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• The 125 μm to 250 μmsize fraction of Iota sand 
was DDI-washed and wet-packed in an Omnifit 
column (100 mm x 25 mm ID).

• Aqu/C60 suspensions were continuously stirred 
in various buffers for > 111 days. The buffers 
were either acetate (pH = 4.00 ± 0.01), HEPES 
(pH = 7.01 ± 0.04), or Tris (pH = 10.03 ± 0.06).  
Ionic strength was equivalent to 10 mM NaCl. 

• The hydrodynamic diameters and zeta (ζ) 
potentials of the aqu/C60 suspensions were 
analyzed by dynamic light scattering.  

• The pH titrations were performed using an 
autotitrator in conjunction with real time 
monitoring of size and ζ-potential changes. 

• The streaming potentials of Iota sand in various 
buffers were measured using a SurPass 
electrokinetic analyzer.

• The aqu/C60 at high pH showed more mobility 
through porous media than at low pH (Figure 1).

• For aqu/C60 generated under different pH, the 
attachment efficiencies (α) are significantly 
different (Figure 2).

• The aquC60 suspensions formed were pH 
sensitive (Figure 5 and 6).

• The aggregates in aqueous systems were highly 
negatively charged (Figure 6).

• The frontal region of the curves is controled by α

 

while maximum sorbed concentration (Smax ) 
controls the height of the curves (Figure 3).

• Initial concentrations of aqu/C60 greatly influence 
the shapes of breakthrough curves (Figure 4).

• Both linear and non-linear models can describe 
the breakthrough curves of aqu/C60 at pH 10.  

• Details of the breakthrough curves of aqu/C60 in 
pH 4 are not well modeled by the nonlinear 
model, even when covered sites are included. 

Conclusions

Model
• Mathematical Model:  2nd order non-linear 

sorption on covered and noncovered sites.

• Solutions strategies – Method of Lines
Discretize space using Eulerian-Lagrangian Operator Splitting

Eliminates numerical disperson of 1st order methods

Eliminates oscillation of classical 2nd order methods

Solve time via ordinary differential equation solver

• Exposure to fullerenes (C60 and its derivatives) 
have resulted in potential human and aquatic 
toxicities as well as antibacterial effects. 

• Understanding of the fullerenes fate and 
transport mechanisms is limited.

• Previous studies shown that when C60 is mixed 
in water it forms kinetically stable colloidal 
suspensions (aqu/C60 ).

• Although the formation of  aqu/C60 is pH and 
ionic strength dependent, the suspensions are  
highly negatively charged under varying solution 
conditions.  

• The mobility of these highly charged colloidal 
aggregates is unknown.  

• It is also unknown whether existing particle 
transport models adequately describe aqu/C60 
transport in water-saturated porous media.   
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C = aqueous concentration
S = sorbed

 

concentration
Dh

 

= dispersion coefficient
v = interstitial fluid velocity
ρb

 

= bulk density
θw = water-filled porosity
Smax

 

= max. sorbed

 

conc.
katt

 

= attachment coefficient 
(noncovered

 

or covered) sites
kdet

 

= detachment coefficient
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soil grain diameter
α

 

= attachment (collision) efficiency
ηo = single-collector contact efficiency

Figure 1.  Measured and simulated aqu/C60 breakthrough curves 
under different pH  in saturated quartz sand columns
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• The solution chemistry affects the  transport in 
porous media. 

• The aqu/C60 aggregates have high negatively 
charged surfaces.

• Aqu/C60 is highly mobile as pH increases.

• The existing non-linear model with no covered 
area included may not accurately describe the 
aqu/C60 transport under acidic condition (highly 
sorbed). 
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              Figure 2.  Replicate breakthrough curves of aqu/C60 
                 in pH 4 (a) and pH 7 (b).
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Column α
Katt 

(1/hr) Smax

C0 

(mg/L)
09-1 0.150 5.14 0.15 0.41
09-5 0.090 3.14 0.05 0.35
09-6 0.205 7.57 0.40 0.17

average 0.148 5.29 0.20 0.31

Column α
Katt 

(1/hr) Smax

C0 

(mg/L)
09-2 0.030 1.05 0.25 1.30
09-7 0.015 0.45 0.05 1.35

average 0.023 0.75 0.15 1.33

  Figure 3.  Simulated breakthrough curves show the effects
   of Katt and Smax.
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Figure 5.  DLVO interaction energy profiles as a function of pH 
for aqu/C60.  The secondary minimums under different pH 
shown in the insert.

Separation distance (nm)

0 5 10 15 20 25 30

In
te

ra
ct

io
n 

en
ge

rg
y 

(k
B
T)

-100

-50

0

50

100

150

200

250

pH 4
pH 7
pH 10

Separation distance (nm)

5 10 15 20 25 30In
te

ra
ct

io
n 

en
ge

rg
y 

(k
B

T)

-1

0

1

2

3

      Figure 6.   ζ potential and Z-average diameter of unfiltered aqu/C60 in pH 10 
      titrated as a function of pH.  
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Figure 4.  The effect of initial concentration (C0) on the 
simulated breakthrough curves.
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