

US EPA Computational Toxicology Programs: Central Role of Chemical-annotation Efforts & Molecular Databases

ACS Fall Meeting, Washington DC, August 17, 2009

Ann Richard richard.ann@epa.gov

Office of Research and Development National Center for Computational Toxicology

"...to integrate modern computing and information technology with molecular biology to improve Agency prioritization of data requirements and risk assessment of chemicals"

Decision Support Tools for High-Throughput Risk Assessment

Office of Research and Development National Center for Computational Toxicology

http://www.epa.gov/ncct

Change Needed Because

Too Many Chemicals Too High a Cost 90,000 100000 11,000 → Cancer IRIS 10000 TRI DevTox Pesticide Actives 1000 →● NeuroTox CCL 1&2 Pesticide Inerts 100 → ReproTox III HPV MPV Current → ImmunoTox 10 50,50,50 **MPV** Historical → PulmonaryTox **TSCA** Inventory Millions \$ **Data Collection**

...and not enough data.

Office of Research and Development National Center for Computational Toxicology

Judson, et al EHP, 2008

Future of Chemical Toxicity Testing

in vitro testing in silico analysis

Office of Research and Development National Center for Computational Toxicology

www.epa.gov/ncct/toxcast

 $\boldsymbol{\chi}$

 \bigcirc

œ

Future of Chemical Toxicity Testing

July 2007

REP

Toxicity Testing in the 21st Century: A Vision and a Strategy

Advances in molecular biology, biotechnology, and other fields are paving the way for major improvements in how scientists evaluate the health risks posed by potentially toxic chemicals found at low levels in the environment. These advances would make toxicity testing quicker, less expensive, and more directly relevant to human exposures. They could also reduce the need for animal testing by substituting more laboratory tests based on human cells. This National Research Council report creates a far-reaching vision for the future of toxicity testing.

oxicity tests on laboratory animals are conducted to evaluate chemicals-including medicines, food additives, and industrial, consumer, and agricultural chemicals-for their potential to cause cancer, birth defects, and other adverse health effects. Information from toxicity testing serves as an important part of the basis for public health and regulatory decisions concerning toxic chemicals. Current test

methods were developed incrementally over the past 50 to 60 years and are conducted using laboratory animals, such as rats and mice. Using the results of animal tests to predict human health effects involves a number of assumptions and extrapolations that remain controversial Test animals are often exposed to higher doses than would be expected for typical human exposures, requiring assumptions about

effects at lower doses or exposures. Test animals are typically observed for overt signs of adverse health effects, which provide little information about biological changes leading to such health effects. Often controversial uncertainty factors must be applied to account for difference between test animals and humans. Finally use of animals in testing is expensive and time consuming, and it sometimes raises ethical issues. Today, toxicological

> evaluation of chemicals is poised to take advantage of the on-going revolution in biology and biotechnology. Thi revolution is making it increasingly possible to study the effects of chemicals using cells, cellular components, an tissues-preferably of human origin—rather than whole animals. These powerful new approaches should help to address a number of challenges facing the

POLICYFORUM

TOXICOLOGY **Transforming Environmental Health Protection**

Francis S. Collins.^{1*†} George M. Grav.^{2*} John R. Bucher^{3*}

n 2005, the U.S. Environmental Protection National Toxicology Program (NTP), funded a project at the National Research Council (NRC) to develop a long-range vision for toxicity testing and a strategic plan for implementing that vision. Both agencies wanted future toxicity testing and assessment paradigms to meet evolving regulatory needs. Challenges include the large numbers of substances that need to be tested and how to incorporate recent advances in molecular toxicology, computational sciences, and information technology; to rely increasingly on human as opposed to animal data; and to offer increased efficiency in design and costs (1-5). In response, the NRC Committee on Toxicity Testing and Assessment of Environmental Agents produced two reports that reviewed current toxicity testing, identified key issues. and developed a vision and implementation strategy to create a major shift in the assessment of chemical hazard and risk (6, 7) Although the NRC reports have laid out a solid theoretical rationale, comprehensive and rigorously gathered data (and comparisons with historical animal data) will determine whether the hypothesized improvements will be realized in practice. For this purpose, NTP, EPA, and the National Institutes of Health Chemical Genomics Center (NCGC) (organizations with expertise in experimental toxicology, computational toxicology, and high-through-

lished a collaborative research program. EPA, NCGC, and NTP Joint Activities In 2004, the NTP released its vision and

roadmap for the 21st century (1), which established initiatives to integrate high

¹Director, National Human Genome Research Institute

throughput screening (HTS) and other auto-Agency (EPA), with support from the U.S. mated screening assays into its testing program. In 2005, the EPA established the National Center for Computational Toxicology (NCCT). Through these initiatives, NTP and EPA, with the NCGC, are promoting the evolution of toxicology from a predominantly observational science at the level of disease-specific models in vivo to a predominantly predictive science focused on broad inclusion of target-specific, mechanism-based, biological observations in vitro (1, 4) (see figure, below).

Toxicity pathways. In vitro and in vivo tools are being used to identify cellular responses after chemical exposure expected to result in adverse health effects (7). HTS methods are a primary means of discovery for drug development, and screening of >100,000 compounds per day is routine (8). However, drug-discovery HTS methods traditionally test compounds at one concentra-

We propose a shift from primarily in vivo animal studies to in vitro assays, in vivo assays with lower organisms, and computational modeling for toxicity assessments.

tion, usually between 2 and 10 µM, and tolerate high false-negative rates. In contrast, in the EPA, NCGC, and NTP combined effort. all compounds are tested at as many as 15 concentrations, generally ranging from ~5 nM to ~100 µM, to generate a concentrationresponse curve (9). This approach is highly reproducible, produces significantly lower false-positive and false-negative rates than the traditional HTS methods (9), and facilitates multiassay comparisons. Finally, an informatics platform has been built to compare results among HTS screens; this is being expanded to allow comparisons with historical toxicologic NTP and EPA data (http://ncgc.nih.gov/pub/openhts). HTS data collected by EPA and NTP, as well as by the NCGC and other Molecular Libraries Initiative centers (http://mli.nih.gov/), are being made publicly available through Webbased databases [e.g., PubChem (http:// pubchem.ncbi.nlm.nih.gov)]. In addition,

ŝ

EPAs Contribution: The ToxCast Research Program

906

*The views expressed here are those of the individua authors and do not necessarily reflect the views and policies of their respective agencies tAuthor for correspondence. E-mail: francisc@mail.nih.gov

Transforming toxicology. The studies we propose will test whether high-throughput and computational toxicology approaches can yield data predictive of results from animal toxicity studies, will allow prioritization of chemicals for further testing, and can assist in prediction of risk to humans.

National Center for Computational Toxicology

National concerny or ociences

15 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org

ToxCast™ Background

- Research program of EPA's National Center for Computational Toxicology (NCCT)
- Addresses chemical screening and prioritization needs for pesticidal inerts, anti-microbials, CCLs, HPVs and MPVs
- Comprehensive use of HTS technologies to generate biological fingerprints and predictive signatures
- Coordinated with NTP and NHGRI/NCGC via Tox21
- Committed to stakeholder involvement and public release of data
 - Communities of Practice- Chemical Prioritization; Exposure
 - NCCT website <u>http://www.epa.gov/ncct/toxcast</u>
 - ACToR <u>http://www.epa.gov/actor/</u>
 - ToxRef DB <u>http://www.epa.gov/ncct/toxrefdb/</u>
 - DSSTox (PubChem) <u>http://www.epa.gov/ncct/dsstox/</u>

Chemical Classes in ToxCast_320 (Phase I)

- 309 Unique Structures
- Replicates for QC
- 291 Pesticide Actives
 9 Industrial Chemicals
 13 Parent/Metablolite pairs
- 56/73 Proposed Tier 1
 Endocrine Disruption
 Screening Program
- 14 High Production
 Volume Chemicals
 11 HPV Challenge

CHLORINE ORGANOPHOSPHORUS AMIDE ESTER ETHER PYRIDINE FLUORINE CARBOXYLIC ACID PHENOXY KETONE TRIAZINE CARBAMATE PHOSPHOROTHIOATE PYRIMIDINE BENZENE ORGANOCHLORINE AMINE PYRETHROID □ SULFONYLUREA □ TRIAZOLE UREA IMIDAZOLE NITRILE ALCOHOL CYCLO PHOSPHORODITHIOATE THIOCARBAMATE □ ANILINE THIAZOLE DINITROANILINE OXAZOLE ■ PHOSPHATE IMINE NITRO PHENOL PHTHALIMIDE PYRAZOLE 7 SULFONAMIDE

ToxRefDB: >\$1Billion Million Dollars Worth of *In Vivo* Chronic/Cancer Bioassay Effects and Endpoints

ToxCast In vitro HTS Assays

Biochemical Assays

- Protein families
 - GPCR
 - NR
 - Kinase
 - Phosphatase
 - Protease
 - Other enzyme
 - Ion channel
 - Transporter

Assay formats

- Radioligand binding
- Enzyme activity
- Co-activator recruitment

467 Endpoints

Office of Research and Development National Center for Computational Toxicology

Cellular Assays

Cell lines

- HepG2 human hepatoblastoma
- A549 human lung carcinoma
- HEK 293 human embryonic kidney

Primary cells

- Human endothelial cells
- Human monocytes
- Human keratinocytes
- Human fibroblasts
- Human proximal tubule kidney cells
- Human small airway epithelial cells

Biotransformation competent cells

- Primary rat hepatocytes
- Primary human hepatocytes

Assay formats

- Cytotoxicity
- Reporter gene
- Gene expression
- Biomarker production
- High-content imaging for cellular phenotype

ToxCast: High-Multi-Dimensional Data

U.S. ENVIRONMENTAL PROTECTION AGENCY

ToxCast/Tox21: Chemical Annotation & Data Publication

ToxCast/Tox21: Chemical Annotation & Data Publication

NIH CHEMICAL GENOMICS CENTER HTS data SEPA AC

Cheminformatics Needs:	
 Select chemicals for testing high environmental / tox interest suitable for testing chemically diverse analogs, metabolites, etc Standardized chemical structure/substance annotation across all testing & reference inventories Chemical annotation QC Analytical QC 	iotation ng ized data for use hodeling
Public reporting of data & QC	

DSSTox Project & Chemical QC

DSSTox: Distributed Structure-Searchable Database Network Project...& ToxCast™

 Chemical information QA and structure annotation

- ToxCast Phase I & II
- ToxRefDB
- > Tox21

Primary source of QC'd structures for ACToR

- Facilitate external linkages and data publication
- Publish summary activities and chemical classifiers for modeling
- PubChem Source depositor for structures & "assays"

DSSTox Standard Chemical Fields:

DSSTox Chemical Quality Control Procedures:

- Chemical identification
- Structure annotation
- Substance details
- Label consistency
- Internal consistency
- PubChem deposits

DSSTox_FileID Tables	D T)SSTo) Table	CRID				
$\begin{array}{c} 1_CPDBAS_v4a \\ \hline 2_CPDBAS_v4a \\ \hline 2_CPDBAS_v4a \\ \hline \end{array} \begin{array}{c} 1 \rightarrow 1 (v) \\ \hline 0 & 0 \\ \hline \end{array}$	v4a)	20000 20001 20003		DSST	ox_Generic_SID		
4_CPDI 1_CPDBAS_v5a 2_CPDBAS_v5a 3_CPDBAS_v5a 3_CPDBAS_v5a 4_494_op 3_CPDBAS_v5a	$\infty \rightarrow 1$ all versions)	20004 20005 20006		Table 20000 20001		DSSTo Table	x_CID
1481_CP 4_CPDBAS_v5a		20000 20007 20008	∞ → 1	20003 20004 20005	∞ → 1	1 2 3	
2_EPAFHM_v4a 3_EPAFHM_v4a 4_	Version _	20009 20010 20011 20012	Unique Record ID	20006 20007 20008	. Unique Test Substance ID	4 5 6	Unique Structure ID
1_EPAFHM_v5a 2_EPAFHM_v5a 617_EPA 3_EPAFHM_v5a		20012 20013 20014 20015	Mans 1:1 to	20009 20010 20011	Maps 1:1 to	7 8 	Maps 1:1 to
4_EPAFHM_v5a 617_EPAFHM_v5a		20013	Source Content Fields for file version	20012	TestSubstance fields	 9001 9002	STRUCTURE fields
for all DSSTox Data Files and version	ns	 40000 40001		30000 30001			
 Substances (Generic_SID) across all files Public chemical registry system allows user to create database from published DSSTox files 				eate			

	S NCBI	Pub hem BioAssay			
<	Search PubChem B	BioAssay 🔽 for dsstox Go Clear Save Search			
	Limits Preview	/Index History Clipboard Details			
	Display Summary	show 20 Sort by Send to Send to	ys"		
	Tool: 😽 🗵 L	.inks: Related BioAssays, Compounds, Literature, Other Links 🛽 🗵			
	All: 74 Confirma	atory: 63 MLSCN: 63 Protein Target: 0 Screening: 1 Summary: 0 😿			
	Items 1 - 20 of 74	4			
	 1: AID: 1204 Summary Data (Active) DSSTox (NCTRER) National Center for Toxicological Research Estrogen Receptor Binding Database [Screening Method] Source: EPA DSSTox Substances Tested: 232; Active: 131 				
	2: AID: 1195 DSSTox (FDA Source: EPA	Summary Data (Active) Related BioAssays, Compounds, Literature, Other L MDD) FDA Maximum (Recommended) Daily Dose Database [Other Method] DSSTox	inks.		
	Substances 3: AID: 1205 DSSTox (CPE Source: EPA Substances	 AID 1194: CPDBAS Salmonella Mutagenicity AID 1189: CPDBAS SingleCellCall AID 1205: CPDBAS MultiCellCall AID 1208 CPDBAS Rat Bioassay (M/F/Both) AID 1199: CPDBAS Mouse Bioassay (M/F/Both) 	403 806 582 587 445	/860 Active /1547Active /1152Active /1240 Active /1007Active	
	□ 4: AID: 1189 DSSTox (CPE Source: EPA Substances □ 5: AID: 1208	 7. AID 1190: CPDBAS Dog & Primates Bioassay 8. AID 1195: FDAMDD – FDA Maximum Daily Dose 9. AID 1204: NCTRER – NCTR Estrogen Receptor Binding 10. AID 1188: EPA Fathead Minnow Acute Toxicity 11. AID 1201: EPA Disinfection By-Products Carcinogenicity Estimates 12. AID 1576: EPA Estrogen Receptor Ki Binding Study (Laws et al) 	15 1216 131 580 80 17	/32 Active /1216 Active /232 Active /617 Active /209 Active /278 Active	
	<mark>DSSTox</mark> (CPE Source: EPA Substances	D <mark>SSTox</mark> Tested: 1240; Active: 587			

Chemical Errors in Toxicity Information:

Current Guidelines & Chemical Standards in Toxicology & Biological Effects Publishing:

Archives of Toxicology **Brain Research Bulletin** Ecotoxicol. Environ. Saf. Envion Health Perspect Envion.Sci. Technol. Environ.Toxicol.Pharmacol. Environ & Molec Mutagenesis Environmental Toxicology International J. of Toxicology J.Appl.Toxicol. J Toxicology & Enviro. Health Part A Neurotoxicology & Teratology **Reproductive Toxicology** Toxicol. Appl. Pharmacol. **Toxicological Sciences** Toxicologic Pathology Toxicology Letters Toxicology

"Authors should provide sufficient detail to allow the work to be reproduced."

Current Guidelines & Chemical Standards in Toxicology & Biological Effects Publishing:

Archives of Toxicology **Brain Research Bulletin** Ecotoxicol. Environ. Saf. Envion Health Perspect Envion.Sci. Technol. Environ.Toxicol.Pharmacol. Environ & Molec Mutagenesis Environmental Toxicology International J. of Toxicology J.Appl.Toxicol. J Toxicology & Enviro. Health I Neurotoxicology & Teratology **Reproductive Toxicology** Toxicol. Appl. Pharmacol. **Toxicological Sciences** Toxicologic Pathology Toxicology Letters Toxicology

Survey journal articles over 4 year period:

Approx 30 cases of reported purity (from Supplier)

endent

cal QC

Aside from reports of new compounds (rare), virtually no analytical QC follow-up.

Author responsibility

"Authors should provide sufficient detail to allow the work to be reproduced."

nature chemical biology

"Chemical compound information

For all significant compounds included in Nature Chemical Biology original research papers, a compound data page, linked directly from the compound reference in the full text, appears in the online journal.

Compound Data Index

From the following article

Small molecules enhance autophagy and reduce toxicity in Huntington's disease models

Sovan Sarkar, Ethan O Perlstein, Sara Imarisio, Sandra Pineau, Axelle Cordenier, Rebecca L Maglathlin, John A Webster, Timothy A Lewis, Cahir J O'Kane, Stuart L Schreiber & David C Rubinsztein

Nature Chemical Biology **3**, 331-338 (2007) Published online: 7 May 2007 doi:10.1038/nchembio883

<u>Compound 1</u> Inositol A PubChem link allows users of Nature Chemical Biology to go, in a single click, from the mention of a molecule in a paper to a rich and growing collection of information about chemical structures and their biological assay results, hosted by the NCBI.

<u>View in PubChem</u>

<u>View compound page (2 KB) | View in 3D (2 KB) | Download ChemDraw file of structure (2 KB)</u>

"Authors ensure that the chemical compound information within their papers is complete, scientifically accurate and appropriately formatted."

Editorial

Nature Chemical Biology **3**, 297 (2007) doi:10.1038/nchembio0607-297

A new look for chemical information

Nature Chemical Biology is committed to enhancing interdisciplinary communication and features online content to increase the accessibility of chemical information for our readers.

Carcinogenic Potency Database: Hamster Carcinogenicity Results

From CPDB Hamster Table:

N-Nitroso-oxopropylchloroethylurea NOCAS

3-(2-chloroethyl)-1-nitroso-1-(2-oxopropyl)urea

N-{[(2-chloroethyl)amino]carbonyl}-N-nitrosopropanamide

N-{[(2-chloroethyl)(nitroso)amino]carbonyl}propanamide

1-(2-chloroethyl)-1-nitroso-3-(2-oxopropyl)urea

CPDB Hamster Carcinogenicity Data Reference

Rat Cancer Study (Materials) Chemical synthesis paper, NMR, IR structure confirmation

Carcinogenic Potency Database: Hamster Carcinogenicity Results

From CPDB Hamster Table:

N-Nitroso-oxopropylchloroethylurea NOCAS

3-(2-chloroethyl)-1-nitroso-1-(2-oxopropyl)urea

N-{[(2-chloroethyl)amino]carbonyl}-N-nitrosopropanamide

N-{[(2-chloroethyl)(nitroso)amino]carbonyl}propanamide

1-(2-chloroethyl)-1-nitroso-3-(2-oxopropyl)urea

Chemical synthesis paper, NMR, IR structure confirmation

Determined to be same chemical as: 1-(2-Oxopropyl)nitroso-3-(2-chloroethyl)urea CAS [110559-85-8] Already listed in CPDB Rat and Mouse Table

Perfluoroalkylacids (PFAAs):

- Man-made, lipophilic, stable, biopersistant
- Widespread industrial use as surfactants (stain and oilresistant coatings, microwave popcorn bags, emulsifier, etc)
- Widespread exposure & environmental contamination
- PFOA (perflurooctanoic acid ammonium salt) and PFOS (perfluorooctane sulfonic acid) of greatest health concern
- PFOA and PFOS have undergone extensive toxicity testing
 - Hepatotoxic
 - Developmental toxicants
 - Immunotoxic

National Library of Medicine Specialized Information Services

ChemIDplus Lite Full Record

Tox. & Env. Health > TOXNET > Return to Results Page

Potassium perfluorooctanesulfonate RN: 2795-39-3

Names and Synonyms Synonyms 1 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1octanesulfonic acid, potassium salt 1 1-Octanesulfonic acid, heptadecafluoro-, potassium salt 1 Al3-50950 1 EINECS 220-527-1 1 FC 95 1 Floral FC 95 1 Fluorad FC 95 1 Heptadecafluorooctanesulfonic acid, potassium salt 1 NSC 18405 1 Perfluorooctanesulfonic acid, potassium salt 1 Potassium PFOS 2 Detectium bentadecafluorooctanes 1 automate

- Potassium heptadecafluorooctane-1-sulfonate
- Potassium perfluorooctanesulfonate

Systematic Name

 1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8heptadecafluoro-, potassium salt
 Potassium heptadecafluorooctane-1-sulphonate

Registry Numbers

CAS Registry Number 1 2795-39-3

Other Registry Number

i 117925-64-1 i 59112-13-9 i 62010-27-9 i 69458-54-4

PFOS

- Major synthetic pathway is electrochemical fluorination
- Yields approx 60-80% linear form, with significant non-linear (branched form) contamination
- Verified by primary manufacturer (3M) and NMR

PFOS

Listed as 98.0% pure (T)

- (T) indicates titration method, which confirms only empirical formula
- Listed incorrectly as linear form by both structure and CASRN
- No Certificate of Analysis available from Sigma (Fluka)

Problems with using CAS as Primary Registry for Public Toxicity Databases (and EPA):

CAS Registry Number 3068-88-0 REGISTRY **Deleted Registry Number** 36536-46-6, 43137-57-1 **Chemical Name** 2-Oxetanone, 4-methyl- (CA INDEX NAME) Butyric acid, .beta.-hydroxy-, lactone (4Cl) Butyric acid, 3-hydroxy-, .beta.-lactone (6CI) (.+-.)-.beta.-Butyrolactone (.+-.)-.beta.-Methylpropiolactone (RS)-.beta.-Butyrolactone .beta.-Butyrolactone .beta.-Methyl-.beta.-propiolactone .beta.-Methylpropiolactone 3-Hydroxybutyric acid lactone 4-Methyl-2-oxetanone Butanoic acid, 3-hydroxy-, .beta.-lactone DL-.beta.-Butyrolactone **Molecular Formula** C4H6O2

Мe

Commercial, costly, unavailable to many

- High incidence of errors in assigning CAS with chemical and data in tox literature (1-10%)
- CAS assigned post-study by biologists/toxicologists
- Test substance annotation unavailable for purity grade, mixture details, etc.
- Not unique in public resources deleted, alternate

Chemical Annotation of Public MicroArray Resources: GEO & ArrayExpress

Towards a Public "Toxico-chemogenomics" Capability

S NC	BI	Gene Expression Omnibus			
HOME SEARCH :	SITE MAP	Handout NAR 2006 Paper NAR 2002 Paper	FAQ MIAME	Email GEO	
NCBI > GEO 12	J		Not logged	in Login 입	
Gene Expre repository su online resour	assion upportin ce for g tion	Omnibus: a gene expression/molecular abundance ng MIAME compliant data submissions, and a curated, gene expression data browsing, query and retrieval.	Public data GPL Platform GSM Samples GSE Series Total	ns 4954 249197 9567 263718	
QUERY		You are logged in as <i>guest</i> Login » Array	r <mark>stitute</mark> Æxpress (71	17 Experime	nts with 21083 Hybs, 468 Arrays)
	_		0		
Browse		Give an experiment accession number or fill out some of the following fields to get a list of matching expe	for example E	E-MANP-2,	
		Species Author			Array accession number
SUBMIT		* any species * Image: Constraint species * Experiment type Laborator * any type * Image: Constraint species * Experimental Factors Publication * any factor * * Description contains the word *	ion specify »	•	Array design name Array provider

	Accession Number	Listed Chemical Name
	E-MEXP-132	estrogen
	E-MAXD-39	oestradiol
	E-GEOD-4025	estradiol (E2)
Non-standard entry	E-GEOD-848	E2
•	E-NASC-65	estradiol
No ability to structure soarch	E-SMDB-1443	Beta-estradiol
	E-TABM-269	Estradiol
or structure-analog search	E-AFMX-12	17 beta-estradiol (E2)
	E-AFMX-13	Estrogen
	E-GEOD-1045	Estradiol
Fewer than 30 CAS in >200	U E-GEOD-1153	Estradiol E2
experiments	E-GEOD-2195	17beta-estradiol
experimente	E-GEOD-2251	17beta-estradiol
	E-GEOD-2292	17beta-estradiol
Abbreviations:	E-GEOD-2889	17beta-estradiol
CCCP	E-GEOD-3529	Estradiol(E2)
Carbonyl Cyanida 2	E-GEOD-4668	17beta-estradiol
	E-MEXP-1053	Estradol
ChloroPhenylhydrazone	E-TABM-231	Estradiol
Cat Colony Care Programme		

Incomplete Chemical names

Dipyridyl- A 4,4'-; 3,3'-; 2,4'-; 2,3'-; or 2,2'- ? Succinate Na, K, Ca?

Misspellings:

Caltech Core Collapse Project

Mtm or MMC Mitomycin C

109 ?? triazine compound

DOX Doxorubicin or Doxycline

Carconyl chlotide ... Carbonyl chloride (phosgene) ciprofbrate Ciprofibrate

EBI ArrayExpress: Submitter Experiment Description

User guest, your query for Experiments

with experiment type = compound treatment with keyword = estradiol 59 matches

1	Experiment Design Type :	compound treatment , dose response	, development or differentiation	Lab:	Syngenta CTL

Experiment Design Type : compound treatment , dose response , development or differentiation

(Generated description): Experiment with 49 hybridizations, using 49 samples of species [Mus musculus], using 49 arrays of array design [Affymetrix GeneChip® Murine Genome U74Av2 [MG_U74Av2]], producing 49 raw data files and 0 transformed and/or normalized data files.

(Submitter's description 1): A major challenge in the emerging field of toxicogenomics is to define the relationships between chemically induced changes in gene expression and alterations in conventional toxicologic parameters such as clinical chemistry and histopathology. We have explored these relationships in detail using the rodent uterotrophic assay as a model system. Gene expression levels, uterine weights, and histologic parameters were analyzed 1, 2, 4, 8, 24, 48, and 72 hr after exposure to the reference physiologic estrogen 17 beta-estradiol (E2). A multistep analysis method, involving unsupervised hierarchical clustering followed by supervised gene ontology-driven clustering, was used to define the transcriptional program associated with E2-induced uterine growth and to identify groups of genes that may drive specific histologic changes in the uterus. This revealed that uterine growth and maturation are preceded and accompanied by a complex, multistage molecular program. The program begins with the induction of genes involved in transcriptional regulation and signal transduction and is followed, sequentially, by the regulation of genes involved in protein biosynthesis, cell proliferation, and epithelial cell differentiation. Furthermore, we have identified genes with common molecular functions that may drive fluid uptake, coordinated cell division, and remodeling of luminal epithelial cells. These data define the mechanism by which an estrogen induces organ growth and tissue maturation, and demonstrate that comparison of temporal changes in gene expression and conventional toxicology end points can facilitate the phenotypic anchoring of toxicogenomic data.

Free text description
No curation or external review
No chemical indexing of experiment

Series GSE2187		Query DataSets for GSE2187		
Status Title	Public on May 01, 2005 Classification of a large micro-array dataset. Algorithm comparison and analysis of drug signatures.			
Organism(s)	Rattus norvegicus			
Summary	Classification of a large micro-an analysis of drug signatures. These data support the publicat array dataset. Algorithm compar Some of the calculations in the p version of the data available at Copyright (c) 2005 by Iconix Pha	 No chemical standards Difficult to identify chemical exposure-related experiments 		
	Guidelines for commercial use: http://www.iconixbiosciences.co	► Fewer than 30 CAS RNs		
	Keywords: other	provided in >2000		
		experiments		
Contributor(s)	Natsoulis G, El Ghaoui L, Lanckriet GR, Tolley AM, Leroy F, Dunlea S, Eynon BP, Pearson CI, Tugendreich S, Jarnagin K			
Citation(s)	Natsoulis G, El Ghaoui L, Lanckri large microarray data set: algori	et GR, Tolley AM et al. Classification of a the state of		
a	signatures. Genome Res 2003 M	PERL scripts to filter web-		
Contact name	Jan 25, 2005 Mark Fielden	accessed data content		
Organization name Street address	Iconix Biosciences 325 East Middlefield Road	Manual review of Submitter		
City State/province	Mountain View	textual descriptions		
ZIP/Postal code	94043	Creation of initial chemical		
Country	USA	& experimental index		
Platforms (1)	GPL1820 Rat Uniset 10K	QC & structure annotation		
Samples (587) ∄ More	Samples (587) GSM43278 1-NAPHTHYL ISOTHIOCTANATE 30_225_EIVEN_CONT More OIL ORAL GAVAGE RATM. Replicate1			
GSM43279 1-NAPHTHYL ISOTHIOCYANATE_3025_LIVER_CORN OIL_ORAL GAVAGE_RATM, Replicate2				

Conclusions from GEO/ArrayExpress Effort:

- Past attention to chemical aspects of experiments and data – none !
- Structure annotation and linkages enhances scientific value of resources
- Automated text mining methods inadequate; required significant manual review & curation
- Recommended addition of two <u>required</u> data-submitter fields:
 - Unambiguous chemical name, CAS if available
 - Purpose of chemical in relation to experiment, select one: treatment, vehicle, reference, other.

Recommendations:

- Toxicology journals & public databases should strengthen standards for chemical annotation and sample QC reporting
- ACS, CAS/STN should support public efforts to QC association of biological effects data with CAS/name/structure
 - Allow >10K chemical substance/CAS lists for high-interest chemicals
 - Make STN available at no-low cost to public QC efforts
- Chemical annotation efforts first step, but insufficient without chemical QC review
- Public database projects can contribute to QC
 - Toxicology: DSSTox
 - ChemSpider Wiki
 - PubChem Source reliability for QC'd chemical info

"Cheminformaticon": Intrinsic Information Content

I. Representations of chemicals in public literature & databases

Acknowledgements:

EPA NCCT DSSTox Team:

Maritja Wolf (DSSTox) and Tom Transue (Structurebrowser) – Lockheed Martin, Contractors to the US EPA

Toxicogenomics: ClarLynda Williams (EPA)

 EPA NCCT ToxCast Team: Robert Kavlock (Director, NCCT) David Dix (ToxRefDB, HTS, Genomics) Keith Houck (HTS) Matt Martin (ToxRefDB) Richard Judson (ACToR, ToxMiner)

Literature/Journal review:
 Inthirany Thillainadarajak (EPA SEEP)

This work was reviewed by EPA and approved for publication but does not necessarily reflect official Agency policy.

"An expert is a person who has made all the mistakes that can be made in a very narrow field." – Niels Bohr

"Whoever is careless with the truth in small matters cannot be trusted with important matters." – Albert Einstein