Iodo-DBP Formation from the Reaction of Chlorinated Oxidants with X-Ray Contrast Media in the Presence of Natural Organic Matter

Susan D. Richardson, Stephen Duirk, Cristal Lindell*, Christopher Cornelison*

U.S. EPA, National Exposure Research Laboratory, Athens, GA *Student Services Authority

Thomas A. Ternes

Federal Institute of Hydrology (BFG), Koblenz, Germany

Michael J. Plewa University of Illinois, Urbana, IL

Iodo-DBP Occurrence Study

	lodide (µg/L)	Sum iodo-acids (μg/L)	Sum iodo- THMs (µg/L)
Plant 2	1.0	0.37	4.9
Plant 4	ND	0.10	1.2
Plant 11	1.5	0.21	2.3
Plant 15	ND	0.17	2.4

Detection limit = 0.13 µg/L

Richardson et al., Environ. Sci. Technol. 2008, 42, 8330-8338.

Typically, DBPs formed by reaction of disinfectants with NOM and Br/l

NOM

lodo-DBP Occurrence Study

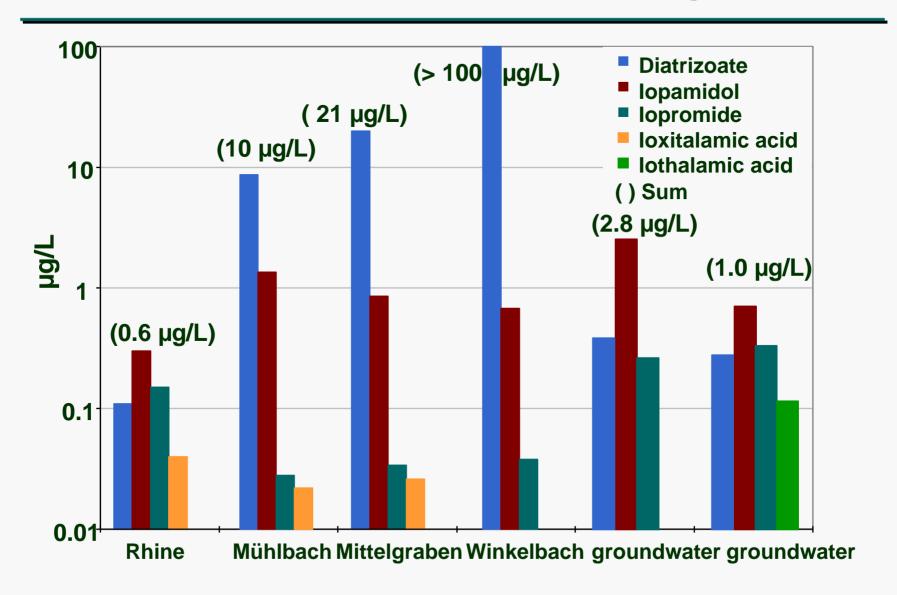
	lodide (µg/L)	Sum iodo-acids (µg/L)	Sum iodo- THMs (µg/L)
Plant 2	1.0	0.37	4.9
Plant 4	ND	0.10	1.2
Plant 11	1.5	0.21	2.3
Plant 15	ND	0.17	2.4

Detection limit = $0.13 \mu g/L$

What about other sources of iodine?

Iodinated X-ray Contrast Media (ICM)

$$CH_3$$
 OH OH I OH I OH I OH I OH



lopamidol

lopromide

Iohexol

ICM concentrations: rivers, creeks and ground water

Ternes & Hirsch, *Environ. Sci. Technol.* (2000) 34, 2741-2748

ICM in U.S. Drinking Water Sources (ng/L)

	Iopamidol	Iomeprol	lopromide	lohexol	Diatrizoate
Plant 1	11	ND	ND	ND	ND
Plant 2	510	ND	24	120	93
Plant 4	110	ND	6	49	ND
Plant 10	ND	ND	ND	ND	ND
Plant 11	100	ND	ND	85	ND
Plant 12	280	ND	ND	120	ND
Plant 13	ND	ND	ND	ND	ND
Plant 15	2700	ND	25	ND	ND
Plant 17	ND	ND	ND	ND	ND
Plant 19	ND	ND	ND	ND	ND

Courtesy of Thomas Ternes, Federal Institute of Hydrology, Germany ICM measured using LC/ESI-MS/MS; DLs = 5-20 ng/L

ICM in U.S. Drinking Water Sources (ng/L)

	Iopamidol	Iomeprol	Iopromide	Iohexol	Diatrizoate
Plant 1	11	ND	ND	ND	ND
Plant 2	510	ND	24	120	93
Plant 4	110	ND	6	49	ND
Plant 10	ND	ND	ND	ND	ND
Plant 11	100	ND	ND	85	ND
Plant 12	280	ND	ND	120	ND
Plant 13	ND	ND	ND	ND	ND
Plant 15	2700	ND	25	ND	ND
Plant 17	ND	ND	ND	ND	ND
Plant 19	ND	ND	ND	ND	ND

Courtesy of Thomas Ternes, Federal Institute of Hydrology, Germany ICM measured using LC/ESI-MS/MS; DLs = 5-20 ng/L

ICM in U.S. Drinking Water Sources (ng/L)

	lopamidol	Iomeprol	lopromide	Iohexol	Diatrizoate
Plant 1	11	ND	ND	ND	ND
Plant 2	510	ND	24	120	93
Plant 4	110	ND	6	49	ND
Plant 10	ND	ND	ND	ND	ND
Plant 11	100	ND	ND	85	ND
Plant 12	280	ND	ND	120	ND
Plant 13	ND	ND	ND	ND	ND
Plant 15	2700	ND	25	ND	ND
Plant 17	ND	ND	ND	ND	ND
Plant 19	ND	ND	ND	ND	ND

Courtesy of Thomas Ternes, Federal Institute of Hydrology, Germany ICM measured using LC/ESI-MS/MS; DLs = 5-20 ng/L

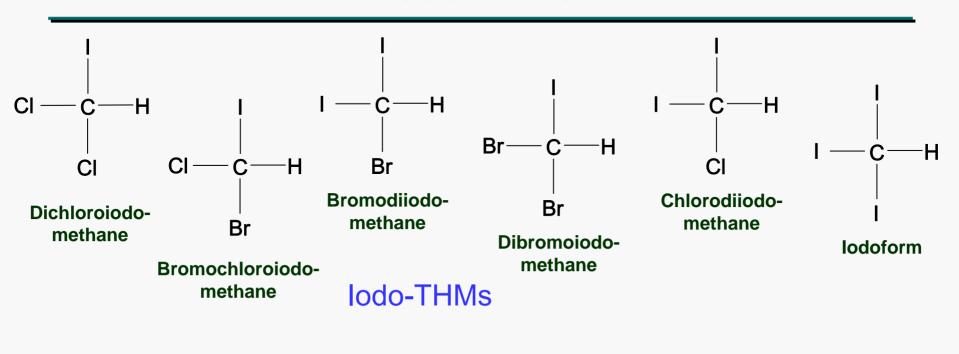
Do iodinated X-ray contrast media form iodo-DBPs?

Iopamidol

Controlled Laboratory Reactions

Experiments

- React ICM with HOCI, NH₂CI (with and without NOM)
- 3 pHs
- Follow formation of iodo-DBPs
- Follow decay of ICM and identify reaction products and intermediates
- Compare ICM reactions to reactions with native iodide
- Measure genotoxicity of chlorinated water containing ICM and compare to chlorinated water without ICM and untreated source water containing ICM

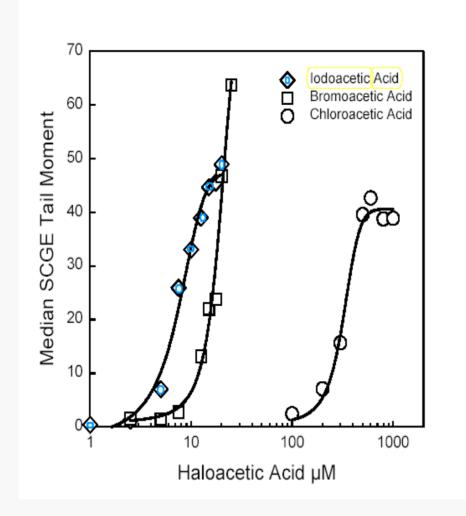

Methods

- Iodo-THMs: GC/EI-MS
- Iodo-Acids: GC/NCI-MS (with derivatization)
- lodate: IC
- Iopamidol (and other ICM): LC, LC/MS/MS
- Larger MW products and intermediates: LC/MS/MS
- Chlorine: DPD-FAS titration
- Genotoxicity: Chinese hamster ovary cells, single cell gel electrophoresis

Cristal and Steve

lodo-DBPs

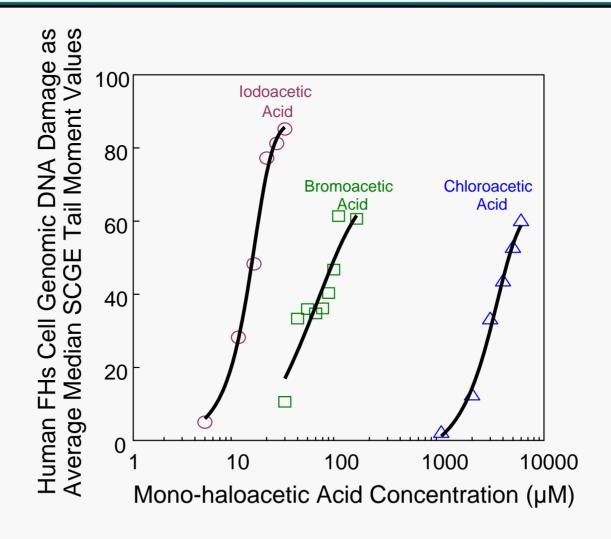
lodoacetic acid


Bromoiodoacetic acid

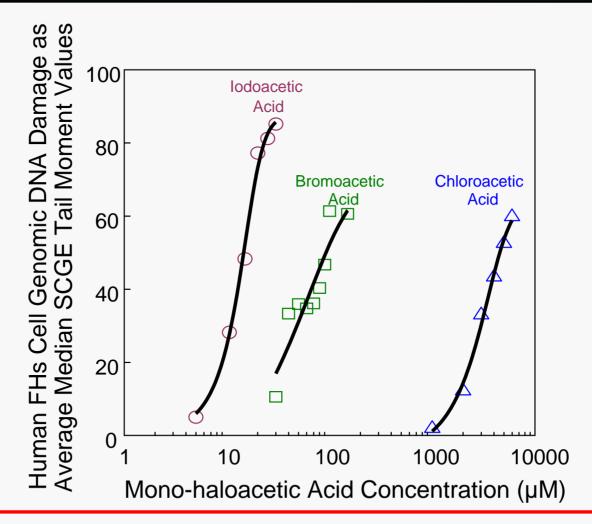
(Z)-3-Bromo-3-iodopropenoic acid

(*E*)-3-Bromo-3-

iodopropenoic acid


Genotoxicity of Iodoacetic Acid

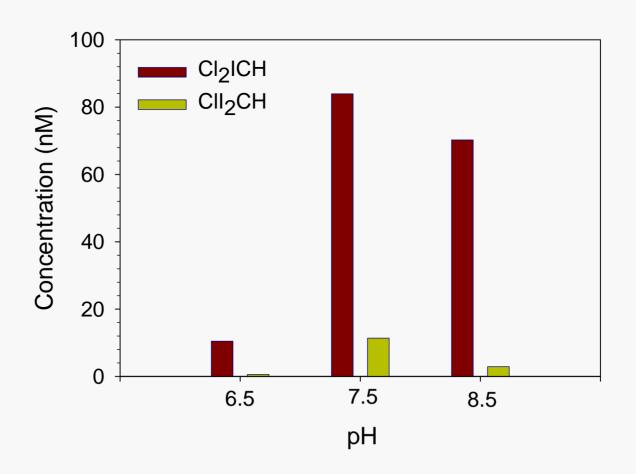
Plewa et al., Environ. Sci. Technol. 2004


IA also caused developmental effects in mouse embryos (Hunter et al., 1995)

Genomic DNA Damage in Normal, Non-Transformed Human Fetal Intestinal Cells

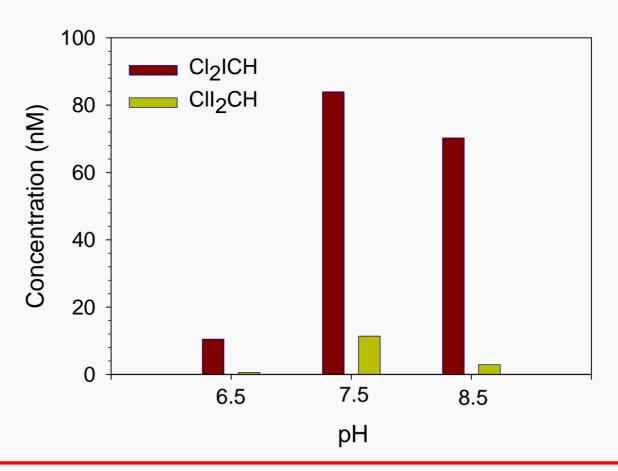
Courtesy of Michael Plewa, Univ. Illinois

Genomic DNA Damage in Normal, Non-Transformed Human Fetal Intestinal Cells

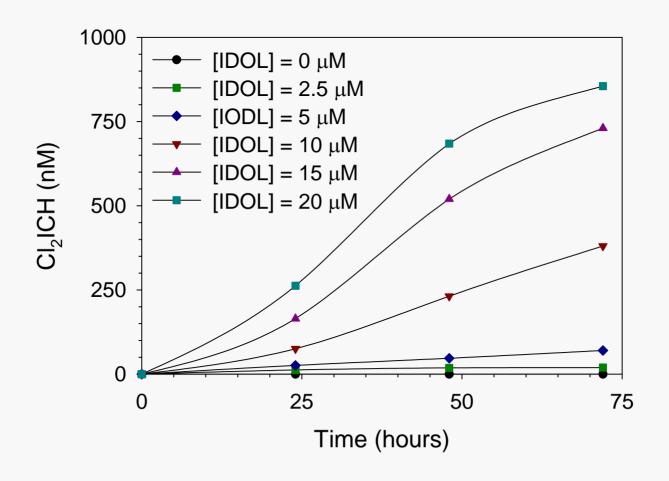


In addition, iodo-THMs are cytotoxic Only one iodo-THM (chlorodiiodomethane) genotoxic

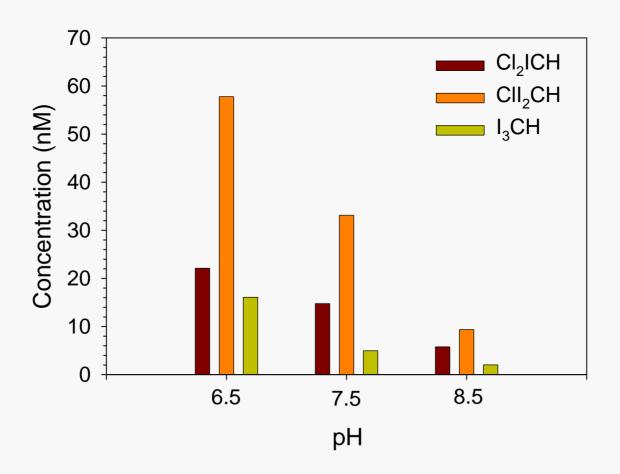
Results


Iopamidol

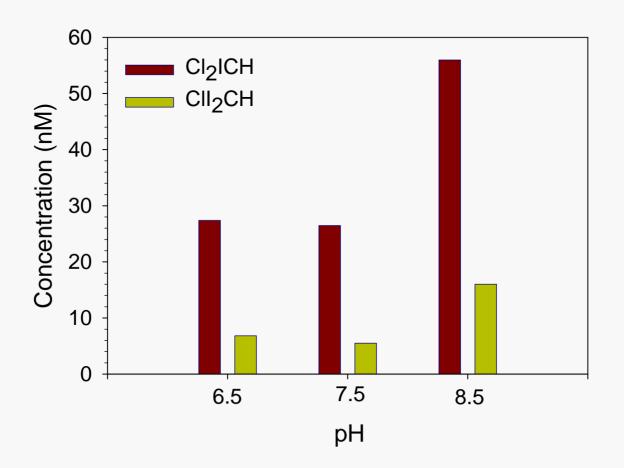
lodo-THM Formation at 72 hr: Chlorine


Conditions: HOCl = 100 μ M (7.1 mg/L), IDOL = 5 μ M (3.1 mg/L) Buffer = 10 mM, Temperature = 25 °C, TOC= 2.1 mg/L

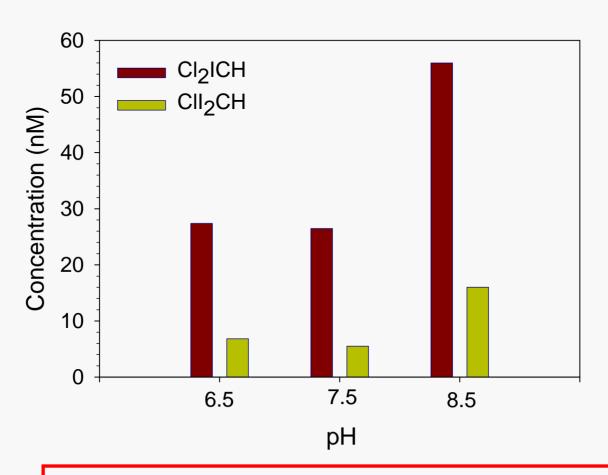
lodo-THM Formation at 72 hr: Chlorine


Note: Because no Br- added for these experiments, no bromo species formed (and minimal Br- present in Athens, GA raw source waters)

Cl₂ICH Formation at pH 8.5

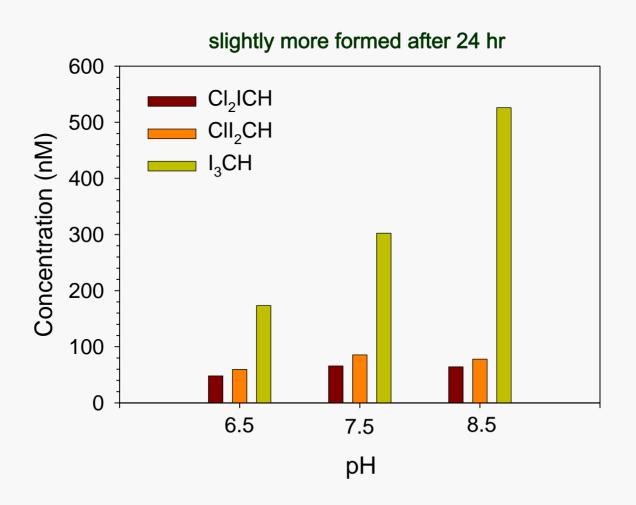

Conditions: HOCl = 100 μ M (7.1 mg/L), IDOL = 0-20 μ M, Buffer = 10 mM Temperature = 25 °C, TOC = 2.1 mg/L

lodo-THM Formation at 72 hr: Monochloramine

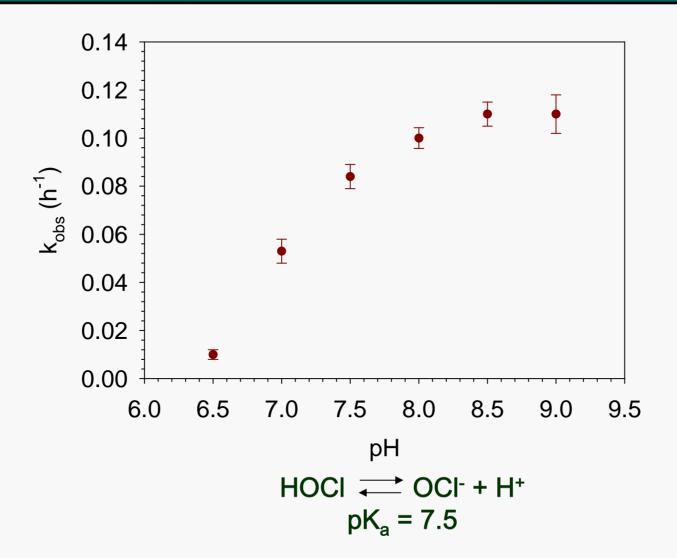

Conditions: NH₂Cl = 100 μ M, IDOL = 5 μ M, Buffer = 10 mM, Cl/N = 0.7 Temperature = 25 °C, and TOC = 2.1 mg/L

lodo-THM Formation from lodide at 24 hr: Chlorine

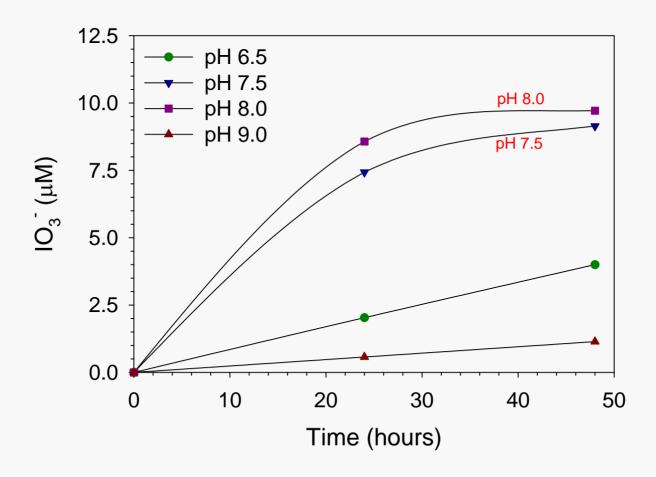
Conditions: HOCl = 100 μ M, Iodide = 5 μ M, Buffer = 10 mM Temperature = 25 °C, TOC = 2.1 mg/L


lodo-THM Formation from lodide at 24 hr: Chlorine

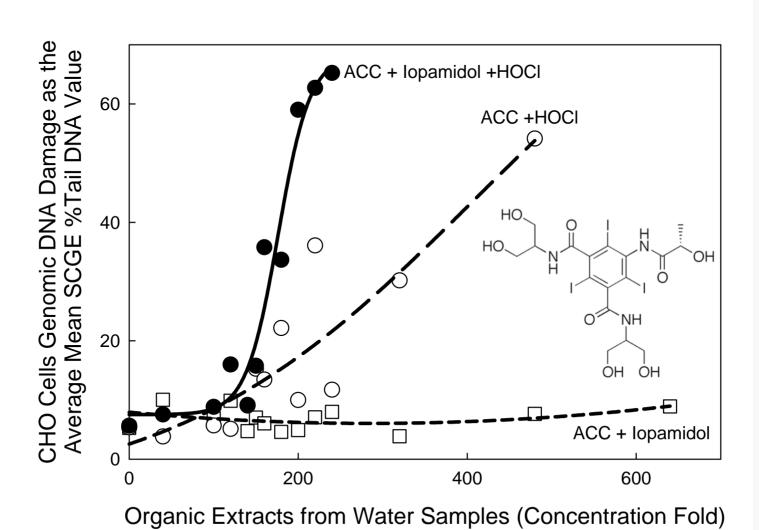
Reaction Complete in 24 hr


Conditions: HOCl = 100 μ M, Iodide = 5 μ M, Buffer = 10 mM Temperature = 25 °C, TOC = 2.1 mg/L

Iodo-THM Formation from Iodide at 72 hr: Monochloramine


Conditions: $NH_2CI = 100 \mu M$, Iodide = 5 μM , Buffer = 10 mM, Cl/N = 0.7 Temperature = 25 °C, TOC = 2.1 mg/L

Loss of lopamidol

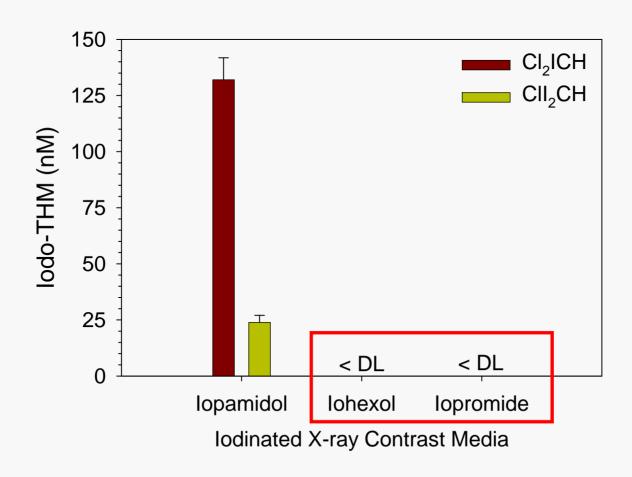

Conditions: HOCI = 100 μ M, IDOL = 5 μ M, Buffer = 10 mM, Temperature = 25 °C

10₃- Formation: Chlorination of Iopamidol

Conditions: HOCl = 100 μ M, IDOL = 5 μ M, Buffer = 10 mM, Temperature = 25 °C

Gentoxicity of Chlorinated Waters Containing Iopamidol

What about other ICM?


Iohexol

$$CH_3$$
 OH OH I OH I OH I OH I OH I OH

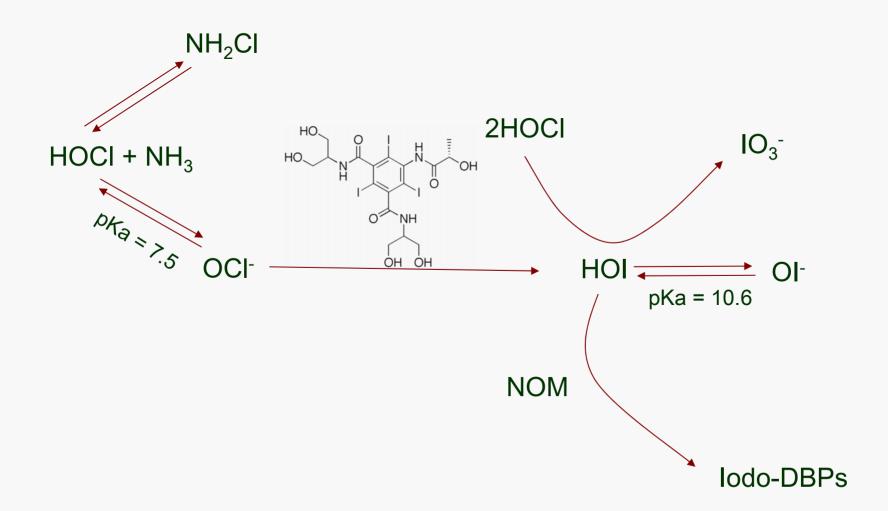
Iopromide

lodo-THM Formation with other ICM

pH 8.5 after 48 hrs

Conditions: HOCI = 100 μ M, IDOL = 5 μ M, Buffer = 10 mM, Temperature = 25 °C

A Mystery....


lopamidol

Why does this one react, but not the others???

Iohexol

lopromide

Proposed Pathways

Summary

- Iodo-THMs and Iodo-Acids formed
- Appears OCl⁻ reacts with iopamidol (increased formation above pKa of HOCl; and excess NH3 with Cl₂ to form NH2Cl → see nothing)
- Chlorinated oxidants react with iopamidol:
 - Chlorine formed Cl₂ICH and Cll₂CH
 - Monochloramine formed Cl₂ICH, Cll₂CH, and I₃CH
 - Preliminary experiments indicate that IAA and (E)-2-iodo-3-methylbutenedioic acid also formed
- Chlorine forms somewhat higher levels of iodo-THMs from iopamidol than NH₂Cl
- So far, iohexol and iopromide don't form iodo-DBPs (a mystery...)
- lodopamidol vs. native iodide:
 - lodide produces more iodo-THMs with monochloramine vs. chlorine; get more iodine incorporation with iodide (I₃CH)
- Chlorinated iodopamidol in source water containing NOM has higher genotoxicity than source water with iopamidol alone or with chlorine alone

What's Next

- Identify iopamidol degradation products and intermediates (LC/MS/MS)
- Will do minimum energy calculations (3-D structures) of other ICM compounds
- Will try additional experiments with other ICM

Ever wonder what happens when you have to scale things up for toxicity testing??

The Land of Extraordinarily Large Lab Equipment

Chris

Toxicity? $20 L \rightarrow 1 mL$

Steve

Cristal