MULTI-PHASE EXTRACTION AND PRODUCT RECOVERY
Presentation Objectives

- Discuss important processes affecting success
- Describe product recovery technologies and applicability
- Describe applicability of multi-phase technologies
- Identify data needs for technology selection/design
- Recommend pilot testing approaches
- Provide design guidance
- Discuss operational strategies
- Compare closure strategies and tools to determine progress toward close-out
- Identify contracting approaches and patent issues
Important Processes: Product Recovery

- Floating product recovery options
- Oil/water mix
- Smearing over time
- Mobility
 - Product must be connected
 - Lower in fine material, at small apparent thickness
 - Affected by oil piezometric gradient
- Almost anything you do will strand product
 - Leave residual in soil, water
 - Waiting will also strand product
Light Non-Aqueous Phase Liquid (LNAPL) Distribution at the Pore Scale - Sand
Air-Based Remediation Technologies

LNAPL Distribution At The Pore Scale - Sandy Loam

Air LNAPL Water

Saturation

Elevation

Air LNAPL Water

0 1.0

Saturation

Air-Based Remediation Technologies
Distribution of Product Over Time

FREE 75.0%
RESIDUAL 25.0%

FREE 35.0%
RECOV. 20.0%
RESIDUAL 45.0%
FREE 10.0%
RECOV. 30.0%
RESIDUAL 60.0%

TIME

Air-Based Remediation Technologies
Estimating Oil Volume

- Baildown test - coarse material only
 - Remove oil
 - Monitor oil/air, oil/water contacts
 - Oil thickness in well when oil/water level begins to drop is free-oil thickness
- Summation of fuel saturation over area
Product Recovery - Skimming

• Concept: recover product only
 – Floating pumps
 – Hydrophobic membrane
• Advantages: low cost
• Disadvantages: poor recovery
Skimmer Systems

Well

Air / Oil Level

Oil / Water Level

product
Dual Extraction & Total Fluids Extraction

• Dual extraction
 – Concept: pump water and product separately from same well
 – Advantage: improved recovery, separation
 – Disadvantages:
 • Cost to treat water
 • Larger wells required
 • More stranding of product in cone of depression

• Single pump (total fluids) extraction
 – Simultaneously remove both water, oil w/single pump
 – Lower water table, ease of operation
 – Emulsification of product and water
Dual Extraction

“Smeared” Residual Oil

Possible Trapped Product

Air / Oil Level

Oil / Water Level

Product

water

Air-Based Remediation Technologies
Multi-Phase Extraction (MPE)

MPE is the combined extraction of gas and liquid from the subsurface, in one of two forms:

• Dual-phase extraction (DPE): separate conduits/pumps convey gas and liquid from the extraction well
• Two-phase extraction (TPE): same conduit/pump conveys gas and liquid from the extraction well. Also known as “slurping”
Schematic of DPE System (Low or High Vacuum) (After EPA 1997)

NOTE: The extraction well may also be screened above the saturated zone for treatment of the vadose zone.

Air-Based Remediation Technologies
Schematic of TPE System
(After EPA 1997)

NOTE: The extraction well may also be screened above the saturated zone for treatment of the vadose zone.
MPE Applicability

- Vocs and biodegradable semi-volatile organic compounds (SVOCs) in the unsaturated zone and/or zones that can be dewatered
- Sites with recoverable non-aqueous phase liquid (NAPL)
- Medium-permeability soil (10^{-3} to 10^{-5} cm/sec)
- Groundwater yield < 20 L per minute per well
MPE Application Strategies

MPE generally chosen for following reasons:

- To enhance the extraction of soil gas to accomplish SVE or bioventing;
- To enhance the recovery of NAPL (i.e., accomplish free product recovery), also known as bioslurping; and/or
- To increase production of ground water from a low-yield aquifer (vacuum dewatering)
Common Limitations Of MPE

• Non-uniform and/or narrow zone of influence
• Inadequate air-contaminant contact
• Causes
 – Subsurface heterogeneity
 – Mass transfer limitation
• Excessive recovery of groundwater (driving up treatment costs)
• Emulsions
Moisture Profiles, Clay-Rich Soils
(Radian International 1997; Baker and Groher 1998)

a) OU18 ± typical relative reduction in moisture content is < 4%.
b) NECOU ± minimal changes in moisture content evident.
Implications For Technology Effectiveness

- At sites with high permeability soil ($>10^{-3}$ cm/s), TPE wells will tend to be flooded with water, with very little or intermittent airflow, resulting in limited effectiveness.
- At low permeability sites ($<10^{-5}$ cm/s), high emergence pressure will limit MPE effectiveness, except within preferential pathways.
- MPE is best suited for moderate permeability sites.
Hypothetical Scenarios That Can Prevail During MPE. (After Baker and Groher 1998)
Dense Non-Aqueous Phase Liquid (DNAPL) Recovery

Concepts

- Understand stratigraphy, look for low spots
- Construct well appropriately
 - Screen low
 - Sump
- Pumps - single, dual phase
- Limitations - similar to floating product
DNAPL “Skimmer” Systems

Well

Air / Water Level

DNAPL / Water Level

Top of Clay, Etc.
Design Data Needs
Multi-Phase Extraction

- Water table depth, fluctuations, gradient
- Stratigraphy
- Distribution and nature of contaminants
 - Product saturation
 - Solubility / vapor pressure
 - Location relative to flow
 - Biodegradability
- Hydraulic conductivity
- Ground water geochemistry
- SVE properties, bacteriological nature

Air-Based Remediation Technologies
Pilot Testing for MPE

• Purpose:
 – Verify enhanced recovery of immiscible product is possible
 – Verify can aerate soil above new water table
 – Determine vacuum propagation
 – Determine hydraulic properties of saturated zone

• Approach
 – Single well typical, construct as expected for full-scale
 – Temporary air/liquid recovery and treatment equipment
 – Monitoring points around the extraction well
Pilot Test Monitoring

- Above-ground vacuum and fluid flow
- VOC removal, NAPL recovery
- Vacuum influence (unsaturated zone)
- Drawdown and upwelling, hydraulic conductivity
- Monitoring saturation (e.g., Neutron probes)
- Comparisons with air-emergence pressures
Process Flow Diagram Of TPE Pilot Study Equipment (Radian International 1997)
Subsurface Design

- Well placement
 - Cover 3-D extent with adequate capture in saturated and unsaturated zones
 - Criteria:
 - Achieve adequate gradient to cause modest movement of product toward wells, if product recovery is goal
 - Apply adequate vacuum to aerate cone of depression or improve water recovery
 - Consider lateral variation in permeabilities
 - Modeling very helpful, some useful nomographs in USACE engineer manual on MPE
Subsurface Design, Continued

• Airflow design
 – Similar to SVE if goal is to aerate newly dewatered soil
 – Flow generated at adequate vacuum to dewater pores or enhance liquid movement

• Water recovery design
 – Flow at desired drawdown, accounting for applied vacuum (pilot data critical)

• Product recovery
 – Depends on specific location, pilot testing, baildown testing important
Time to 80% Reduction in Product Thickness for Different Soils, 3 m Well Spacing

Vacuum (mm of Hg)

Time (days)

(a) Radius = 3 m

Air-Based Remediation Technologies
Time to 80% Reduction in Product Thickness for Different Soils, 6.1 m Well Spacing
Subsurface Design

• Well design
 – Drill method: do not use drilling mud if possible, difficult to develop near water table
 – Take careful logs of materials encountered, take samples
 – Diameter: typical 10-cm or larger (at high flows)
 – Materials: typically PVC, need stainless if aggressive NAPL, need special wellhead for applying vacuum
 – Screen: continuous wrap, size slot based on formation,
 – Filter pack: design as for water wells
 – Development important, but take care to preserve product saturation at water table
Subsurface Design, Continued

• Monitoring systems
 – Parameters: pressure/air flow, ground water and soil gas concentrations
 – Permanent probes
 • Both saturated/unsaturated zones
 • Choose representative locations based on geology, contaminants
 • Neutron probe/TDR access holes
 – Flow control valves, pressure gauge at each well
 – Flow measurement device for each wellhead
 • Difficulty in measuring combined flow
Component Design, Continued

• Piping:
 – Similar to SVE, water lines. May need dual wall pipe
 – Can use flexible tubing
 – Need to handle product if applicable
 – Calculate balanced flow for individual piping legs
 – Increased piping losses due to moving liquids and vapor
Component Design

- Blowers/pumps/separators
 - Blower type: often high vacuum, liquid ring, rotary vane or rotary lobe
 - Identify necessary vacuum, have flexibility
 - Liquid pumps: consider cavitation due to vacuum
 - Separation of liquids from vapors, emulsification
 - Safety issues, especially with fuel recovery
MPE System Construction, Start-Up

- Install and test wells to verify conditions before treatment system finished, to allow modification
- Collect baseline data
- Verify construction adequacy (wells, piping, above-ground equipment)
 - Start-up Checklist in EM 1110-1-4010 on MPE
- Start ground water extraction, verify liquid pump controls, if separate liquid pumps
- Start vapor extraction equipment with dilution valves open, gradually close dilution valves
- Verify treatment equipment meeting emission requirements
- Collect subsurface response
Air-Based Remediation Technologies
Air-Based Remediation Technologies
Air-Based Remediation Technologies
Air-Based Remediation Technologies
Operations

- Balancing system (fluid flows)
- Adjust to changes in water table
 - Change pump depth (skimming, dual extraction, DPE)
 - Adjust drop tube depth (TPE)
 - Adjust applied vacuum and air flow (DPE, TPE)
- Maximize mass recovery (NAPL, vapor, dissolved, bio)
- Additional wells may be needed
 - Extraction wells
 - Passive or active air injection wells
- Well Maintenance (biofouling, solids in well)
Operations, Continued

- Maintain equipment
 - Blowers, pumps, thermal oxidizers
 - Safety, particularly with jet fuel, rotating equipment, hot piping at thermal oxidizer
- Dispose of recovered product
 - Reuse options, energy recovery
- Emulsion issues
- See EM 1110-1-4010 checklists and tables, including:
 - Suggested operational performance checklist
 - Field troubleshooting guide
 - Operational strategy guide
MPE SYSTEM O&M MONITORING

• System monitoring
 – Pressure (P), temperature (T), flow (Q) at various points
 – Extraction wells (P), monitoring wells (P), blower (P, T, Q), flow measurement points (P, T), effluent (T, Q)

• Contaminant monitoring
 – Contaminant concentrations in ground water and effluents, at blower inlet / outlet, each MPE extraction well, and vadose zone monitoring point
 – Thickness and composition change of NAPL
 – Carbon adsorption units
 • Measure concentrations between carbon contactors,
 • Measure humidity
MPE System O&M Monitoring, Continued

• Biological parameters monitoring
 – Respiratory parameters – O₂, CO₂, CH₄
 – Nutrients, pH, ORP, microbial plate counts

• Soil moisture change, ground water elevation, blower amperage, noise level
Optimization Data Evaluation Decision Matrix

Evaluation Process available in EM1110-1-4010
Patent Issues

- Xerox US patent for TPE
 - May be expired
- Other patents? Should verify
MPE Site Closure

- Verification sampling
 - Soil sampling
 - Soil gas sampling
 - Monitoring points (especially in areas of stagnation)
 - Extraction wells
 - Influent monitoring (inadequate basis if sole means of monitoring progress)
 - Require adequate purging
 - Offgassing from ground water
 - Rebound test
Multi-phase & Product Recovery

References

- EM 1110-1-4010 Multi-Phase Extraction
- EPA/600/R-96/031 Engineering Design of Free Product Recovery Systems
- EPA/600/R-96/042 In-Situ SVE-Based Systems for Free Product Recovery & Residual Hydrocarbon Removal
- EPA Clu-in Web Site on Multi-Phase Extraction http://www.clu-in.org/techfocus/default.focus/sec/Multi-Phase_Extraction/cat/Guidance/
- DPE and TPE are both Presumptive Remedies for VOCs in soil and groundwater (4/97): See:
 http://www.epa.gov/oerrpage/superfund/health/conmedia/gwdocs/voc/index.htm or
- US Air Force Bioslurping Page (many references)
Multi-Phase Extraction Case Study
Holloman AFB, New Mexico USA

- Engine Testing Facility, leaking piping from storage tank
- Contaminant: Jet Fuel, up to 2 m floating product in wells, estimated 3,800,000 L fuel
- Hydrogeology:
 - Unsaturated, homogeneous silty sand (hydraulic conductivity \([K]\) 0.002 cm/sec)
 - Water table 2-6 m depth
 - Soils near water table layers of sand, silt, clay \((K = 3.5 \times 10^{-5} \text{ cm/sec})\)
 - Deeper soils: sandy silt, silty sand \((K = 0.0003 \text{ cm/sec})\)
- Goal – remove immiscible product only
MPE Case Study - Holloman AFB, New Mexico USA, Continued

- Technology applied (full scale remediation)
 - Multi-phase extraction (TPE, 1995-1998), followed by vacuum-enhanced skimming
 - 133 extraction wells, 40-60 wells operated at once
 - Bail-down testing of wells
 - Liquid-ring vacuum pumps
 - Air-liquid, oil-water separation
 - Thermal oxidation for vapors
 - High energy content of extracted vapors
 - Supplemented by burning recovered product
 - Groundwater treatment – original limitation
MPE Case Study, Continued

Wells and Geology

Air-Based Remediation Technologies
MPE Case Study, Continued

Mass Removal

Figure 2-18. Plots of Vapor Mass Fluxes for BTEX and TPH, 1997–2001
MPE Case Study, Product Recovery

Figure 2-20. Plot of Free Product Yield by Quarters, January 1997 to July 2001

Air-Based Remediation Technologies
MPE Case Study, Continued

Change in Composition Over Time

<table>
<thead>
<tr>
<th>Carbon Group</th>
<th>Concentration (ug/L)</th>
<th>Relative Concentration (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>17851</td>
<td>8.25</td>
</tr>
<tr>
<td>C6</td>
<td>103801</td>
<td>39.52</td>
</tr>
<tr>
<td>C7</td>
<td>156952</td>
<td>47.90</td>
</tr>
<tr>
<td>C8</td>
<td>21390</td>
<td>4.31</td>
</tr>
<tr>
<td>C9</td>
<td>128.90</td>
<td>0.00</td>
</tr>
<tr>
<td>C10</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Totals</td>
<td>300123</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon Group</th>
<th>Concentration (ug/L)</th>
<th>Relative Concentration (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>226</td>
<td>0.95</td>
</tr>
<tr>
<td>C6</td>
<td>1320</td>
<td>5.52</td>
</tr>
<tr>
<td>C7</td>
<td>8527</td>
<td>35.67</td>
</tr>
<tr>
<td>C8</td>
<td>7827</td>
<td>32.74</td>
</tr>
<tr>
<td>C9</td>
<td>3257</td>
<td>13.63</td>
</tr>
<tr>
<td>C10</td>
<td>2224</td>
<td>9.31</td>
</tr>
<tr>
<td>C11</td>
<td>521</td>
<td>2.18</td>
</tr>
<tr>
<td>Totals</td>
<td>23902</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 2-9. Plots of Carbon Group Concentrations in Vapor-Phase Samples of 1993 and 2001
MPE Case Study - Holloman AFB, New Mexico USA, Continued

- Results
 - Over 6 years, recovered only approximately 15% of the product
 - Modeled future recovery
 - Possible to get 70% and achieve goal
 - Long time to attain goal, though
 - MPE necessary to attain goal, skimming not adequate
 - Remediation continues
Air-Based Remediation Technologies

Summary

• Need to understand distribution of contaminant and moisture
• Product recovery/MPE has specific applicability based on project goals and aquifer properties
• Limitations include:
 – Inadequate contaminant recovery or contact
 – Excessive ground water recovery or emulsions
• MPE EM provides concepts and tools for MPE application