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Abstract A Bayesian hierarchical space-time model is proposed by combining informa-
tion from real-time ambient AIRNow air monitoring data, and output from a computer
simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast
model. A model validation analysis shows that the model predicted maps are more accurate
than the maps based solely on the Eta-CMAQ forecast data for a two week test period.
These out-of sample spatial predictions and temporal forecasts also outperform those from
regression models with independent Gaussian errors. The method is fully Bayesian and
is able to instantly update the map for the current hour (upon receiving monitor data
for the current hour) and forecast the map for several hours ahead. In particular, the
eight-hour average map which is the average of the past four hours, current hour and
three hours ahead is instantly obtained at the current hour. Based on our validation, the
exact Bayesian method is preferable to more complex models in a real-time updating and
forecasting environment.

Key Words: Bayesian inference; Eta-CMAQ model; Space-time forecasting; hierarchical
model; separable models; spatial interpolation.

1 Introduction

Accurate, instantaneous and high resolution spatial air-quality information can better
inform the U.S. public and regulatory agencies about air pollution levels that lead to
adverse health effects. The most direct way to obtain accurate air quality information is
from measurements made at surface monitoring stations across the United States (U.S.).
However, many areas of the U.S. are not monitored and typically, air monitoring sites
are sparsely and irregularly spaced over large areas. Thus, it is now important to develop
computationally efficient models to combine air monitoring data and numerical model
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output, in a coherent way for better prediction and forecasting of air pollution over short
(e.g. hourly) time periods.

U.S. national air quality forecasts and near real-time predictive spatial maps are cur-
rently provided to the general public through the EPA-AIRNow web site: http://airnow.gov/.
Current and next day particulate matter and ozone (O3) air quality forecasts for over 200
U.S. cities are now provided on a daily basis. These forecast maps, however, are based
primarily on the output of a computer simulation model known as the Eta-CMAQ model,
see e.g. http://www.epa.gov/asmdnerl/CMAQ/. These models use emission inventories,
meteorological information, and land use to estimate average pollution levels for gridded
cells (12 km2) over successive time periods. However, it is well known that these computer
model may produce biased output and, as a result, this may lead to inaccurate pollution
forecasts.

The objective of this paper is to develop a set of Bayesian hierarchical models which
are capable of producing instantaneous, but more accurate short term forecast maps of
hourly ozone concentration levels. These models combine ground-level observations from
the real-time ozone monitoring network (http://airnow.gov) and output from the Eta-
CMAQ model. Using data over a two week period in August 2005 we develop a Bayesian
model which is shown to provide improved predictions relative to those achieved by Eta-
CMAQ alone based on cross-validation. The space-time model lends itself to closed form
analytic Bayesian posterior predictive distributions for spatial interpolation of ozone con-
centration level for the past hours, current hour and forecast for future hours. These
predictive distributions provide instantaneous spatial interpolation maps which could be
used in a real-time environment such as the U.S. EPA AIRNow system. The predictive
distributions are used to obtain the eight-hour average map which is the average of the
past four hours, current hour and three hours ahead, see Section 3.3. The forecasts are
evaluated by using the model fitted to several weekly data sets. Our approach does not rely
on iterative algorithms such as the Markov Chain Monte Carlo (MCMC) methods that
are often used in Bayesian model fitting and forecasting. The MCMC methods require
considerably more execution time to estimate model parameters, thus eliminating their
potential use in real-time forecasting environments.

Although spatial prediction with fused data is a relatively new field, several papers
have appeared in the literature on this topic, see the review by Gelfand and Sahu (2009)
and the references therein for a recent snapshot of activities. Fuentes and Raftery (2005)
developed a hierarchical statistical framework to model the “true” pollutant process as
jointly Gaussian random fields. They estimate the parameters for the bias of Eta-CMAQ
output, the parameters of the covariance structure for Eta-CMAQ, and the measurement
error process. However, this methodology only applies to spatial processes at a fixed time
point, without evaluation of the space-time dependence structure. Kang et al. (2008) con-
sider Kalman-Filter approaches to improve next day forecasts of ozone concentration at
individual U.S. monitoring sites for the summer of 2005.

Zimmerman and Holland (2005) consider the problem of optimal spatial prediction
of wet deposition data using data from two monitoring networks with network-specific
biases and variances. Cowles and Zimmerman (2003) use a Bayesian modeling approach for
spatio-temporal data from two monitoring networks that accounts for possible differences
in network measurement error, bias and variances. Jun and Stein (2004) suggest new ways
of comparing space-time correlation structure of monitoring observations with Eta-CMAQ
numerical model output. McMillan et al. (2008) develop their model at the grid cell level
simplifying the computation requirements and enabling the use of this model to provide
fused predictions for large spatial domains and temporal periods. Unlike the exact, almost
instantaneous, computation method proposed in this paper, these methods and those of
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Fuentes and Raftery (2005) rely on slower MCMC algorithms. Moreover, none of the above
mentioned articles developed forecasting methods in the data fusion setting of this paper.

In an earlier paper (Sahu et al., 2009) we have developed a hierarchical space-time
forecast model for the daily 8-hour maximum ozone concentration data for the same two
week time period in 2005 from the same study region. Besides the obvious difference in
time units, hourly and daily, there are some fundamental differences between the objec-
tives, models, fitting and forecasting methods, and the results of the current paper and the
previous paper. The objective here is to instantaneously predict the current 8-hour ozone
concentration based on past data upto the current hour while the same there is to obtain
accurate forecast for the next day. The model here incorporates cyclic parameters describ-
ing the diurnal patterns and the results are obtained within a few seconds of inputting
the current hour’s data. The previous paper proposes a more complex dynamic model
which requires iterative MCMC methods taking about 5-7 hours to produce the next day
forecasts. When applied to the same data set these forecasts can be more accurate than
those from the simple model proposed in this paper, indeed see Section 5 where these and
further differences between the two approaches are presented.

The remainder of this paper is organized as follows. In Section 2 we describe the
available data and their use in our modeling development described in Section 3. Model
validation results and model based analyses are presented in Section 4. The differences
between the methodology of the current paper are contrasted with that of our previous
paper which modeled daily data in Section 5. A few summary remarks are placed in Sec-
tion 6. An Appendix contains derivations of simplifications for various crucial expressions
in the posterior distributions.

2 Data descriptions

We use real-time hourly ozone concentrations in parts per billion (ppb) units from n = 350
sites covering the eastern U.S. for a two-week test period, August 2–14, 2005. Data from
40 additional sites are set aside for model validation, see Figure 1. There are about 20%
missing values in the monitoring data which we impute using a simple regression model.

There are 9119 Eta-CMAQ grid cells (12 km2) in our study region spanning the eastern
U.S. In practice, the hourly output from the Eta-CMAQ model are available up to 24 hours
in advance. However, in our post-hoc study for data from 2005, Eta-CMAQ output for all
days and hours are available for analysis, though we shall pretend that the output for only
the next 24 hours are available to mimic the real situation.

The range of the Eta-CMAQ forecast data is quite similar to the range of the ground-
level ozone monitoring data. To compare the Eta-CMAQ forecasts with the observed mon-
itoring data, we plot data from four randomly chosen sites and Eta-CMAQ forecasts from
the corresponding grid cells containing the sites in Figure 2. The plots show good agree-
ment between the two at some of the sites but large disagreements at the other sites. This
implies that there is spatio-temporal bias in the Eta-CMAQ forecasts and appropriate
space-time modeling is needed to remove those biases.

To complete a full weekly cycle, we model data for a running window of seven days
starting at any given hour. More distant past data can be included at the expense of
increasing the computational burden. For spatial prediction, we use the Eta-CMAQ fore-
casts for 3000 randomly sampled grid cells out of the available 9119 grid cells. This is for
illustration purposes only, as all of the available Eta-CMAQ output could be used to pro-
duce spatial maps. We use the square-root scale to stabilize the variance for modeling, but
produce the predictions on the original scale for ease of interpretations, as done previously
in Sahu, Yip and Holland (2009).
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Fig. 1 The 350 data and 40 validation sites (1 to 40).

3 Models

Let Z(s, t) denote the observed square-root ozone concentration at location s and at hour
t (t = 1, . . . , T ). We develop models for data from n stations denoted by s1, . . . , sn, for a
running window of seven days so that T = 168(24× 7).

Further, let X(s, t) denote the square-root of the Eta-CMAQ ozone forecast value at
the grid cell covering the site s and at time t. For simplicity, we adopt this notation scheme
to define the location of Eta-CMAQ areal grid cell averages. Figure 2 shows that X(si, t)
can be a good predictor of Z(si, t). The figure also shows heavy diurnal cycles in both
ozone concentrations and their Eta-CMAQ forecasts.

We model the diurnal patterns by including a different hourly intercept for each hour
to have an adequate, but simple model. The hourly intercept at any given hour remains
constant for different days. The hourly intercept is defined by ξ(t) = βj , where the hour
t(= 1, . . . , T ) corresponds to the jth hour of the day, j = 1, . . . , 24. The full model is given
by:

Z(si, t) = β0 x(si, t) + ξ(t) + w(si, t), i = 1, . . . , n, t = 1, . . . , T, (1)

where β0 is an unknown regression co-efficient. Note that the model (1) is in the form:
noisy data equal to the true mean level plus a random error where the true mean level is
given by β0 x(si, t)+ξ(t) and the random error term, dependent in space and time, is given
by w(si, t). Let β denote the unknown parameters (β0, β1, . . . , β24) and p = 25 denote the
dimensionality of β.

The error term w(si, t) is assumed to be a zero-mean spatio-temporal process with a
separable covariance structure, given by:

Cov
{

w(si, tk), w(sj , tl)
}

= σ2
w ρs(|si − sj |; φs) ρt(|tk − tl|; φt). (2)

We write w to denote the vector of all the nT w(si, t)’s. Let H(φ) = Σs ⊗ Σt where the
n × n spatial correlation matrix Σs has elements ρs(|si − sj |; φs), for i, j = 1, . . . , n and
T × T temporal correlation matrix Σt has elements ρt(|tk − tl|; φt), for k, l = 1, . . . , T .
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Fig. 2 Observed hourly data are dotted lines and Eta-CMAQ forecasts are dashed lines at four randomly

chosen sites. The labels on the X-axis are the days in August, 2005. The mse for each plot is the mean

square error between the data and the Eta-CMAQ forecasts.

This model reduces to the usual regression model with independent errors when we take
H(φ) = I , the identity matrix. This can be achieved by choosing ρs(d; φs) = ρt(d, φt) = 1
if d = 0 and 0 otherwise. This independent error regression model is compared with the
spatio-temporal model in Section 4.

We take the two ρ’s to be exponential covariance functions, i.e., ρs(d; φs) = exp (−φs|d|)
and ρt(d; φt) = exp (−φt|d|) . Ideally, φ = (φs, φt)

′ should be estimated within the Bayesian
model as well. However, in a classical inference setting it is not possible to consistently
estimate all the parameters φ and σ2 in a typical model for spatial data with a covariance
function belonging to the Matèrn family, see Zhang (2004). Moreover, Stein (1999) shows
that spatial interpolation is sensitive to the product σ2φ but not to either one individually.
In Section 4 we choose optimal values of φ using a validation mean square error criterion
and estimate the variances conditional on those values.

For convenience, we work with the precision τ 2
w = 1/σ2

w. The joint prior distribution
of β, τ2

w is assumed to be:

π(β, τ2
w) = N

(

βm,
V

τ2
w

)

G(aw, bw),

where βm, p × 1, and V , p × p, are suitable hyper-parameters and τ 2
w follows the gamma

distribution G(aw, bw) with mean aw/bw. In our implementation we take aw = 2 and
bw = 1 to have a proper prior specification. We take βm to be the null vector and V = 104I
to have a vague prior on the regression parameter β.
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3.1 Posterior distributions

Model (1) can be written as
Z ∼ N

(

Xβ, σ2
wH (φ)

)

where X is the associated nT × p design matrix. The joint posterior distribution of β and
τ2
w, π

(

β, τ2
w|z

)

, is:

∝
(

τ2
w

)

nT+p

2
+aw−1

exp
[

−
τ2

w

2 (z − Xβ)
′

H−1 (φ) (z − Xβ) −
τ2

w

2 (β − βm)′V −1(β − βm) − bwτ2
w

]

∝
(

τ2
w

)

nT+p

2
+aw−1

exp
[

−
τ2

w

2

{

(z − Xβ)
′

H−1 (φ) (z− Xβ) + (β − βm)′V −1(β − βm) + 2bw

}

]

.

Now we use the matrix identity:

(z−Xβ)′H−1(φ)(z−Xβ)+(β−βm)′V −1(β−βm)+2bw = (β−β∗)′(V ∗)−1(β−β∗)+2b∗w

where
V ∗ =

(

V −1 + X ′H−1(φ)X
)−1

, β
∗ = V ∗

(

V −1βm + X ′H−1(φ)z
)

and
b∗w = bw +

{

β′

mV −1βm + z′H−1(φ)z − (β∗)′(V ∗)−1(β∗)
}

/2.

Hence the joint posterior distribution is:

π
(

β, τ2
w|z

)

∝
(

τ2
w

)

nT+p

2
+aw−1

exp

[

−
τ2
w

2

{

(β − β∗)′(V ∗)−1(β − β∗) + 2b∗w
}

]

.

Now the full conditional posterior distributions are given by:

β|z, τ2
w ∼ N

(

β∗, σ2
wV ∗

)

τ2
w|z, β ∼ G

(

nT+p
2 + aw, 1

2 (β − β∗)′(V ∗)−1(β − β∗) + b∗w

)

.

By direct integration the marginal posterior distributions are obtained as follows:

β|z ∼ t

(

β∗, 2b∗w
V ∗

nT + 2aw
, nT + 2aw

)

, τ2
w|z ∼ G (nT/2 + aw, b∗w) (3)

where Y ∼ t(µ, Σ, ν) has the probability density function

f(y|µ, Σ, ν) =
Γ

(

ν+p
2

)

Γ
(

ν
2

)

(νπ)p/2
|Σ|−1/2

{

1 +
(y − µ)′Σ−1(y − µ)

ν

}−(ν+p)/2

.

In the univariate case with scalar µ and Σ = σ2 we note the following two properties of
this distribution which we shall require for prediction in the next sub-section:

E(Y 2) = µ2 + σ2 ν

ν − 2
, Var(Y 2) =

2σ4ν2(ν − 1)

(ν − 4)(ν − 2)2
+ 8σ2µ2 ν

ν − 2
, (4)

when ν > 4.
We use the marginal posterior distributions (3) to make inference. Specifically, β∗

provides the point estimates for the parameter β. We obtain a credible interval for the
component, βk, k = 1, . . . , p by using its marginal posterior distribution which is a t-
distribution with nT + 2aw degrees of freedom having mean β∗

k and scale parameter λ2
k

where λ2
k =

2b∗w
nT+2aw

V ∗

kk where V ∗

kk is the kth diagonal entry of V ∗. Now it is straightforward
to see that an equal-tailed (1 − α)100% credible interval for βk is given by

β∗

k ± λk tα/2;nT+2aw
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where P (T > tα/2;nT+2aw
) = α/2 when T follows the standard t-distribution with nT +aw

degrees of freedom.
Similarly we estimate σ2

w by the posterior expectation

E(1/τ2
w|z) =

b∗w
nT/2 + aw − 1

which follows from the properties of the Gamma distribution. Here also we can find an
equal tailed credible interval for σ2 by using the probability identity

P (gα/2;nT/2+aw,λ ≤ τ2
w ≤ g1−α/2;nT/2+aw,λ) = 1 − α

where ga,ν,λ is such that P (Y < ga,ν,λ) = a for any 0 < a < 1 when Y follows G(ν, λ).

3.2 Predictive distributions

Using the above models we can interpolate the spatial surface at any time point t′ in the
future or in the past. Let the p-dimensional vector of values of the regression variables at
this new location-time combination be given by x0. We first construct the joint distribution:

(

Z (s′, t′)
Z

)

∼ N

{(

x′

0β

Xβ

)

, σ2
w

(

1 Σ12

Σ21 H (φ)

)}

,

where Σ21 = Σ′

12 and Σ12 is the nT dimensional vector with elements given by σs(si −
s′)σt(t − t′) where σs(si − s′) = ρs(|si − s′|; φs) and σt(t − t′) = ρt(|t − t′|; φt). Now we
obtain the conditional distribution

Z (s′, t′) |z, β, σ2
w ∼ N

{

x′

0β + Σ12H
−1 (φ) (z − Xβ) , σ2

w

(

1 − Σ12H
−1 (φ) Σ21

)}

.

We need to integrate out β and τ 2
w from the above distribution to obtain the required

predictive distribution. To do this, we note that:

z (s′, t′) − x′

0β − Σ12H
−1 (φ) (z − Xβ) = z (s′, t′) − Σ12H

−1 (φ) z − x′

0β + Σ12H
−1 (φ) Xβ

= z∗(s′, t′) − (x′

0 − Σ12H
−1 (φ) X)β

= z∗(s′, t′) − g′β

where
z∗(s′, t′) = z (s′, t′) − Σ12H

−1 (φ) z and g′ = x′

0 − Σ12H
−1 (φ) X.

Therefore,

π(Z (s′, t′) |z, β, σ2
w) ∝ (τ2

w)1/2 exp
[

−
τ2

w

2C(s′,t′) {z
∗(s′, t′) − g′β}

2
]

where
C(s′, t′) = 1 − Σ12H

−1 (φ) Σ21.

This shows that
Z∗(s′, t′)|z, β, τ2

w ∼ N
(

g′β, σ2
w C(s′, t′)

)

.

Hence by integrating out β we have

Z∗(s′, t′)|z, τ2
w ∼ N

(

g′β∗, σ2
w(C(s′, t′) + g′V ∗g)

)

.

By integrating this with respect to the marginal posterior distribution of τ 2
w in Equa-

tion (3), we obtain the posterior predictive distribution of Z∗ given z as:

Z∗(s′, t′)|z ∼ t(g′β
∗, 2b∗w

C(s′, t′) + g′V ∗g

nT + 2aw
, nT + 2aw).
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Now the posterior predictive distribution of Z(s′, t′)|z is obtained as:

Z(s′, t′)|z ∼ t

(

x′

0β
∗ + Σ12H

−1 (φ) (z− Xβ
∗) , 2b∗w

C(s′, t′) + g′V ∗g

nT + 2aw
, nT + 2aw

)

. (5)

Observe that we model ozone on the square root scale. Hence the predictions using the
posterior predictive distribution (5) will be on the square-root scale as well. We can predict
on the original scale by evaluating:

E(Z2(s′, t′)|z) = {E(Z(s′, t′)|z)}2 + Var{Z(s′, t′)|z)}

=
{

x′

0β
∗ + Σ12H

−1 (φ) (z− Xβ∗)
}2

+ 2b∗w
C(s′,t′)+g

′V ∗
g

nT+2aw−2 ,

See the Appendix for simplified expressions for Σ12H
−1 (φ) and Σ12H

−1 (φ) Σ21 and (4)
for properties of the t-distribution. The variance of the prediction, Var(Z2(s′, t′)|z), is
calculated using the expression for variance also noted down in (4).

To obtain the prediction intervals we can adopt one of the two approaches. The
first method is to find a Monte Carlo estimate of the interval by sampling from the t-
distribution (5) and using appropriate averages. This approach, however, will be slower
than the method based on the normal approximation for the square of the t-distribution (5)
we adopt here. The approximation is justified by the fact that the degrees of freedom
nT +2aw is very large (more than 2500 in our application). The approximate 95% predic-
tion interval is given by

E(Z2(s′, t′)|z) ± 1.96×
√

Var(Z2(s′, t′)|z).

3.3 Predicting the 8-hour map at the current hour

A useful application of the proposed methods is the ability to predict the 8-hour average
ozone concentration at the current hour. In the EPA AIRNow environment, the 8-hour
average ozone concentration at the current hour t is the simple average of the 8-hourly
concentrations at the current hour t, four past hours (t − 1, t − 2, t − 3, t − 4), and three
future hours (t+1, t+2, and t+3). Accordingly, the 8-hour ozone level at time t, location
s′ is given by:

O8(s
′, t) =

1

8

3
∑

k=−4

Z2(s′, t + k).

(Here we use Z2 since ozone is modeled in the square-root scale.) Note that at any un-
observed site s′, Z2(s′, t) for any t is the square of the non-central t-distribution with
parameters as given in (5). The posterior predictive distribution of O8(s

′, t), defined as the
sum of the non-central F-distributed random variables, is not available in closed form. As
a result, we use Monte Carlo simulation to find the mean and standard deviation of the
posterior predictive distribution of O8(s

′, t) given the observed data z as follows. We gen-
erate a large number B of independent random variables, Z(j)(s′, t + k), j = 1, . . . , B
for each k = −4,−3, . . . , 3 at each hour t at the given location s′. Now we obtain

O
(j)
8 (s′, t) = 1

8

∑3
k=−4 Z(j)2(s′, t + k) for each j = 1, . . . , B. The 8-hour average is es-

timated by the sample mean, Ō8(s
′, t) = B−1

∑B
j=1 O

(j)
8 (s′, t) and the sample standard

deviation of O
(j)
8 (s′, t) is used as an uncertainty estimate of the posterior predictive dis-

tribution. In the Monte Carlo simulation, we use independent samples Z(j)2(s′, t + k),

k = −4, . . . , 3 for each j. In effect, we perform marginal predictions of Z
2

(s′, t + k) for
each k, just as we do marginal predictions at all the different locations s′ in the predictive
grid of 3000 sites. Joint predictions and forecasting is computationally prohibitive in the
instantaneous prediction problem of this paper and are not pursued here.
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4 Analysis

We use the set-aside validation data from 40 stations to select the decay parameters φs

and φt. Let Ẑ2(s∗i , t) denote the model based validation estimate for Z2(s∗i , t) where s∗i
denotes the ith validation site, i = 1, . . . , 40. Again, recall that we model ozone in the
square root scale. The validation mean-square error is given by

VMSE =
1

nv

40
∑

i=1

T
∑

t=1

(

Z2(s∗i , t) − Ẑ2(s∗i , t)
)2

I(Z(s∗i , t)) (6)

where I(Z(s∗i , t)) = 1 if Z(s∗i , t) is available, and 0 otherwise, and nv =
∑40

i=1

∑T
t=1 I(Z(s∗i , t))

is the total number of available observations at the 40 validation sites. For φs, we searched
for the optimal value in a grid formed of the values of φs corresponding to the spatial
ranges of 50, 250, 500 and 1000 kilometers. For the temporal decay parameter φt, we
searched for the optimum value in a grid formed of the values of φt corresponding to the
temporal ranges of 3, 6, 9, 12 and 24 hours.

As described in Section 2, we model data for a running window of seven days, so
T = 168(7× 24) starting at one of the five hours between 2PM and 6PM. We do this for
each of the six starting days, August 2–7. Thus, we have performed model fitting for 30
start day and start hour combinations. For each of the 30 model fitting combinations we
choose the optimal values of φs and φt from a fresh grid search using the VMSE criterion
in (6). The average spatial and temporal ranges were approximately 600 kilometers and
20 hours, respectively, providing evidence of strong spatial and temporal dependencies.

Corresponding to each of the 30 model fitting combinations we have calculated the
validation interpolations at the 40 sites for the last hour of data and for each of the next
three future hours. For example, starting at 3PM of August 4th, we model T = 168 hourly
observations from 3PM on August 4th to 2PM on August 10 using data from all the
350 monitoring sites. Predictions are obtained at the 40 validation sites for the last hour,
2PM on August 10, and forecasts at these sites are calculated for 3PM, 4PM and 5PM on
August 10.

Figure 3 provides a comparison of spatial predictions obtained from our model, Eta-
CMAQ, and the regression model with independent error distribution assumption by tak-
ing H(φ) = I , see the discussion below (2). In terms of VMSE, our proposed Bayesian
space-time model clearly outperforms the other two approaches. We note that VMSE
tends to increase as the length of the forecast period increases. Table 1 details uniform
reductions in mean-square error that result in using the proposed model relative to the
regression model.

Figures 4 and 5 provide detailed validation plots for times when our model performs
the best, and the worst. In both cases, we see that the Eta-CMAQ forecasts are upwardly
biased. The Bayesian model predictions are closer to the observations relative to the other
two approaches (the y = x, 45o, line is superimposed). The validation plot for the 8-
hour averages is provided in Figure 6 where again similar conclusions are drawn. In these
three plots, it may seem that the Bayesian model is producing slightly biased predictions.
Predicted values are a bit high when the observed values are low, and low when the
observed values are high. This can be attributed to the ‘regression to the mean’ effect
of the simple spatio-temporal regression model we have adopted here for instantaneous
prediction and forecasting. To address this issue we have included higher order polynomial
terms for the Eta-CMAQ forecasts in the model. However, this change did not improve the
validation predictions and made the linear term for Eta-CMAQ forecasts non-significant.
We have also examined the nominal coverage of the 95% prediction intervals and that has
turned out to be adequate, see particular results in the next section.
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Fig. 3 Boxplots of the VMSE’s: top left for the last modelling hour, top right for the one-hour, bottom

left for the two-hours and bottom right for the three hours ahead forecasts.

Parameter estimates are illustrated in Table 2 and Figure 7 when the data to be
modeled is started at 3PM on August 3. The regression parameter β0 for the Eta-CMAQ
output co-variate is significant showing positive association between Eta-CMAQ output
and hourly ozone concentration values. The β for the midnight hour is taken as the baseline.
The estimates of βj for all other hours are relative to the β24 for the midnight hour. The
estimates of the 23 βs corresponding to 1AM to 11PM (Figure 7) show that the mean
hourly ozone concentration diminishes until 9AM in the morning and then it starts to rise
with the peak reaching around 4PM and 5PM. We observed similar parameter estimates
for other starting date and hour, especially for the variance parameter σ2

w .

We illustrate the 3-hours ahead forecasts at 2PM on August 13 in Figures 8 and 9.
(The graphics parameters and the color-key bars are same for the three forecasts maps
in these two figures.) Here we use the seven days data ending at 2PM on August 11th to
do the model fitting and then obtain the 3-hours ahead forecasts using the fitted model.
The Eta-CMAQ forecasts predict generally higher level of ozone concentrations than those
from the independent error regression model (Figure 8) and the proposed spatio-temporal
model (left panel of Figure 9). The superimposed actual ozone observations make clear
that our model greatly improves the forecasts using both the Eta-CMAQ and independent
error regression model. In fact, the VMSE’s are 240.58, 187.84 and 70.45, respectively for

10



Table 1 Mean-Square Error Reductions using Bayesian Space-Time Model relative to the Independent
Error Regression Model

Day Start Hour
2PM 3PM 4PM 5Pm 6PM

Last hour interpolation
Aug 2 124.7 124.8 141.0 103.0 84.3
Aug 4 94.1 99.6 118.6 141.4 192.4
Aug 6 117.4 82.1 65.1 74.2 148.0

One hour ahead forecasts
Aug 2 80.0 76.9 63.7 86.4 137.6
Aug 4 117.5 144.4 206.1 282.3 327.8
Aug 6 118.5 125.0 150.6 160.4 150.7

Two hours ahead forecasts
Aug 2 88.1 71.3 40.4 82.7 148.3
Aug 4 119.9 137.1 199.1 298.7 375.1
Aug 6 104.4 117.0 171.3 190.3 141.6

Three hours ahead forecasts
Aug 2 44.5 40.3 72.0 125.1 168.1
Aug 4 109.2 164.6 267.0 339.3 277.6
Aug 6 117.4 172.5 182.2 127.9 114.1
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Validation at 2PM  on Aug  12

Fig. 4 The validation plot for 2PM on August 12 when the proposed model performs the worst.

Table 2 Parameter estimates when the modeled data starts at 3PM on August 3.

Estimate 95% Credible interval
β0 0.163 (0.150, 0.176)
β24 3.451 (3.252, 3.650)
σ2

w
2.532 (2.503, 2.561)

the three models. The standard deviation of the model based predictions are plotted on the
right panel of Figure 9. Since a constant-variance model was fit on the square-root scale,
it is not surprising that, after transformation back to the original scale, larger standard
deviations of prediction are associated with larger predicted values.

We illustrate the 8-hour average map predictions at 3PM on August 11th in Fig-
ures 10 and 11. (The graphics parameters and the color-key bars are same for the three
forecast maps in these two figures.) We use the seven days data ending at 3PM on August
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Fig. 5 The validation plot for 2PM on August 9 when the proposed model performs the best.
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Fig. 6 The validation plot for the 8-hour average at 3PM on August 11th.

11th to do the model fitting and forecasting. In particular, to calculate the 8-hour average
prediction at 3PM we spatially interpolate the value at each of the five hours 11AM-
3PM and temporally forecast for the three hours 4-6PM, see Section 3.3 for the details.
Our model clearly outperforms both the Eta-CMAQ and the independent error regression
model; the VMSE’s are 605.87, 80.89 and 22.40, respectively for the Eta-CMAQ, the in-
dependent error regression model and the proposed model. See also the validation plot in
Figure 6 for the 8-hour averages. The standard deviation of the model based predictions
are provided in the right panel of Figure 11. The 8-hour average predictions have smaller
uncertainties than the 3-hour ahead forecasts, as expected.
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Fig. 7 The posterior means and 95% credible intervals for the parameters β1, . . . , β23 corresponding to

the hours 1AM to 11PM.

5 Comparison with the dynamic modeling approach

Sahu et al. (2009) have proposed a dynamic model approach for forecasting the next day’s
8-hour ozone concentration based on modeling daily data. Their model requires 5-7 hours
computing time and, as a result, is not suitable for the instantaneous forecasting problem
of this paper. However, the current model with suitable modifications for differences in
time unit can be fitted to the daily data and the forecasts can be compared. This is taken
up below.

To adapt the current model for daily data we must replace the hourly intercept term
ξ(t) by an overall intercept ξ from (1) and treat the time unit t as daily. Hence, the hourly
model adapted for daily data is given by:

Z(si, t) = β0 x(si, t) + ξ + w(si, t), (7)

for i = 1, . . . , n, t = 1, . . . , T . The specification for the space-time error term w(si, t) can
remain to be the same separable process, although the temporal correlation now will have
interpretations in daily time units. This model is to be compared with the Sahu et al.

(2009) model given by:

Z(si, t) = O(si, t) + ε(si, t), (8)

for i = 1, . . . , n, t = 1, . . . , T , where ε(si, t) is a white noise process, assumed to follow
N(0, σ2

ε ) independently. The model for O(si, t) has been assumed as:

O(si, t) = ξ + ρ O(si, t − 1) + β0 x(si, t) + η(si, t),

for i = 1, . . . , n, t = 1, . . . , T where ξ, ρ and β0 are unknown parameters and η(si, t) is a
spatially correlated, but temporally independent error term. The grand mean of the data
has been chosen as the initial condition for O(s, 0).

A few remarks regarding the differences between the two sets of models are now ap-
propriate. The current model (7) does not incorporate the top level white noise process
(usually called the nugget term) and only has one variance parameter for w(si, t) while the
dynamic model has two variance components one for each of ε(si, t) and η(si, t). There is a
concept of true process given by O(si, t) in the dynamic models while there is only a con-
cept of mean process described by the mean function β0 x(si, t) + ξ in the current model.
The two sets of models require different sets of hyper-parameters; the current model has
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Fig. 8 The 3-hours ahead forecasts at 2PM on 13th August: left panel is using the Eta-CMAQ and

right panel is using an independent error regression model. Observed values from some selected sites are

superimposed. (For visual clarity we present only a subset of the monitoring data.)
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Fig. 9 Left panel is the model based 3-hours ahead forecasts at 2PM on August 13th and the right panel

provides the standard deviation map. Observed values from some selected sites are superimposed. (For

visual clarity we present only a subset of the monitoring data.)

two spatial and temporal correlation decay parameters φs and φt, see (2) and the hyper-
parameters in the prior for β0, ξ and σ2

w. On the other hand, the dynamic models require a
spatial decay parameter for the correlation of the η(s, t) process and the hyper-parameters
for the prior of β0, ξ, ρ, σ2

ε and σ2
w. The introduction of the hierarchy in the dynamic

models is advantageous in handling missing data since those are simply filled up using
the top-level model (8) in each iteration of the MCMC algorithm. The missing data in
the current model must be imputed beforehand so that the exact computing methods of
Section 3 can be implemented. The expected consequence of these modeling assumptions
is that the forecasts using the dynamic models can be more accurate than those from the
current set of models.

To illustrate the differences between the two sets of models we compare the mean-square
errors and the median of the standard deviations of the predictions and the nominal cov-
erage of the 95% prediction intervals for 3 different 7-day data sets and one day ahead
forecasts published in Sahu et al. (2009) in their Table 1. We compare the three sets of
model fitting and forecasting for August 3-12; we do not compare the data for August 2
and 13 since those were unavailable. The spatial decay parameter was chosen the same for
both the hourly and daily model. The temporal decay parameter for the hourly model was
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are superimposed. (For visual clarity we present only a subset of the monitoring data.)
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Fig. 11 Left panel is for the 8-hour average model based map at 3PM on August 11th and right panel

is the standard deviation map. Observed ozone values from some selected sites are superimposed. (For

visual clarity we present only a subset of the monitoring data.)

Table 3 Properties of the Validation predictions. Med.sd are the median of the standard deviation of the
predictions and Cover is the nominal coverage of the 95% prediction intervals.

Days Daily Model Hourly Model
VMSE Med.sd Cover VMSE Med.sd Cover

Aug 3–10 50.0 34.6 0.98 51.3 27.0 1.00
Aug 4–11 64.5 34.0 0.95 68.1 26.7 1.00
Aug 5–12 62.1 33.4 0.98 49.0 26.1 0.98

chosen as 0.13 corresponding to roughly 24 hours decay in temporal correlation. Table 3
provides the results for the daily and the hourly model applied to daily data. The dynamic
daily model has better VMSE results except for the last set of days. The standard deviation
of the predictions are smaller for the simpler hourly model of this paper. This is expected
since the more complex daily model will imply higher prediction variability. The nominal
coverages from both models are seen to be adequate. We may see better prediction perfor-
mance by the daily model than the hourly model, however, the daily model is unsuitable
for the instantaneous hourly prediction problem since it requires longer computing time.
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6 Summary

As we enter a new age where air pollution data can be accessed in real-time, new space-
time models are needed to provide continuous, updated maps of current and future air
pollution levels. This is a departure from previous research on retrospective space-time
analyses of air pollution data where computational time for fitting models is not a con-
straint. To meet this modeling challenge, we develop a flexible Bayesian spatial-temporal
model which can be fit by exact methods, eliminating the need to use computationally
intensive MCMC. Given the limited time available to provide credible predictions in a
real-time environment, we use a minimum number of parameters in the model, but do
account for ozone diurnal variation, the influence of Eta-CMAQ numerical output, and
space-time random variation. Validation analyses show that this model provides improved
predictions of hourly ozone spatial patterns, and can be used to predict 8-hour average
ozone concentrations surrounding any hour of the day, including 3 forecasted hours in the
8-hour average. Future efforts will focus on improving the model further by incorporating
spatially varying coefficients for Eta-CMAQ to evaluate regional effects and thereby adjust
for possible regional biases. It will be also interesting to see how the model will perform
for other pollutants such as the fine particulate matter.

Appendix: Simplifying the expressions: Σ12H−1 (φ) and Σ12H−1 (φ) Σ21

Note that

(

1 Σ12

Σ21 H (φ)

)

=

(

1 Σ′

s(s − s′) ⊗ Σ′

t(t− t′)
Σs(s− s′) ⊗ Σt(t − t′) Σs ⊗ Σt

)

where Σs(s−s′) is an n×1 column vector with the ith entry given by σs(si−s′) and Σt(t−t′)
is a T ×1 column vector with the kth entry given by σt(t−t′). Here H−1 (φ) = Σ−1

s ⊗Σ−1
t .

Hence the 1×nT vector Σ12H
−1 (φ) will have elements (for j = 1, . . . , n and k = 1, . . . , T )

bjk(s′, t′) =
n

∑

i=1

T
∑

m=1

σs(si − s′)σt(m − t′)(Σs)
−1
ij (Σt)

−1
mk

=

n
∑

i=1

σs(si − s′)(Σs)
−1
ij

T
∑

m=1

σt(m − t′)(Σt)
−1
mk

= bs(j, s
′) bt(k, t′),

where

bs(j, s
′) =

n
∑

i=1

σs(si − s′)(Σs)
−1
ij , and bt(k, t′) =

T
∑

m=1

σt(m − t′)(Σt)
−1
mk.

The quantity bt (k, t′) simplifies considerably by noting that it resembles the inner product
of a multiple of a particular column of Σt and a particular row of Σ−1

t . First, consider the
case t′ ≤ T . In this case bt (k, t′) is the inner product of the t′th column of Σt and kth row
of Σ−1

t . Hence bt (k, t′) will be 1 if t′ = k and 0 otherwise. Now consider the case t′ > T .
Suppose that we can write

σt(m − t′) = σt(t
′ − T )σt(T − m) (9)
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for m = 1, . . . , T , thus bt (k, t′) will be σt(t
′−T ) times the inner product of the T th column

of Σt and kth row of Σ−1
t . Observe that (9) holds for the exponential covariance function

adopted here. Thus we have proved the following result:

bt (k, t′) =

{

δk,t′ , if t′ ≤ T
δk,T σt (t′ − T ) , if t′ > T

where δi,j = 1 if i = j and 0 otherwise.

Now we obtain simplified expressions for a quantity like Σ12H
−1 (φ) a where a is nT

by 1 with elements ajk , j = 1, . . . , n and k = 1, . . . , T. We have:

Σ12H
−1 (φ) a =

∑n
j=1

∑T
k=1 bjk(s′, t′)ajk

=
∑n

j=1

∑T
k=1 ajkbs(j, s

′) bt(k, t′)

=
∑n

j=1 bs(j, s
′)

∑T
k=1 ajkbt(k, t′).

Now
T

∑

k=1

ajkbt(k, t′) =

{

∑T
k=1 ajkδk,t′ , if t′ ≤ T

∑T
k=1 ajkδk,T σt (t′ − T ) , if t′ > T.

Thus we have,

T
∑

k=1

ajkbt(k, t′) =

{

ajt′ , if t′ ≤ T
ajT σt (t′ − T ) , if t′ > T.

Finally,

Σ12H
−1 (φ) a =

{∑n
j=1 bs(j, s

′)ajt′ , if t′ ≤ T

σt (t′ − T )
∑n

j=1 bs(j, s
′)ajT if t′ > T.

Now we simplify the expression for the conditional variance. Note that Σ12H
−1 (φ) Σ21

is exactly equal to Σ12H
−1 (φ) a where a = Σ21. For this choice we have, ajt = σs(sj −

s′)σt(t − t′). Hence,

Σ12H
−1 (φ) Σ21 =

{∑n
j=1 bs(j, s

′)σs(sj − s′)σt(t
′ − t′), if t′ ≤ T

σ (t′ − T )
∑n

j=1 bs(j, s
′)σs(sj − s′)σt(T − t′), if t′ > T.

Let

as(s
′) =

n
∑

i=1

n
∑

j=1

σs (si − s′)
(

Σ−1
s

)

ij
σs (sj − s′) .

Thus,

Σ12H
−1 (φ) Σ21 =

{

as(s
′), if t′ ≤ T

as(s
′)σ2

t (t′ − T ) if t′ > T.

Now

C(s′, t′) = 1 − as(s
′) at(t

′),

where

at (t′) =

{

1, if t′ ≤ T
σ2

t (t′ − T ) if t′ > T.
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