A Regionalized Flow Duration Curve Method to Predict Streamflow for Ungauged Basins: a Case Study of the Rappahannock Watershed in Virginia, USA

Yusuf Mohamoud and Rajbir Parmar US EPA – Ecosystems Research Division Athens, Georgia

8th IAHS Scientific Assembly and 37th IAH Congress
Hyderabad, India

Outline

- Flow duration curve: historical background
- Development of regionalized flow duration curve (RFDC)
- Separation of flow magnitude and time sequence: new paradigm
- Modeling streamflow for ungauged sites using regionalized flow duration curve (RFDC) and HSPF
- Comparison of RFDC and HSPF predictive performance

Flow duration curve applications

- Extending short period data records and filling missing data points
- Predicting flow and water quality time series data for ungauged sites
- Forecasting flow and water quality time series
- FDC can be used for baseflow separation
- FDC can be used for calibrating rainfall-runoff models particularly for ungauged basins

Effect of geology on low flows (Searcy, 1963)

Frougs 11.—Geologic map of area in southern Mississippi having approximately uniform climate and altitude.

Information content in flow duration curves (after Searcy, 1963)

FIGURE 12 .- Flow-duration curves for selected Mississippi streams, 1939-48.

Prediction of flow duration curve (FDC) and streamflow

- Step 1. Develop regional regression equations (Q₁ to Q₉₉) for watersheds in the Appalachian, Ridge and Valley, and Piedmont physiographic provinces
- Step 2. Predict FDC for gauged and ungauged sites of the Mid-Atlantic region
- Step 3. Convert FDC to streamflow time series data
- Step 4. Test FDC method's predictive performance
- Step 5. Compare FDC and HSPF

Regionalization approaches: Mid-Atlantic Region

A new paradigm: flow, duration curve, percentile flows

Fig. 2 Relationships between normalized flow duration curve, daily streamflow and the 15 percentile flow points ($Q_{0.1}$ to Q_{99}) generated from a single year streamflow time series data.

Map of the study watershed showing gauged and ungauged sites

FDC prediction and streamflow conversion tool

CONSTRUCTION OF FLOW DURATION CURVE (Piedmont)

Day Number	Flows Starting Day 1	Ranked Flows	Coressponding Days	Percentiles (Exceedances)	Percentile Number	Observed percentile flo (L/s/km2)	Predicted W Percentile flows (L/s/km2)	Wate	ershed P	arameters 27.19
1 2	203 🛕 197 =	13200 ^ 11600 = 11400	5657 5658 6094	.013 .026 .039	1 2 3	394.43 173.06 103.95	1 161.	Q.5	20.4	5.97
5 5 6	191 208 191	10400 10400 10100 7900	2136 2135 7213	.055 .052 .065 .078	4 5 6	39.932 26.295 17.917	5 48.4° 5 29.4!	Q1	179	42
7 8 9	186 189 186	7240 6450 6120	6095 5863 4812	.091 .104 .117	7 8 9	13.575 11.007 8.8059	8 13.5° 4 11.31	Q5	40	36.63
10 11 12	182 257 526	6030 5840 5570	3949 5081 6703	.13 .143 .156	10 11 12	6.9102 5.3202 3.8525	5 5.18I 9 3.69	Q10	40	1057
13 14 15 <u>•</u>	353 548 932 <u>~</u>	5350 5300 5070	6623 3414 2664 <u>~</u>	.169 .182 .196 💌	13 14 15	2.5072 1.7734 .97843	1 1.55	Q20	40	153.42
							Drainage area (sq.miles)	Q30	40	110.74
General	e Percentile Fl	lows	Reconstruct FDC a	and Show Gra	aph	End Program	179	Q40	40	110.74
<u> </u>			Stodiniovy					Q50	40	110.74

Comparisons of observed percentile flows and percentile flows predicted by HSPF and RFDC methods For Site 9, 13, and 22 (FDC predicts only the magnitude component of streamflow)

Comparison of observed mean monthly streamflow vs. mean monthly streamflow simulated by RFDC and HSPF for three gauged sites

Comparisons of observed hydrograph and hydrographs predicted by HSPF and RFDC methods for the Robinson Site (Site 13)

Comparison of observed hydrographs and HSPF and RFDC predicted hydrographs for the Ruckersville evaluation sites (Site 22)

Comparisons of observed streamflow and streamflow predicted by HSPF for the period between (01/01/1980 through 12/31/1990)

Destination Site	Source Site	Model Calibration		
		R ² Daily (monthly)	N-S Daily (monthly)	
Site 9-Rapidan River	Site 9	0.65 (0.80)	0.65 (0.76)	
		Model Evaluation		
Site 13-Robinson River	Site 9	0.68 (0.66)	0.66 (0.55)	
Site 22-Ruckersville	Site 9	0.68 (0.64)	0.78 (0.74)	
Sequence adjusted-HSPF				
Site 13- Robinson	Site 13	0.92 (0.97)	0.89 (0.91)	
Site 22-Ruckersville	Site 22	0.95 (0.99)	0.93 (0.92)	

Comparisons of observed streamflow and streamflow predicted by RFDC for the period between (01/01/1980 through 12/31/1990)

Destination Site	Source Site	Model Calibration	Francisco Company
Site 9-Rapidan River	Site 9	R ² Daily (monthly) 0.96 (1.0)	N-S Daily (monthly) 0.92 (0.95)
		Model Evaluation	
Site 13-Robinson River	Site 9	0.93 (0.98)	0.93 (0.95)
Site 22-Ruckersville	Site 9	0.80 (0.95)	0.76 (0.91)
Sequence adjusted-HSPF			
Site 13- Robinson	Site 13	0.93 (0.99)	0.93 (0.95)
Site 22-Ruckersville	Site 22	0.95 (0.99)	0.94 (0.97)

Comparison of HSPF and RFDC simulated streamflow for 22 ungauged sites and 3 gauged sites of the Rapidan Watershed

	HSPF Simulated versus RFDC Simulated Streamflow				
	R ²	N-S	RMSE		
		Daily (monthly)			
Site 25	0.59 (0.78)	0.53 (0.65)	0.017		
Site 24	0.58 (0.78)	0.51 (0.64)	0.017		
Site 23	0.53 (0.75)	0.52 (0.68)	0.022		
Site 22	0.56 (0.77)	0.49 (0.68)	0.017		
Site 21	0.59 (0.78)	0.51 (0.64)	0.017		
Site 20	0.57 (0.78)	0.54 (0.65)	0.018		
Site 19	0.57 (0.77)	0.47 (0.68)	0.019		
Site 18	0.57 (0.78)	0.53 (0.65)	0.018		
Site 17	0.58 (0.78)	0.54 (0.66)	0.017		
Site 16	0.58 (0.78)	0.52 (0.65)	0.017		
Site 15	0.59 (0.78)	0.52 (0.66)	0.017		
Site 14	0.58 (0.78)	0.49 (0.65)	0.017		
Site 13	0.57 (0.77)	0.50 (0.71)	0.016		
Site 12	0.59 (0.78)	0.47 (0.73)	0.017		
Site 11	0.59 (0.78)	0.51 (0.72)	0.016		
Site 10	0.58 (0.78)	0.52 (0.72)	0.016		
Site 09	0.57 (0.78)	0.51 (0.72)	0.016		
Site 08	0.58 (0.78)	0.47 (0.72)	0.017		
Site 07	0.58 (0.78)	0.47 (0.71)	0.017		
Site 06	0.58 (0.78)	0.48 (0.71)	0.017		
Site 05	0.56 (0.78)	0.50 (0.65)	0.017		
Site 04	0.57 (0.78)	0.47 (0.70)	0.017		
Site 03	0.53 (0.78)	0.34 (0.61)	0.017		
Site 02	0.58 (0.78)	0.45 (0.65)	0.018		
Site 01	0.51 (0.78)	0.31 (0.64)	0.017		

Future Research

- Separation of streamflow magnitude and sequence components
 - Which variables and parameters are related to magnitude?
 - Which variables and parameters are related to time sequence?
 - Can streamflow prediction be improved through improved magnitude prediction?
 - Can streamflow prediction be improved through improved sequence prediction?
 - Extend the RFDC method to predicting nutrient, sediment, and pathogen concentration and load duration curves

Other Applications: Prediction of total suspended solids using the RFDC method

Conclusion

- FDC only captures the magnitude component of streamflow (FDC has no time sequence)
- Time sequence is obtained from a nearby gauged site (no magnitude is required)
- RFDC method had higher predictive performance than HSPF
- RFDC can be useful to improving rainfall-runoff models
- Regionalization methods are suitable for FDC prediction hence flow magnitude
- Predicting magnitude and time sequence components of streamflow together is a major weakness of rainfall-runoff models (e.g., HSPF)
- Predicting magnitude and time sequence components of streamflow separately makes RFDC highly suitable for predictions of ungauged basins

Questions