene Array and Assay Design

Figure 6: Clustering and Dendrograms

A dendrogram of the ToxCast™ 320 
chemical library created using the 
vector abstraction of each 
compound’s dose-response for all 14 
gene targets across all three time 
points.  Different donors were Z-
scored independently, to reduce both 
inter-donor variability and bias 
towards more efficacious genes.  
Incorporating all three time points 
into a 210 dimensional space (70 
dimensions per time point x 3 time 
points = 210) resulted in more 
accurate clustering of EPA replicates 
that were blinded during the study as 
well as the positive controls.  Z-
scoring donors independently also 
drastically reduced donor 
dependence; without it the clustering 
results were greatly affected by the 
donor in which the compound was 
tested.  Corresponding replicates and 
positive controls are given the same 
color.

Figure 2: Positive Control Curves

An array of 14 hepatic related sentinel gene targets (and  2 
endogenous controls) for 5 receptor pathways to probe chemical-
biological interactions in cultures of primary human hepatocytes with 
quantitative nuclease protection assays (qNPA™).  

Methods

Primary cultures of human hepatocytes were prepared from 
human liver tissue derived from two separate male donors 
(Hu776 and Hu778). Hepatocyte cultures were treated daily 
for two consecutive days with fresh dosing solutions 
containing appropriate concentrations of the 320 ToxCast 
chemicals, vehicle control (0.2% DMSO) and positive 
control inducers. Cultures for each treatment group (i.e. 
media, vehicle (0.2% DMSO), positive control inducers 
(multiple concentrations), and the ToxCast chemicals 
(multiple concentrations) were observed and cell 
morphology was assessed relative to vehicle control 
cultures at each harvest time point (0, 6, 24, and 48 
hours). mRNA content was assessed at each harvest point 
using a quantitative Nuclease Protection Assay (qNPA™). 

The raw plate data were annotated with matching chemical 
and dosage information and compiled in a database.
Concentration-response curves were fit using the R 
statistical language modeled by the Hill-equation. Gene 
reference chemical selection was based on each positive 
control’s computed Z-Factor. Gene to gene correlations 
were calculated using Pearson’s correlation and computed 
using the observed dynamic range for each gene. The entire 
ToxCast library was then clustered using all data points 
from a compound’s response. Concordance was also 
calculated to assess assay variability.

We have characterized the bioactivity of the 309 unique chemicals currently in the ToxCast library in cultures of primary human hepatocytes over 
ranges of concentration and time.  Correlations were observed between activation of key receptor pathways and certain rodent in vivo toxicity 
endpoints.  These correlations indicate the value of using this in vitro hepatocyte culture systems in predictive toxicity modeling, and identifies
putative human toxicity pathways for specific disease endpoints.

Conclusions and Discussion

Figure 3: Select Chemical Distributions

Figure 2: The positive control responses for each respective gene target across all three time points (6,24,48hrs).

Figure 3: Maximal efficacy histograms for CYP1A2, CYP2B6, CYP3A4, and ABCB11 measured against the respective positive control for the entire 
ToxCast chemical library.

Figure 4: Compounds comprising the most potent and efficacious ToxCast chemicals and the respective gene’s reference chemical. 

Figure 4: Representative ToxCast Chemicals

Figure 5: In Vivo Relative Risk
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2.03Thyroid TumorsCYP2B6

2.35Liver TumorsCYP3A4

2.60Liver TumorsHMGCS2

2.26Thyroid HyperplasiaSULTA1

Gene Endpoint Relative Risk

ABCB11 Liver Apoptosis Necrosis** 1.63*

CYP1A1 Liver Apoptosis Necrosis 1.19*

CYP1A2 Liver Apoptosis Necrosis 1.71*

Rodent In Vivo Relative Risk

Relative Risk of gene expression after 48-hour exposure 
(24-hour RR observations ≥ 2 noted with asterisk*) to 
predict the in vivo chronic toxicity of ToxCast™ chemicals. 
Five genes represent chemical effects on CAR (CYP2B6), 
FXR (ABCB11), PPARα (HMGCS2), AhR (CYP1A1), and 
PXR (CYP3A4) receptor pathways. All endpoints are Rat 
except for ABCB11Mouse Liver Apoptosis Necrosis which 
is noted by **


