1	Title: Obtaining Highly Purified Toxoplasma gondii Oocysts by a Discontinuous
2	Cesium Chloride Gradient
3	
4	Authors: Sarah E. Staggs ¹ , Mary Jean See ² , J. P. Dubey ³ , and Eric N. Villegas ^{2, 4*}
5	
6	Key words: Toxoplasma gondii, cesium chloride, oocysts, discontinuous gradient,
7	apicomplexan
8	
9	¹ Dynamac, Inc. Cincinnati, Ohio 45268
10	² University of Cincinnati, Department of Biological Sciences, McMicken College of Arts
11	and Science, Cincinnati Ohio, 45220
12	³ Animal Parasitic Disease Laboratory, Agricultural Research Service, U.S. Department of
13	Agriculture, Beltsville, Maryland, 20705
14	⁴ National Exposure Research Laboratory, US Environmental Protection Agency,
15	Cincinnati, Ohio 45243
16	
17	*Corresponding author address: Eric N. Villegas, Biohazard Assessment Research
18	Branch, Microbiological and Chemical Exposure Assessment Division, National
19	Exposure Research Laboratory, 26 W. Martin Luther King Dr. (MS: 320), Cincinnati,
20	Ohio 45268. Phone +1 513 569 7017, +1 513 569 7117 fax, <u>villegas.eric@epa.gov</u>
21 22 23 24 25	Email addresses: Sarah E. Staggs, staggs.sarah@epa.gov Mary Jean See, see.maryjean@epa.gov J. P. Dubey, jitender.dubey@ars.usda.gov

26 Eric N. Villegas, villegas.eric@epa.gov

27 Abstract

28 Toxoplasma gondii is an obligate intracellular protozoan pathogen that commonly infects 29 humans. It is a well characterized apicomplexan associated with causing food- and water-30 borne disease outbreaks. The definitive host is the feline species where sexual replication 31 occurs resulting in the development of the highly infectious and environmentally resistant 32 oocyst. Infection occurs via ingestion of tissue cysts from contaminated meat or oocysts 33 from soil or water. Infection is typically asymptomatic in healthy individuals, but results 34 in a life-long latent infection that can reactivate causing toxoplasmic encephalitis and 35 death if the individual becomes immunocompromised. Meat contaminated with T. gondii 36 cysts have been the primary source of infection in Europe and the United States, but 37 recent changes in animal management and husbandry practices and improved food 38 handling and processing procedures have significantly reduced the prevalence of T. gondii cysts in meat^{1, 2}. Nonetheless, seroprevalence in humans remains relatively high 39 40 suggesting that exposure from oocyst contaminated soil or water is likely. Indeed, 41 waterborne outbreaks of toxoplasmosis have been reported worldwide supporting the theory exposure to the environmental oocyst form poses a significant health risk³⁻⁵. To 42 43 date, research on understanding the prevalence of T. gondii oocysts in the water and 44 environment are limited due to the lack of tools to detect oocysts in the environment ^{5, 6}. 45 This is primarily due to the lack of efficient purification protocols for obtaining large 46 numbers of highly purified T gondii oocysts from infected cats for research purposes. 47 This study describes the development of a modified CsCl method that easily purifies T. 48 gondii oocysts from feces of infected cats that are suitable for molecular biological and 49 tissue culture manipulation⁷.

Procedure:

51	1.	General safety precautions when working with T. gondii oocysts
52		1.1 It is important to follow all safety precautions when working with T. gondii
53		oocysts. In most healthy individuals, T. gondii infection is readily controlled by
54		the immune system; however, a life-long infection results. Immunocompromised
55		individuals are particularly susceptible to toxoplasmosis and should not handle T.
56		gondii oocysts. Pregnant women should also not handle T. gondii oocysts,
57		because infection can cause severe birth defects. For more details, see reference
58		8.
59		1.2 T. gondii oocysts should only be handled in a designated area and with trained
60		personnel. Signs indicating T. gondii oocyst work is in progress must be posted
61		to alert others entering the designated area.
62		1.3 Wear appropriate personal protective equipment (PPE) such as a lab coat,
63		disposable gown, disposable gloves, and proper eye protection or a face shield
64		when handling <i>T. gondii</i> oocysts.
65		1.4 Frequent glove changes are recommended. Do not handle any lab equipment with
66		T. gondii oocyst contaminated gloves.
67		1.5 Always use metal autoclavable trays lined with a disposable absorbent liners
68		when working with T. gondii oocysts. Ensure all racks, tubes, etc. used are either
69		disposable or autoclavable.
70		1.6 All T. gondii waste must be autoclaved twice for at least one hour.
71		1.7 All non-disposable equipment (racks, trays, etc.) must also be autoclaved twice
72		for at least one hour.

73	1.8 Vacuum lines used to aspirate liquids should be connected to a Vacushield TM
74	filter to prevent contamination of the vacuum pump.
75	1.9 All affected laboratory bench-tops must be disinfected after completing work
76	with T. gondii oocysts. Freshly made 10% hypochlorite should be liberally
77	applied to the work area and allowed dry. The area must then be rinsed well with
78	water.
79	
80	2. Preparation of buffers and solutions
81	2.1 Prepare a 1 L 2.2 M solution of sucrose by dissolving 752.66 g of sucrose in 600
82	ml ddH ₂ O. Stir and heat gently using a heated stir plate to dissolve the sucrose.
83	Once completely dissolved, bring volume to 1 L with ddH_2O . This should be
84	followed by sterilization by autoclaving the solution for at least 20 minutes.
85	2.2 Prepare a 1L TE buffer (50 mM Tris-HCl, 10 mM EDTA), pH 7.2 by adding 6.05
86	g of Tris-HCl and 3.7 g of EDTA in 700 ml of ddH_2O , adjust pH to 7.2 then bring
87	volume to 1 L with ddH_2O .
88	2.3 For the CsCl gradient, prepare a stock solution of CsCl with a specific gravity of
89	1.15 (1.15-CsCl) by adding 21.75 g of CsCl with 103.25 ml of TE Buffer. For
90	Solution A, mix 30 ml of TE with 20 ml of 1.15-CsCl. For Solution B, mix 20 ml
91	of TE with 30 ml of 1.15-CsCl and 12.5 μ l of phenol red solution. For Solution
92	C, mix 10 ml of TE with 40 ml of 1.15-CsCl (Table 1).
93	2.4 Prepare a 1L 1 N solution of sodium hydroxide (NaOH) by dissolving 40 g of
94	NaOH, in 800 ml of ddH_2O . Once dissolved, bring volume to 1 L with ddH_2O .

- 95 2.5 Prepare a 1 L 2% (by volume) solution of H₂SO₄ mixing 20 ml of H₂SO₄ with
 96 980 ml of ddH₂O.
- 97

98 **3.** Sucrose float

99	3.1 Add 10 ml of a fecal suspension of <i>T. gondii</i> oocysts, in 2% H ₂ SO ₄ , into a 50 ml
100	conical centrifuge tube. It must be noted that fecal suspension refers to samples
101	that have been pre-processed through a sucrose flotation procedure as previously
102	described ⁸ . When the fecal samples are initially harvested from the infected cats
103	they are processed through a sucrose float as described in reference 8. This
104	additional sucrose float is necessary to further minimize fecal debris carried over
105	to the CsCl purification process and obtain the purest T. gondii oocysts possible.
106	3.2 Neutralize the 2% H_2SO_4 by adding 6 ml (3/5 volumes) of 1 N NaOH to the fecal
107	suspension. Mix well by vortexing.
108	3.3 Add an equal volume (16 ml) of 2.2 M sucrose creating a final concentration of
109	1.1 M to the fecal suspension and mix well by vortexing.
110	3.4 Carefully overlay the sucrose/fecal suspension with 10 ml ddH_2O using a 10 ml
111	pipette. Centrifuge the suspension at 1,200 x g for 20 min at room temperature
112	with no brake.
113	3.5 Carefully collect the top water and interphase layers and transfer to a new 50 ml
114	conical centrifuge tube by pipetting from the air-water interface without swirling
115	the pipette. It is important to minimize sucrose carryover while collecting the

- 116 interphase layer.
- 117 3.6 Mix the remaining sucrose/fecal pellet solution by vortexing the tube.

118 3.7 Repeat steps 3.4 and 3.5.

119	3.8 Bring the volume of the two oocyst interphase solutions to 50 ml with ddH_20 and
120	centrifuge the tubes at 2,000 x g for 10 minutes at room temperature.
121	3.9 Aspirate the supernatant from each tube and resuspend pellets with 5 ml TE
122	buffer and pool the oocyst suspension together. The total pooled volume should
123	be 10 ml.
124	
125	4. CsCl gradient
126	4.1 Prepare a discontinuous CsCl gradient in a 50 ml polycarbonate Oak Ridge tube
127	by carefully underlaying each layer using a 50 ml syringe with an 18 gauge blunt-
128	ended, autoclavable, steel needle, and a 2 way stop cock. Note: Phenol red is
129	added to Solution B to easily distinguish between the gradient layers (Table 1).
130	4.2 Slowly add the following solutions to the tube in the order listed below. It should
131	be noted that the flow rate should not exceed more than 0.5 ml/sec.
132	1. 10 ml of the TE/oocyst suspension sample
133	2. 8 ml Solution A
134	3. 8 ml Solution B
135	4. 8 ml Solution C
136	4.3 Centrifuge the Oak Ridge tube at 12,000 x g for 60 min at 4 $^{\circ}$ C with no brake.
137	Use of a fixed angle rotor is acceptable, but a high speed swinging bucket results
138	in better separation of the oocysts from the suspension sample with minimal fecal
139	debris smears along the side or the tube. The extent of the smears depends on the

140	composition of the fecal suspension and thus it may be necessary to perform two
141	CsCl gradients if the fecal suspension is extremely "dirty."
142	4.4 Following centrifugation, collect the opaque/white oocyst containing band
143	between solutions A and B. To minimize contamination with fecal debris, go
144	directly to the oocyst band without disturbing the gradient and collect the oocyst
145	interphase using a 10 ml pipette. Transfer the oocyst interphase to a new 50 ml
146	conical centrifuge tube. Try to minimize the amount of CsCl solution aspirated
147	while collecting the oocyst interphase as it may pose a problem in pelleting the
148	oocysts during the wash step.
149	4.5 Wash oocysts with 30-40 ml of ddH_20 . Centrifuge the tube at 2,000 x g at room
150	temperature for 10 min with no brake. Carefully aspirate the supernatant without
151	disturbing the oocyst pellet. Repeat the wash 2 additional times.
152	4.6 At the end of the final wash, carefully aspirate the supernatant and resuspend the
153	pellet in 10 ml 2% sulfuric acid and store at 4 °C until use. Oocysts are now
154	ready for further manipulation. Oocyst purity can be checked microscopically by
155	the absence of fecal debris in the sample.

156 Acknowledgments:

- 157 We would like to thank Nichole Brinkman and Michael Ware for technical review of the
- 158 manuscript and Dr. Abu Sayed and Linda Ransick for technical and administrative
- 159 support. The United States Environmental Protection Agency through its Office of
- 160 Research and Development partially funded and collaborated in the research described
- 161 here under contract number EP-D-06-096 to Dynamac, Inc. and an interagency
- agreement number DW-12-92289801-0 to USDA. It has been subjected to Agency
- 163 review and approved for publication. Mention of trade names or commercial products
- 164 does not constitute endorsement or recommendation for use. MJS current address:
- 165 Dynamac, Inc. Cincinnati, OH.

167 **References:**

- 168 1. Dubey, J.P. et al. Prevalence of viable *Toxoplasma gondii* in beef, chicken, and
- 169 pork from retail meat stores in the United States: risk assessment to consumers. J.
- 170 *Parasitol.* 91, 1082-93 (2005).
- 171 2. Tenter, A.M., Heckeroth, A.R. & Weiss, L.M. *Toxoplasma gondii*: from animals
 172 to humans. *Int. J. Parasitol.* 30, 1217-58 (2000).
- Bowie, W.R. et al. Outbreak of toxoplasmosis associated with municipal drinking
 water. *Lancet* 350, 173-7 (1997).
- de Moura, L. et al. Waterborne toxoplasmosis, Brazil, from field to gene. *Emerg. Infect. Dis.* 12, 326-9 (2006).
- Jones, J.L. & Dubey, J.P. Waterborne toxoplasmosis Recent developments. *Exp. Parasitol.* doi: 10.1016/j.exppara.2009.03.013 (2009).
- 179 6. Dumetre, A. & Darde, M.L. How to detect *Toxoplasma gondii* oocysts in
- 180 environmental samples? *FEMS Microbiol. Rev.* 27, 651-61 (2003).
- 1817.Dumetre, A. & Darde, M.L. Purification of *Toxoplasma gondii* oocysts by cesium
- 182 chloride gradient. J. Microbiol. Methods 56, 427-30 (2004).
- 183 8. Dubey, J.P. Toxoplasmosis of Animals and Man. 2nd ed. CRC Press, Inc., Boca
- 184 Raton, FL. In press (2009).

185 Table 1: Cesium chloride solution

Solution	Specific gravity	TE (ml)	1.15-CsCl (ml)
Α	1.05	30	20
B *	1.11	20	30
С	1.125	10	40

186 *12.5 μ l of phenol red is added to solution B

Reagent	Vendor	Catalog #
1 way Luer Lok stopcock	Promega	A7261
10 ml pipettes	Fisher	13-618-11-Е
18 gauge blunt-ended needle	Fisher	14-825-16H
50 ml conical centrifuge tubes	Fisher	05-539-13
50ml conical tube adaptors	Fisher	05-375-51
50 ml Luer Lok Syringe	BD	309663
Centrifuge	IEC	IEC6466K
Cesium Chloride	Sigma	C4036
EDTA	Sigma	E5134
Fixed angle high speed rotor	IEC	IEC7685C
Oak Ridge tube adaptors	Fisher	04-974-011A
Oak Ridge tubes, 50 ml	Nalgene	05-529C
Phenol Red 2000x solution	Sigma	P8421
Protective disposable gown	Fisher	18-567
Sodium Hydroxide	Sigma	S8045
Sucrose	Sigma	S8501
Sulfuric Acid	Sigma	339741
Swinging bucket rotor	IEC	IEC6555C
Tris-HCl	Sigma	T6066
VacuShield Filter	Gelman	629-4402
Versidry Bench Protector Pads	Fisher	14-206-37

Table 2: Reagents and equipment