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Modeling Particulate Charging in ESPs

PHILIP A. LAWLESS anp LESLIE E. SPARKS

Abstract—In electrostatic precipitators there is a strong interaction
between the particulate space charge and the operating voltage and
current of an electrical section. Calculating either the space charge or the
operating point when the other is fixed is not difficult, but calculating
both self-consistently is much more difficult. A method is proposed that
makes the problem straightforward. An iterative solution is required, but
the closure rate should be acceptable.

INTRODUCTION

LTHOUGH adequate models exist for fine-particle

charging in dilute aerosols, the charging situation in
electrostatic precipitators (ESPs) requires a different ap-
proach. Because of the high particulate density and space
charge suppression of corona, the ESP section is not easily
described with standard charging models.

Usually the particulate space charge is large enough to raise
the operating voltage of an inlet electrical section by several
kilovolts and, at the same time, reduce the average current in
the section to less than half the value in the succeeding
sections. A correlation illustrating this point is taken from [1],
where a sample of ESP operating points was fitted on a
section-by-section basis, in terms of the average electric fields
and current densities in each ESP.

The derived E-J(V-I) curves for each section are shown in
Fig. 1, where the offset of corona onset voltage is shown
clearly at low current density. If we use the E-J curve of the
fourth section as a reference, by assuming a low value for the
average space charge, then the average space charge in each
prior section can be estimated from the change in corona onset

-voltage by the equation

AV=S5/2¢ - b? 0))
where AV is the change in voltage, S is the average space
charge, ¢ is the free-space permittivity, and b is the wire-plate
separation. Assuming a typical value of b, 11.4 cm, the
particulate space for each section is shown in Table I.

If the operating point is determined by sparking (the usual
- mode of operation), then the average electric field is roughly
constant from section to section, and the corresponding
current densities in each section increase from the first to the
last.
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location, with 1 the inlet section.

TABLE 1
CALCULATED PARTICULATE SPACE CHARGE
Space Charge
Section (C/m?

1 8.1E-06
2 59E-06
3 4.4FE-06
4 1.5E-07

(assumed)

These particulate space charge densities are comparable to
the ionic space charge densities at normal current levels,
typically in the range 1-4 pC/m?. Thus it is to be expected that
the particulate space charge and ionic space charge would have
comparable effects on the electrical conditions.

In standard charging theories [2], [3] implicit assumptions
are made that all particles are exposed to an invariant supply of
ions. The charging rate equations can then be integrated to
obtain the charge as a function of time. In the ESP situation,
however, the charge acquired by the particles collectively
affects the supply of ions for further charging.

It would be useful to avoid a numerical integration of the
rate over the charging zones of the ESP. When numerical
solutions of Poisson’s equation are used with particulate and
ionic space charge, almost any degree of accuracy can be
achieved, but at a great cost in time. If the complication of
adding an incremental particle charge calculation is included,
the computations become prohibitive.

In this paper an alternative calculation method will be
described which aims at an iterative approach to an *‘equilib-
rium’’ between the charging current and the resulting space
charge on the particles. The particulate space charge is made
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the parameter of interest because its value can be bounded for
a given ESP. Closure with standard charging and collection
models is obtained by finding appropriate average values for
particle charge and mobility, as functions of position along the
direction of flow, and then by iterating the process.

ESP V-I CurvEs wITH SpaCE CHARGE

A useful approximation of the voltage-current relation was
given by Cooperman [4] in a form that has been applied to
many corona devices:

J=KV(V-Y0), @)

where j is the average current density, V is the applied
voltage, VO is the corona start voltage, and KX is constant with
voltage given by

3)

where p is the jon mobility, € is the free-space permittivity,
and b is the wire-plate separation. This form is in fair
agreement with a better approximation [5], but the differences
do not matter in the present situation. When a constant space
charge is added to the ESP, the corona onset voltage, VO, is
raised by the amount given by (1). The voltage offset as a
function of average space charge is shown in Fig. 2, where the
orientation of the figure is chosen for later use.

From [5] it is found that the constant K also varies with the
space charge (fundamentally caused by the increased electric
field) as

K=2ue/b3,

K=Que/b?) - (1+5/4eb), @

where all terms are as previously defined.

This combination of effects results in a typical set of V-j
curves for different space charge values, shown in Fig. 3. The
curves in Fig. 3 are very similar to the correlation curves in
Fig. 1, including the change of slope with increasing space
charge. '

For an ESP operating at a fixed voltage, shown as a vertical
line in Fig. 3, there is a definite range of space charge for
which current can flow—from zero to a maximum value. The
maximum space charge at which AV is equal to the difference
between the operating voltage and the clean gas corona start
voltage is

Smax=2¢/b? - (%)

where VO is understood to be the clean-gas starting voltage. It
is possible for S to exceed this value, for instance, with a
precharger preceding an ESP section; but if the section is to
supply the charging current, Smax is the largest possible
average value.

For the sake of further development, we assume that
particulate space charge (calculated from charging of individ-
ual particles) is spatially uniform in the Hirection from wire to
plate. This simplification may not be realistic for high particle
concentrations but permits a more succinct treatment. For the
same reason we assume that the value of the space charge is
constant within the region serviced by a single wire, although
it may vary from wire to wire.

(Vop—V0O),
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Even though no ions may reach the plate from the wire (as,
for instance, in space-charge quenching, where all the ions are
absorbed on the particles), there are two real currents that may
be observed with particulate space charge: the particle
charging current and the particle collection current. The first
results from the ions attaching to particles, and the second
from particles being collected. These currents represent
minimum values of the operating current and should be
accounted for.

Ionic AND PARTICULATE SPACE CHARGE

Although ionic and particulate space charges affect the
divergence of the electric field identically, the difference in
mobility affects the V-L curve in different ways.

Sigmond [6] derives a formula for the density of ions
drifting along a field line without diffusion:

1/p(f)—1/po=pt/e (6)
where p(f) is the ion density at any time after a time zero when
it was po. That is, the ion density along a field line is

determined only by the age of the ions. This result comes from
the continuity equation and the current conservation equations,
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leading to the differential equation:

dp/dt= —pupV - E. (N

If the divergence of E includes immobile space charge along
the field line, the resulting formula is

[(S/p)+ 1] =[(S/p0) + 1] exp (utS/€) ®)

where all terms are as defined before. This formula does
reduce to 6 as S approaches zero.

The usefulness of these formulas lies in their ability to give
good approximate answers when the ion transit time can be
estimated. For our purposes it is sufficient to assume the
transit time in (6) and (8) is the path length divided by the
. average ion velocity:

t=b/G=b/uE)=b*(uV) &)

where i and E represent averaged velocity and field, respec-
tively. With this approximation the ion density equation can be
reformulated:

1/p—1/po=>b?*/eV - (1+5/p0) (10)

where p is now evaluated at the surface of the plate, and po at
the wire. This equation assumes that the space charge offset
voltage, AV, is a small fraction of the applied voltage,
allowing the exponential term to be linearized.

One of the main consequences of these relations, (8) and
(10), is that it is not possible to exchange ionic space charge
for particulate space charge, even though they may be
comparable in magnitude. Such an exchange may serve for
conceptual purposes, but it is not accurate enough for actual
calculations.

PARTICLE CHARGING

The charge of individual particles depends on the local
electric field and on the availability of ions. For this work, we
assume an average electric field suffices to describe the
environment for all the particles and that the product of ion
concentration and actual exposure time is independent of the
distance from wire to plate. This is consistent with earlier
assumptions and is justified by the observation that the ion
density is higher near the wire, but the transit time through the
region of high ion density is much shorter than near the plate.

As a result, we will use the standard charging equations to”
estimate the charge on individual particles and then integrate
over all particles to obtain the space charge. We will use the
field-charging relations [2] for convenience, although other
charging models apply over a wider range of particle sizes [3].

The charge on a given particle is given by

q(N=gs(NT/(1+T) an

where gs(r) is the saturation charge on the particle and T is the
reduced ion exposure time. Here, gs, for conductive particles,
is given by

gs(r)=12xer*E (12)

where r is the particle radius and E is the field in which
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charging takes place. The reduced exposure time is given by
T=ppt/4de (13)

where ¢ is the real time of exposure. When we consider one
wire of an ESP, ¢ is the flow transit time through its zone of
influence, and the product, pt, will be considered fixed. When
a particle passes near a corona wire, it is exposed to a high
concentration of ions for a short time. When a particle passes
through the charging zone near the plate, it is exposed to a
lower concentration for a longer time. The reduced time, T,
will be called the ‘‘age’’ of the particle.

For a particle distribution, the total space charge would be
the integral of (13) over all particles in the volume:

S= H-N(r, v)g(r) dr dv (14)
where N is the number concentration of the particles and v is
volume. The double integration can mask substantial differ-
ences in charging conditions—one reason for the simplifying
assumptions above. The integral cannot be completed without
a knowledge of the size distribution, so three different
conceptual cases are shown in Fig. 4, using the average
current density as the independent parameter. The figure is
oriented in an unusual direction for later use.

For particles that enter a charging zone with a nonzero
charge, the charging diagram must be modified by shifting the
axes to account for the charge already acquired. This amounts
to computing the age of the particles under the new charging
conditions, where age means the length of time that they would
have had to spend before reaching such a charge state, This is
shown in Fig. 5. It is possible for particles to enter a zone with
a charge that they could never have acquired in that zone, in_
which case their age would be greater than infinity and no
charging would take place.

PaRrTICLE COLLECTION

The first step in the particle-collection evaluation is to
calculate the electrical drift velocity. This is done by equating
the electrical driving force with the viscous drag force to
obtain a terminal velocity, w:

w= q(r)EC(.r)/61rm (15)

where C is the Cunningham slip correction and 7 is the gas
viscosity. Further details of collection depend on the collection
model used: if the Deutsch-Anderson (D-A) model (see [2]) is
assumed, the drift velocity will be used as the D-A migration
velocity. If a turbulent diffusion model is used, then the drift
velocity will be combined with a gas or particle diffusivity to
obtain a concentration gradient leading to collection. The
details of collection are important for the amount of material
removed, but for now we only need to know that some of the
space charge under the wire can be removed by collection. A
schematic diagram of this removal is shown in Fig. 6, which
also has an unusual orientation. The removal is shown as the
space charge remaining as the particulate cloud passes under
the wire.

Clearly, particle removal depends on the charge imparted to
the particles and their size. If the particles reach the saturation
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Fig. 6. Particle collection for one wire shown as removal space charge.
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charge, ‘then large-diameter particles precipitate much faster
than small particles because the charge increases as the square
of the diameter. This means that even a Deutsch-Anderson
collection model must exhibit size-selective effects, and the

. removal of space charge is not likely to be linear in the amount

of space charge remaining. For typical ESPs the amount
removed by a single wire is a small fraction (< 0.1) of the total
amount, so departures from linearity are assumed to be small.

ComBINED EFFeCTs

The combined effects of space-charge limitation, particle
charging, particle removal, and V-I curve shift are shown in
Fig. 7, called an ‘‘electrostatic precipitator interaction dia-
gram.”” This figure uses the individual figures presented
eaflier to bring the combined effects into focus.

Prior to using the diagram, some basic information should
be precalculated. Starting with the V-I curves, the curve for
zero space charge should be calculated (or made available for
calculation by initializing its parameters). The operating
voltage should be used to calculate Smax from (5). If an
operating voltage is not known, [1] gives useful information,
or the space charge values in Table I could be used with [1] to
fix an operating voltage above the zero space-charge voltage.

From the operating voltage an average electric field should
be estimated for the charging calculations. This should be a
volume average from a numerical model fitted to the operating
voltage, or an estimate (voltage divided by wire-plate separa-
tion), according to the desired level of accuracy. An exposure
time for the particles should be estimated, for example, by
dividing the average wire-wire spacing by the gas velocity, or
by a more rigorous technique if desired. A particle charging’
theory adequate for the problem should be picked. Then, for a
range of current densities from zero to a maximum practical
level, the charge of particles of different sizes should be
calculated, multiplied by the particle concentration, and
integrated over the size distribution. This process will give a
table of space charge corresponding to fixed electric field and
exposure time and different levels of current density. The
values in the table could be fitted with a polynomial function or
interpolated at a later stage.

Using a collection theory along with the charge on the
particles and the fixed electric field and exposure time, the
amount of space charge removed from the gas stream can be
calculated. This may result in another table, corresponding to
each entry in the space charge table. Or, it may result in a
linear relation between the amount of space charge entering
the collection zone and the amount leaving.

The last relation is (1), giving the offset voltage as a
function of the space charge near the wire. Because it is
possible that the space charge is removed very effectively, it
may be desirable to compute an average space charge in the
direction of flow to use in (1). This could be determined by the
result of the collection process.

With these precalculated quantities the diagram is ready to
be used. The diagram is used by picking a point on one of the
curves, for instance, corresponding to a given current density
on the charging curve. From that curve the space charge is
located, with the provision that it is less than the maximum
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Fig. 7. Electrostatic precipitator interaction diagram. Dashed line with arrows show possible solution trajectory with small closure
€error.

space charge. Using that value of space charge and the
collection mechanism appropriate for the particle size distribu-
tion; the space charge remaining after collection is obtained.
From that, the voltage offset caused by space charge is
obtained. Using the space-charge offset, the appropriate V-j
curve is followed up to the operating voltage to obtain the
actual current density.

The square trajectory around the diagram will not usually
close on itself, and a sampling of such trajectories shows that
there are many situations in which the trajectories lead to
either maximum or minimum space charge values. Numerical
damping techniques would allow a fairly rapid approach to a
self-consistent trajectory. The best starting point is usually
slightly below the maximum space charge value. The patticle-
charging curve may set a limit on the allowable current density
to reach that value of space charge. For instance, at high
concentrations, only low current densities would be allowed
within the maximum space-charge limit. It is essential for this
process that the operating voltage be fixed. This keeps the
average electric field constant in the charging calculations and
makes the space charge a function of current density only.

An alternate process is to solve for the appropriate current
density graphically, by making use of a compound curve
called the ‘‘specific voltage offset curve.”” This curve is a
combination of the charging, collection, and offset quadrants

of Fig. 7 and the space-charge-dependent slope of Fig. 3,
plotted as a current-density-dependent voltage. It produces a
plot similar to a load-line diagram for a transistor or vacuum
tube, shown in Fig. 8. The intersection of the specific voltage
offset curve with the clean plate V-j curve is the operating
current density for the system.

This offset curve’s equation is given by

Vo(j)= H N(r, v)g(r, j) dr dv/(2eb?) - (1 -Fc)+j/
[AK - V- (V=-VO)] (16)

where Fc is the collected fraction, and the last term represents
the change in voltage caused by the change in slope of the
space charge V-j curves.

Either of these approaches can be used in progressing from
one wire to another through the ESP. The particle~charging
curve will be shifted for successive wires (as in Fig. 5) and the
number of particles will be reduced by the collection process;
the-application of the techriques remains the same. After the
space charge is reduced below 1 pC/m3, it will have little
effect on the V-J curve and probably can be neglected.
Similarly, the particles will cease charging at some point, and
the charging calculations can be neglected.

In recent work [7] this approach has been implemented in
another way. The voltage of an entire electrical section is
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Fig. 8. Solution of charging problem using *“specific voltage offset curve.”™

fixed, and the space charge is assumed to decay exponentially
with distance along the section. Under these conditions,
average current density and electric fields are calculated.
These average values are then used to calculate particulate
space charge using a combined field and diffusion-charging
theory; at the same time, the particles are collected along the
length of the section. The space charges calculated at the inlet
and outlet of the section are used to compute an exponential
decay rate for the space charge. The inlet space charge and
decay rate, then, serve as inputs for the next iteration of the
current-density field calculations. The process converges
rapidly at normal particulate loadings and seems adequate for
computing the electrical operation of most ESPs.

CoNCLUSION

The procedure described here is a formal attempt to solve
the complex interactions occurring in the charging zones of an
ESP. Although many of the details cannot be completed
without reference to specific particle size distributions and
choice of particle-charging and collection theories, the overall
process allows a rapid approximate value of the operating
current density for a given voltage. The results are dependent
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on the predicted behavior of the voltage current characteristics
in the presence of space charge and, invariably, refer back to
the clean-plate characteristics.

Details of the charging mechanisms, even at low current
densities, have been glossed over. Similarly, the collection
process has been treated lightly by assuming that a rather small
fraction of the space charge is removed during the charging
process. Any of these assumptions can be refined with some
effort, but the principal conclusion remains: the particulate
space charge is the primary determinant of the operating point.

However much effort is put into detailed charging and
collection models, the inescapable conclusion is that the
electrical conditions respond to an average space charge. The
calculation of that space charge should become the focus for
ESP charging theories.
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