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Abstract

Numerical simulations of air quality models provide unique and different outputs for dif-
ferent choices of grid size. Thus, an important task is to understand the characteristics of
model outcomes as a function of grid size in order to assess the quality of the model as
to its fitness for meeting a specifc design objective. This type of assessment is somewhat
different than that of traditional operational performance and diagnostic type model eval-
uation. There, the objective is towards assessing errors in numerical models of air quality
and utilize concentration measurements from monitors to provide the bases for guidance to-
wards model improvement and for their assessment of ability to predict and retrospectively
map air quality. However, observations used as “truth” to assess model performance have
themselves properties unique to the data collection protocols, siting and spatial density of
deployment. In the data assimilation community, the term “model error” is used for the
difference between model output given perfect inputs and the “truth” (Kalnay, 2003). In
this paper, we are concerned with one aspect of this “model error”, the discrepancy due to
discretization of space by choice of grid size in the model. To understand discrepancy due
to discretization, outputs from the Community Multiscale Air Quality model (CMAQ) at
two resolutions are studied. The lower resolution run is carried out so that its initial and
boundary conditions are as similar as possible to those for the higher resolution run, thus
minimizing this source of discrepancies and allowing us to isolate discrepancies due to dis-
cretization. Differences are analyzed from a statistical perspective by comparing marginal
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distributions of two outputs and considering spatial variation of the differences. Results in-
dicate sharp increases in spatial variation of the differences for the first few hours of running
the model, followed by small increases thercafter. The spatial variation of the differences
depends on the individual spatial structure of the original processes, which we show varies
with the time of day. We also show that the spatial variations on sub-regions depend on
whether the sub-region is in a rural or an urban area. .

Keywords: CMAQ fine scale modeling; Sub-grid variability; Multiscale air-quality mod-
eling; Spatial variogram

1 Introduction

Outputs from numerical models of geophysical phenomena differ from reality for a number
of reasons, including problems with model inputs, imperfect and /or inadequate descriptions
of processes in the model and errors from numerical simulation methods and discretizations.
Distinguishing between these various sources of error for most applications would be difficult
even if one had perfect observations to compare to model output; the problem is made much
harder by the fact that observations are generally not sufficiently dense to compare with
model outputs, have their own errors (Brohan et al., 2006; Hegerl et al., 2001) and often do
not measure the same quantities that models produce due, for example, to differing levels
of aggregation in space, time, and/or chemical composition (Gelfand et al., 2001; Gotway
and Young, 2002).

Quantifying and attributing error to appropriate sources is critical to understanding
and improving numerical models. One particularly important use of numerical models is
forecasting, for which distinguishing errors due to the model formulation as opposed to
model inputs can play a major role. For example, the Kalman filter, which is a popular
method for data assimilation in geophysical models, requires a statistical specification (e.g.,
through its covariance structure) of “model error”, or the error produced and propagated by
a model over some period of time when given perfect input. Together with the observation
error, the difference between the truth and the observation, the model error is an important
ingredient to performing the data assimilation (for example, see Kalnay (2003)).

When forecasting weather or ocean currents, although its importance for analysis has
been noted by Cohn (1993), Dee (1995) and Houtekamer et al. (2005), model error is often
either assumed to be zero (i.e., the only source of error in model outputs is incorrect inputs)
or assumed to have a simple structure. For example, Mitchell and Houtekamer (2000) and
Houtekamer et al. (2005) assumed horizontal-vertical separability and horizontal isotropy for
a model error covariance matrix in their Ensemble Kalman filter scheme. Evensen (2003)
simulated model error using a relatively simple, time evolving equation. Their studies
assumed simple spatial and temporal forms for the covariance structure of the model error.
Learning more about the spatial and temporal structure of the model error and being able to
specify it should lead to more efficient assimilation schemes and more realistic assessments
of forecast uncertainties. Developing better approaches to quantifying model error should
be of considerable value not only for improving data assimilation, but also for providing
model developers with a better understanding of the strengths and weaknesses of their



models.

One big obstacle to studying model error is the unknown truth which we should compare
with the model output. One could compare model output to observation, as a surrogate
of the truth. However, the differences in these two quantities are due to many sources
other than model error as we use the term here, including errors in emissions and initial
and/or boundary conditions, which result in imperfect inputs for the model, and errors in
observations. Even if one believes observation errors at monitoring sites were minimized,
there is still incommensurability between volume-averaged model outputs and point wise
observations (Park et al., 2006; Swall, 2008). Thus, our approach to study model error is
to compare model outputs themselves instead of comparing model outputs to observations.

In this work, we mainly focus on discrepancy due to discretization of space in a numerical
air quality model. Results of air quality models can depend strongly on discretization (for
example, see Mousavi et al. (1999), Zoras et al. (2007) and references therein). We study the
discrepancy due to discretization by comparing two model outputs at different resolutions
with matched Initial and Boundary conditions (IC/BC) so that we minimize discrepancy
due to IC/BC. Although we study only a part of the model error by restricting ourself to
the discrepancy due to discretization, we believe that this component of the model error
can be well understood by our approach and thus provides a meaningful lower bound to the
total model error. Furthermore, we find this component of error is not small. We denote the
difference between simulation outputs at two resolutions as the SubGridscale Discrepancy,
or SGD and consider SGD as a surrogate for the actual discrepancy due to discretization
in the model.

Model outputs from CMAQ at different resolutions were also studied by Ching et al.
(2006) in which a conceptual framework for comparing observations and model outputs was
proposed when the distribution of sub-grid variability is available. Its distribution was then
estimated using model outputs at fine resolution within each coarse grid cell to illustrate
their framework. Some characteristics of sub-grid variability were also studied by looking
al the difference between coarse scale outputs and aggregation of fine scale outputs. In
Ching et al. (2006), the model outputs were obtained from the usual practice of CMAQ
simulation. The simulation outputs we study here are different from the usual practice in
CMAQ simulation in that we ran CMAQ at various starting times with matched IC/BC for
two grid resolutions to see propagation of the difference over time while minimizing possible
errors due to IC/BC. Thus, one of the main differences between the work by Ching et al.
(2006) and our work is that we investigate the difference between two model outputs from
the specialized CMAQ simulation so that we are able to distinguish the discrepancy due to
discretization in the model from discrepancies due to IC/BC.

The present work makes use of some specialized runs of a complex air quality modeling
system, CMAQ (Community Multiscale Air Quality model). For regional scale simulations,
CMAQ is typically run using grid sizes of order 36, 12 and as small as 4 km. As grid size de-
creases, smaller scale features become resolved and are certainly more evident. For example,
Jiménez et al. (2006) argue that even for a secondary pollutant like Oz, 2 kmn runs cap-
ture small-scale features that do not appear with coarser grids. Due to many contributing
factors, including chemical nonlinearities, and other processes working at sub-grid scales,



the simulated concentration at a coarse resolution is not in general equal to the simulated
concentration of a fine resolution run aggregated to coarse resolution (Ching et al., 2006).
These differences are due to the inability of coarse scale modeling to adequately incorpo-
rate processes operating at sub-grid scales. Examples of such processes include: inadequate
spatial characterization of emissions sources within grid; the variable land-use structures
and vegetation and its corresponding different degrees of pollutant deposition, dispersion
parameters due to sub-grid variations in turbulent mixing, mixing height and underlying
surface roughness; the variability of biogenic precursor emissions due to subgrid variabil-
ity in vegetation; the subgrid variability in the incoming radiation due to subgrid cloud
fields, thus inducing variability in heating rates, photochemically active radiation (PAR)
and surface energy budgets. For photochemically reactive species, the model’s chemical
mechanism operates on the chemical mixtures where each precursor compound is based on
the sum of the emission from all source within the grid. Thus, the potentially important
sub-grid chemistry that must be occurring e.g., such as near source titration of ozone by
NO; is ignored at coarser scales and consequently, this error can be substantial for grids
containing large and complex distribution of such sources. '

The higher resolution simulation output will itself contain levels of SGD since it can
not capture sub-grid scale behaviors at even higher resolution as well as variability of the
original process. In addition, since both simulation runs use the same model, they may
have a number of errors in common, which will tend to make their outputs similar, Thus,
use of two simulations from the same model at different resolutions will undoubtedly lead
to an underestimate of the total model error. However, we believe having even a lower
bound that has a sound basis will be of considerable value, for example, in implementing
assimilation schemes, especially since it turns out that this lower bound is not small.

The two sets of CMAQ simulations that we consider have grid cells of 1.33 km and
4 km on a side. The grid size of 1.33 km is the finest available resolution. There are
some concerns whether increasing resolution produces more accurate prediction (Mass et al.
(2002) and references therein). On the other hand, there are some works regarding model
performance of MM5-CMAQ at fine resolutions (1 ~ 2 km) in an urban area, that show
that the performance of the model at fine resolution is reasonably good. For example,
Jiménez et al. (2006) show that the performance of various statistical parameters used for
MM5-CMAQ modeling evaluation improves when decreasing grid spacing up to 2 km in
the northwestern Iberian Peninsula, which is urban and industrial over a complex terrain.
Sokhi et al. (2006) show that MM5-CMAQ modeling system at 1 km resolution reproduces
the temporal trends well in London, UK, although it underpredicts the daily maximum level
of O3, especially nighttime concentrations. Also, they argue that statistical comparisons
for the model performance is reasonable for the modeled and observed data.

In any case, for our approach to have merit, we do not require that the higher resolution
output be closer to the actual pollution levels, only that the differences between model
outputs have similar statistical properties as the actual discrepancy due to discretization
(i.e., the errors we would get if discretization were the only problem with the model). Indeed,
Mass et al. (2002) found that finer resolution model output explains spatial variation better
although it may cause more timing and location errors in a numerical weather prediction



model. Since we mainly focus on the spatial variation in our study, comparing two runs
with 1.33 km and 4 km resolutions will provide a useful statistical characterization of SGDs,
thereby leading to an understanding of the discrepancy due to discretization.

In the usual simulations of CMAQ on a regional scale, the IC and BC are obtained by
nesting within another model with coarser resolution. In other words, low resolution output
provides the IC and BC to simulate high resolution output. More specifically, outputs with
4 km and 12 km resolutions were used in the simulation of 1.33 km and 4 km resolutions,
respectively. 1.33 km output and 4 km output normally have different IC and BC as well as
different resolution. The influence of IC/BC in air quality models is certainly another source
of discrepancy when we lock at the difference between model outputs at two resolutions
(Jiménez et al., 2007; Liu et al., 2001). Since we want to study the discrepancy due to
discretization, we simulated another set of specialized 4 km runs for which IC/BC are
almost the same as those for the 1.33 km runs so that any differences in results cannot be
attributed to differences in 1IC/BC.

Scction 2 gives further details on our simulation. To compare runs at different resolu-
tions, we need to either interpolate one or aggregate the other to match the resolutions.
Our results (not shown) indicate not much difference between these two cases, so we will
show results at high resolution. That is, we will show results about SGD at 1.33 km, the
difference between 1.33 km runs and interpolation of the specialized 4 km runs. Section
3 presents our analysis and show how the differences between the outputs at the two res-
olutions depend on time of day, level of urbanization, species of pollutant and how long
the model has been allowed to run at the two resolutions since starting at the same initial
conditions.

2 Simulation Experiments

The CMAQ modeling system is characterized by its comprehensiveness and state-of-science
description of atmospheric chemistry and physical processes applicable over a wide range
of spatial scales. Briefly, CMAQ is comprised of processors and numerical solvers with
complex linkages to the high level of model input information (emissions and meteorology)
to drive the system. Because air pollution varies over a wide range of spatial scales and
evolves in time, the CMAQ system utilizes model nesting to obtain model granularities
at different scales, and numerical solvers with time discretization at short time intervals
to increase accuracy. Data assimilation techniques in meteorological models are employed
to constrain meteorological simulations for accurate predictions of transport, dispersion
and photo and aqueous chemistry. More details concerning CMAQ can be found in Byun
and Ching (1999) and Byun and Schere (2006). Given the myriad of processes and scales
simulated, the sources of model errors are large in number, and generally difficult to assess.
Many current efforts to understand, appreciate and treat model uncertainties and error
have been reported in a special issue of Atmospheric Environment (Volume 40, Issue 26,
2006). These and other studies have addressed model uncertainties and errors in CMAQ
and its preprocessors in particular.

We study the CMAQ simulations for 4 km and 1.33 ki grid sizes for July 12, 1995 in

[



the Philadelphia metropolitan area. In particular, we focus on simulated concentrations of
NO, (the sum of NO; and NO), O3 and CO. The Penn State/NCAR Mesoscale Model
(MMS5) provides meteorological fields for CMAQ. For fine-scale simulation (about 1 km
grid spacing), an urban canopy parametrization (UCP) is included in MMS5 to improve
meteorological fields in urban areas (Otte et al., 2004). The CMAQ simulations were
derived as nested runs of coarser grid sizes. Spatial resolution is gained by successively
decreasing the grid and domain size from the base 36 km run covering the eastern United
States. Standard practice for nested CMAQ runs is to perform a five day run at hdurly
intervals for the base 36 km grid size. The simulation for the 12 km grid size in the nested
"domain begins after a two-day spin up of the 36 km run. This 12 km run then provides the
IC/BC for the 4 km run, which begins a day after the beginning of the 12 km run. The
1.33 km run is obtained similarly from the 4 km run. We thus have a single day for the
1.33 km set. For the 4 km and the 1.33 km set, the focus of our analysis is the last day of
the original 5 day run.

We denote the two highest resolution runs by Zy(t) and Z,(t) where H stands for high
resolution, i.e. 1.33 km grid size, L stands for low resolution, i.e. 4 km grid size, and ¢ is
time. We have hourly data from 12am to 8pm EDT. These hourly values are averaged values
over 10 time steps with a 6 minute interval. Although the resolutions we consider here are
higher than that of the typical runs done by CMAQ on a regional scale, the procedure
to get IC/BC is standard. Because Zgy and Zp use different IC and BC, we did some
specialized low resolution runs to help us to better evaluate the SGDs. These additional
runs were at 4 k. Specifically, for a given starting time, £y, we used the aggregated value
of high resolution output. Zy(tg) as IC and the low resolution output, Z.(t) as BC for
the new 4 km run, which we will call Wi, (t,%y). That is, Wp,(¢,%p) is a simulated output
at time t started from ¢y using A(Zg(fp)) as IC and Z(t) as BC where A(-) represents
aggregation. Thus, Zy (t) was used as the BC for simulation of both Zy(t) and Wi, (t,t0).
We have Wr,(t,2p) for many ty (see Figure 1). The starting times, #;, range from 8pm of
the previous day to 4pm; ending times, ¢, range from tg to Tpm. Times arc local times
(EDT), i.c. GMT — 4.

In our simulation, meteorology and emission inputs are still different at the two resolu-
tions in particular, UCP was implemented for the 1.33km simulation and these differences
may also contribute to differences between results. Thus, the SGDs we are finding are not,
just due to differences in CMAQ) at the two resolutions, but also include effeets of differing
meteorology and emissions. Since one always needs to run a meteorological and emissions
model in one way or another to obtain inputs to CMAQ), it is reasonable to include these
effects in the SGD. It does mean, though, that we cannot disentangle to what extent the
discrepancies we observe are due to running CMAQ at different resolutions versus run-
ning MM5 or the emission model at different resolutions. Further specialized runs could in
principle be done to investigate this matter.



3 Statistical analysis

We are interested in isolating the SGDs, the differences between model outputs due to
differing resolutions, unconfounded as much as possible by differences in IC/BC. We are
also interested in examining how the SGDs propagate in time. Thus, we consider the
following procedure: for any given tp and t > tg, we compare Zg(t) and W(t,t) as
high and low resolution runs with similar as possible IC/BC. Specifically, we define the
difference at high resolution by Dg(t,t) = Zg(t) — B(WL(t,t0)), where B(-) represents
bilinear interpolation. Then, we can think of Dy as the discrepancy due to running the
model at different resolutions, i.e. SGDs. Note that each value of A(Zg(t)) is the average
of Zy(t) over nine neighboring cells since the grid size of the lower resolution output is 3
times larger than that of the high resolution output. From now on, the ending time means
output time, the time at which the simulation returns output, and #; means starting time,
the time at which the low resolution simulation starts. We will call ¢ — 5 the lag time,
which measures how long the models with two different resolutions have run since starting
under the same conditions (see Figure 1 for illustration).

3.1 Marginal distributions of two simulated runs

We first look at the simulated outputs themselves (see Figure 2 for NOy and Figure 3 for
O3). We compare the two simulated runs (Zg(t) and Wy (t,1p)) in two different ways.
Figures 2 and 3 display how the model outputs change for fixed ending time ¢ as starting
time ¢ varies. Each column of Figure 2 and 3 shows one high resolution output Zy(t)
from the first simulat:ion for ending times ¢ and two low resolution outputs Wi (t,¢q) from
the second simulation for ¢, in each case for two different starting times ¢g. Figures 2 and
3 also display how the model outputs change for fixed starting time as ending time varies.
For example, both (¢) and (f) in Figure 2 share the same starting time, 2am, but (f) is the
output after the model runs for 5 hours while (c) is the output after the model runs only for
1 hour. We can see how these two outputs, (c) and (f), differ from high resolution outputs,
(a) and (b). As one might expect, the low resolution output misses much of the local
variability of the process, most notably, the high values for NO, and the lower values for
O3 near major highways. Concentration of NOy is usually very high near major highways
while concentration of O3 is opposite to that of NOy since NO, a component of NO,, will
initially titrate the ozone so that Oj is smoothly spread out over most of the region except
where we have high values of NOy. The simulated results show that for both pollutants,
the differences between Zy(t) and Wi(f,%0) become larger as lag time, ¢t — g, increases.
This means that the longer the model runs, the larger the SGD will be, which is again what
we would normally expect.

Next, we compare the marginal distributions of two runs by looking at the quantile-
quantile, or QQ, plots between them. The QQ-plot shows if there is a difference in overall
pattern of levels without regard to whether Wi (£, £p) has the right levels in the right loca-
tions. If the impact of different resolutions is small, the two distributions would be similar
and this would be shown as a straight line at 45° in a QQ plot. The maximum concentration
of the high resolution output is usually higher than that of the low resolution output for



a highly localized pollutant such as NO,, which is to be expected, since aggregation will
tend to lower the most extreme values (see the left plot of Figure 4). The more interesting
finding is that B(W},) produces substantially higher values from about the 90th to 99th
percentiles, the more so ds ¢ — #p increases. This result is at least in part due to B(Wp,)
producing more total NO, over the region than Wp. The right plot of Figure 4 for O
shows that the marginal distributions of the low resolution and high resolution output look
similar. Similarity of the marginal distributions between the low resolution and high res-
olution output at 10am might be because Os, which is a secondary pollutant, is smoothly
spread out over the region, especially during the late morning and afternoon so that the
low resolution simulation has little problem to describe the variability of O3 at those times.

3.2 Variogram of the difference

Quantile plots allow comparisons of marginal distributions, but these results contain no
spatial information. Since the concentration of the air pollutants we consider here show
substantial spatial variation, it is informative to consider spatial information in the analysis
for SGDs. One popular tool for describing spatial variation is the variogram (Cressie, 1993).
The variograms of Dy can show how the spatial variability of the SGDs changes with spatial
distance, ending time or lag time. A small value for the variogram of SGDs indicates that
the low resolution output captures well the spatial fluctuations in the high resolution output.
A estimated variogram % for Z(s) observed for s in some set of spatial location S is defined

by
(0 = 57 2 {26 — Z(s + 1)),
)

where b is a two dimensional vector representing the direction and distance between a pair of
points and the sum is over all points s in § such that both Z(s) and Z(s+ h) are observed,
and N(h) is the number of such points. If Z is intrinsically stationary (Cressie, 1993),
then y(h) is the mean of ${Z(s) — Z(s + h)}z, independent of s, and ¥(h) is an unbiased
estimator of v(h). In the present setting, our processes are perhaps not well modeled as
intrinsically stationary due to urban/rural differences and the effects of major highways.
However, 4(h) can still be used as a measure of average variation over the region for pairs
of points separated exactly by h (ignoring the slight curvature of the earth over this region
of interest). ¥(h) also cancels out any spatially constant errors, such as the bias seen in Q4
(see Figure 4). In this paper, we plot the square roots of the variograms, so that we have
the same units as the original air pollutant processes.

At fixed ending time ¢, the spatial variability of Dg(t,ty) increases as the low resolution
model has run longer, growing rapidly for smaller £ - ¢y and then more gradually for larger
t—tp. This pattern holds for NOy, O3 and CO and each time ¢ =midnight, - - -, 7pm. Figure
5 shows the square root variograms of Dy (10, %) for NOy at various t5: the variation of
SGDs increases as the lag time t — £, increases, confirming what we found from Figure 2.
Note that the square root variogram at ¢t — ¢y = 0 is not zero. This is because the output
at ty is the average over 10 time steps forward in time and thus is different from the input
at fg.



From Figure 5, it is difficult to see how the square root variogram changes over the lag
time t — tg when the spatial lag is small. We can check this pattern directly by looking at
the square root variogram as the lag time changes for fixed spatial lag and ending time.
Figure 6 shows the square root variogram of Dy for NOy at t = 10am for various lag times.
Of course, the square root variogram increases with the lag time but we can sce that it
does not increase much after 2 hours running from the starting time, which suggests that
most of the local spatial variation is created in the first few hours of running the model.
Thus, for example, a data assimilation scheme, even if it incorporates data as frequently
as hourly, which would be very frequent relative to present practice, should, ideally, take
into account such spatial variation of SGD by including it in the covariance structure of the
model error.

We are also interested in a pattern of the variation in SGDs along time of day, since a
large variation in SGDs at certain hours of the day suggests the need to include a diurnal
pattern in any model for discrepancy due to discretization. For example, we can see how
spatial variation of Dy(#,tg) for NOy and Os changes at different ending times ¢ when
t —ts = 1 in Figure 7. Figure 8 comparecs the square root variogram of Dg(t,t — 1) at
distance 1.33 km for each hour of the day. If the mean levels of the original process are very
different at two different times, we may expect to find the square root variogram tracks with
the mean level of the pollutant at that time, since it is common for natural processes to vary
more when the mean levels are high. Thus, we plot the estimated square root variogram
of SGDs and the average of high resolution output together along time (local time) and
their ratios. The first three plots in Figure 8 show /4(1), the square root variogram of
Dy (t,t — 1) at distance 1.33 km and Zg, the average of Zy(t) for NOy, O3 and CO and
the last plot shows the ratio, \/'W / Zy, for those three air pollutants. Both the square
root variogram of Dy (t,#— 1) and the mean level of Zg(t) change with the hour of the day
over local time. As expected, the square root variogram values generally, but not always,
follow the ups and downs of mean level of the pollutant process.

The mean level and the square root variogram for NOy in the early morning and in the
afternoon roughly track cach other, although there are some irregular movements of the
square root variogram in the early morning, which results in fluctuations of \/'m /Zy at
the cerresbonding period of time. On the other hand, both the mean level and the square
root variogram decrease over the morning but with a different rate, which makes the ratio
increase. This implies that the relative spatial variations of Dy (t,t — 1) in the afternoon
are stronger than in the morning.

For O3, the increases and decreases of the square root variogram go along with those of
the mean level in the early morning and the afternoon, while they do not in the morning
(5am to 9am). Thus, spatial variation of Dg(¢,t — 1) in the morning is relatively strong
since the square root variogram at those times is relatively high while the mean level of
the high resolution output is relatively low. This is also shown by the small peak in the
ratio around Tam for Os. This result suggests that a low resolution model is less capable
of describing spatial variation of O3 in the morning.

CO is a highly localized pollutant, so most grid cells have very small values in our
simulated outputs. The overall maximum CO level, 5438.43 ppbV, occurred at Tam and



most values are a small fraction of this (see Figure 9). Indeed, at 7am, only 6.37% of the
grid cells are within 80% of this maximum and at other hours, this percentage is even lower.
Both the square root variogram of Dy (t,t— 1) and the mean level of high resolution output
is bigger around that time. However, the increase of the square root variogram is larger
than that of the mean level and this is shown by the peak in the ratio around 7am for CO.
This reflects the fact that the large variation around 7 am is not captured well by the lower
resolution model.

It is useful to explore the behavior of the SGDs for various sub-regions within our study
area. In particular, differences between urban and more rural areas may help to decide
in which area SGDs are likely to be larger. Consider dividing the whole domain into 9
sub-regions of size 40 km x40 km. Thus, the number of grid cells in a sub-region is 30 x 30
at the high resolution. Among the 9 sub-regions, we focus on two sub-regions. One is in
the center and the other is the sub-region directly east of the center. We can consider
the center sub-region as an urban area and the east sub-region as a rural area. In Figure
10, we plot the square root variogram of Dg(t,t — 1) and the average of Zy(t) for each
sub-region and for NOy, Oz and CO. The last row in Figure 10 shows the corresponding
ratio, \/'W/ Zg. First of all, the square root variogram, \/'m and the average, Zg, in
the center sub-region look similar to those in the whole region (see Figure 8 and the left
column of Figure 10). Since the whole region (Philadelphia metropolitan area) is an urban
area by itself, the similarity in the behavior of SGDs in both cases is expected. We can also
see the clear difference in the magnitudes of \/5(1) and Zx between the center sub-region
and the ecast sub-region for all three species. This indicates that the spatial variations of
SGDs are larger in the urban area than in the rural area, despite the fact that Oz levels are
generally at least as high in the east sub-region as in the center sub-region. However, there
are some differences in the comparison of SGDs between the center sub-region and the cast
sub-region for each species when we consider the square root variogram and the mean level
together.

For NOy, the increases and decreases of /3(1) and Zg are roughly similar for the two
sub-regions except around 2am and 3pm, although the magnitudes are different and Zy has
a peak at a different time. So, the relative strength of spatial variations tends to decrease
and then increase again for both sub-regions. This may indicate that the strength of spatial
variations between the two sub-regions is not too different, for NO, in the morning through
the early afternoon.

For O3, it is interesting that Zy is high in the east sub-region but the square root
variogram is not, indicating that the low resolution model describes spatial variation fairly
well in the rural sub-region for O3 despite high mean levels. For CO, although Zj in the
east sub-region is roughly half that in the center sub-region, the square root variogram is
much smaller. This makes the strength of spatial variation of SGDs in the center sub-region
relatively stronger than in the east sub-region.

The patterns of the square root variogram of the difference between outputs at the two
resolutions and the average of high resolution output tell us that the SGDs depend on how
the original process behaves over time. NOy has relatively high spatial variation of SGDs
in the afternoon after a sharp increase over the morning. Oz has relatively high spatial
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variation of SGDs when the average of the original process is low. Meanwhile, CO has
relatively high spatial variation of SGDs in the morning when the original process has a
high average. We also learn that those patterns differ between rural and urban sub-regions.
As we expected, the relative size of spatial variation of SGDs is larger in the urban area in
general.

4 Conclusion and Discussion

In our study, we looked at a component of model error in an air quality model (CMAQ) that
is actively used in practice. Specifically, we considered the discrepancy due to discretization
in the model for short-range forecast by investigating SGD, the difference between two
model outputs at different resolutions, recognizing that lack of resolution is only one source
of the discrepancy, so that we are most likely underestimating total model error. Another
issue here is the different meteorology and emission inputs at different resolutions in our
simulation study. To investigate whether inputs from MMS5 with UCP for CMAQ at high
resolution can cause more discrepancy in results than inputs from MMS5 without UCP,
we compared two high resolution outputs with/without UCP and found that the spatial
variation as measured by variogram is generally smaller than that of Dy(t, tg), particularly
at the shortest spatial lags. For example, for NOy, the average ratios of variograms of
the difference between outputs with/without UCP and variograms of Dy (t, 1) are 0.493,
0.698 and 0.774 when tg = midnight and the spatial distances are 1 x 1.33 km, 2 x 1.33
km and 3 x 1.33 km, respectively (see Table 1). Thus, if we had done the specialized
CMAQ runs at 4 km using IC/BC from CMAQ at 1.33 km resolution without UCP, we
might expect to have found somewhat less SGD. However, it is not clear that these SGDs
would give a better approximation to the statistical characteristics of the discrepancy due
to discretization, since the lack of urban landscape features in MMS5 is a source of error in
MMS5 runs without UCP.

Spatial variograms (or their square roots) of differences between two resolution outputs
show substantial spatial variation in SGD. For example, the square root variograms of the
SGD for NOy (the sum of NO2 and NO) in the East-West direction with spatial distance
1.33 km and 2 x 1.33 km at 10am after running the model for an hour are around 9 ppbV
and 11.5 ppbV, respectively (see Figure 6), which is a nonnegligible fraction of the mean

¢ variogram of Zy ()2 (t)

Table 1: Average o variogram of Du(tto) over time
spatial distance NOy O3 CcO
1% 1.33 km 0.493 0.715 0.654
2 x 1.33 km 0.698 0.821 0.807
3 x1.33 km 0.774 0.840 0.851

Zy(t) is CMAQ output when UCP is not included in MMS5. ¢ is
from 12am to 5pm and g = 12am.
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NOy level at 10am of 19.21 ppbV (see Figure 9). We can also see that the SGD occurs
mostly because low resolution output has problems describing small-scale variation in space
and with nonlinear chemistry. Results show that the spatial variation of SGDs (as measured
by the square root variogram) increases mostly in the first few hours of simulation and it
has a diurnal pattern along output time for fixed lag time. The SGD also depends on
urbanization.

These results for the discrepancy due to discretization as a component of model error
suggest that we need to consider the characteristics of model error in data assimilation
for air quality numerical models. For example, we could include parameters for a diurnal
pattern in time for the model error equation in the Kalman filter. Qur results may also
provide some helpful information to modelers or model users when they need to decide the
resolution of the model outputs or to interpret model outputs at different resolutions. For
example, an urban area may need a fine scale model to have better description of spatial
Anctuations. Further analysis regarding the spatial and temporal aspects of the discrepancy
in the model together with identifying its sources to better characterize its nature is needed
in the future.
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Figure 1: Diagram for specialized low resolution (4 km) runs with various starting times. For
example, Wy (7,3) is a simulated output at ¢ = Tam started from to = 3am using the aggregated
value of Zy(3) as IC and Zr(t) as BC. We call the difference between the starting time and
output time, t — #g, the lag time.
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Figure 2: NOy, Simulation output on July 12, 1995 in Philadelphia metropolitan area (120 km
%120 km). (a) Zg(3) and (b) Zy(7) are high resolution outputs from the first run at ¢ = 3am
and t = 7Tam. (c) Wi(3,2), (d) Wr(7,6), () W(3,0) and (f) Wy(7,2) are low resolution
outputs from the second run that use the high resolution outputs from the first run as initial

conditions. The unit is ppbV.
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Figure 3: Qs, Simulation output on July 12, 1995 in Philadelphia metropolitan area (120
km %120 km). (a) Zyx(10) and (b) Zg(15) are high resolution outputs from the first run at
t = 10am and t = 3pm. (¢) W(10,9), (d) Wr(15,14), (e) W1 (10,7) and (f) Wy (15,9) are low
resolution outputs from the second run that use the high resolution outputs from the first run

as initial conditions. The unit is ppbV.
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Figure 4: QQ-plots of Zy(t) versus B(Wp(t,9)). The left plot is for NOy when the ending time
is fixed at ¢ = Tam and the starting times are f; = 6am, ty = 4am and #y = 2am. The right

plot is for O3 when the ending time is fixed at £ = 10am and the starting times are tn = 9am,

tgp = 7am and ty = 5am. The marks are quantiles. The marks between 99% and 100% in the
left plot correspond to the 99.2%, 99.4%, 99.6%, 99.8% and 99.9% quantiles. The straight gray
lines are one-to-one lines between Zy (t) and B(W(¢,%0)), so the black curves would follow the

gray lines if the two distributions were the same. The left plot clearly shows that for values
of NOx between about 50 and 250 ppbV, B(W(7,2)) has worse agreement with Zg(7) than
B(W,(7,6)). For Og, the low resolution model gives higher values at nearly all quantiles and

the disagreement is only slightly worse for earlier #3. Note that we have put 3 QQ-plots in each

box to save space and ease comparisons across different starting times.
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Model Simulation of Soil Loss, Nutrient Loss, and Change in Soil Organic Carbon

Associated with Crop Production

- A no-practices scenario, consisting of the results
of revised model runs where the P-factor was set
equal to 1.0 and the practice code was set such
that the NRCS curve number represented condi-
tions without conservation practices. All other
model settings were the same as in the conserva-
tion-practices baseline scenario, including slopes
and slope lengths and tillage practices.

Outputs from the no-practices scenario model runs
were aggregated in the same manner as for the con-
servation practice baseline model runs. The two sce-
narios represent the same acreage. To determine the
effects of the conservation practices, outputs for the
URUs with practices were compared to the same set
of URUs simulated without practices. Since the P-fac-
tor is not part of the wind erosion equation, the ef-
fects of the three practices on wind erosion was not
assessed.

Representing irrigation in the model

Irrigation was simulated for URUs representing NRI
sample points with irrigation. Irrigated land, as de-
fined for NRI purposes, is land that shows physical ev-
idence of being irrigated during the year of the inven-
tory (presence of ditches, pipes, or other conduits) or
having been irrigated during two or more of the four
years preceding the inventory (USDA NRCS 1997b).
Three types of irrigation are recorded in the NRI: grav-
ity irrigated, pressure irrigated, or gravity and pressure
irrigated.

For EPIC modeling, sprinkler irrigation was used to
simulate pressure systems and furrow/flood irrigation
was used to simulate gravity systems. The gravity pres-
sure irrigation type was defined in the NRI as cases
where water was delivered to the field by gravity flow
and then applied through a pressurized sprinkler sys-
tem (USDA NRCS 1997b); this was modeled in EPIC as
a sprinkler system. When simulating no-till, however, a
sprinkler system was always used. For rice, flood/fur-
row irrigation was always used. For URUs with aver-
age slopes greater than 3 percent, only sprinkler irriga-
tion was used for non-hay crops.

Since information about the timing and amount of ir-
rigation water used was not available, a generic irri-
gation schedule was simulated. A manual irrigation of
75 millimeters (3 in) for gravity and 50 millimeters (2

in) for sprinkler systems was applied prior to plant-

ing to ensure adequate moisture for seed germination.
Subsequent irrigation events were simulated using the
automatic irrigation feature of EPIC to irrigate during
the growing season. The plant growth stress factor in
this routine was set at 0.85, which caused the model to
irrigate on any day that plant growth was less than 85
percent of potential growth if all other parameter con-
ditions were met. Other parameters were set to: only
irrigate to field capacity when irrigation was triggered;
never irrigate more frequently than once in 5 days; irri-
gate with volumes between 25 and 75 millimeters (1-3
in); never irrigate more than 900 millimeters annually
(35 in); limit irrigation volumes at each application so
that no more than 5 percent is lost to runoff for sprin-
kler systems and no more than 20 percent is lost to
runcff for gravity systems.

Overall, about 13 percent of the acres included in the
study were irrigated (table 14). In the West, however,
79 percent of the acres were irrigated. The Southern
Great Plains and South Central regions also had signif-
icant irrigation; 28 percent and 21 percent of the crop-
land acres included in the study were irrigated in these
two regions, respectively. About 15 percent of the
acres in the Northern Great Plains region were irrigat-
ed. Irrigated acres in the Southeast region represented
6 percent of the cropland acres included in the study.
The Northeast and Upper Midwest regions had very
few irrigated acres.

Representing commercial fertilizer appli-
cations in the model

Commercial fertilizer application is a critical factor

for determining the amount of nitrogen and phospho-
rus loss from farm fields. The timing of application,

the method of application (whether the materials are
incorporated into the soil at application or not), and
the amount applied all have significant influences on
EPIC model results. Farmer surveys typically collect
information on the number of applications, the tim-
ing of application, the amount applied at each applica-
tion, and the method of application for both nitrogen
and phosphorus. However, reports published by NASS
and ERS seldom include summary statistics with this
much detail because sample sizes from farmer surveys
are usually too small to report these results on an an-
nual basis.
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