COMPUTATIONAL STEROIDOGENESIS MODEL TO PREDICT BIOCHEMICAL RESPONSE TO ENDOCRINE ACTIVE CHEMICALS: MODEL DEVELOPMENT AND CROSS VALIDATION

Miyuki Breen^{1,2}, Michael S. Breen³, Natsuko Terasaki⁴, Makoto Yamazaki⁴, Rory B. Conolly¹

1National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, NC, USA, 2Biomathematics Program, Department of Statistics, North Carolina State University, Raleigh, NC, USA, ³National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, NC, USA, ⁴Molecular Toxicology Group, Safety Research Laboratory, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan

ABSTRACT

Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme-mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine active chemicals (EAC), some of which are therapeutics and others that are environmental contaminants. We are developing a dynamic mathematical model of the metabolic network of adrenal steroidogenesis to predict the synthesis and secretion of adrenocortical steroids (e.g. mineralocorticoids, glucocorticoids, androgens and estrogens), and their biochemical response to EAC. We previously developed a deterministic model which describes the biosynthetic pathways for the conversion of cholesterol to adrenocortical steroids, and the kinetics for enzyme inhibition by the EAC, metyrapone. In this study, we extended our model for a multiple enzyme inhibiter, aminoglutethimide. Experiments were performed using the H295R human adrenocortical cells, and concentrations of 12 steroids were simultaneously measured with a newly developed LC/MS/MS method. We performed cross validation of our model for the baseline data across multiple experimental studies. Results show that the model simulation closely corresponds to the time-course baseline data. Our study demonstrates the feasibility of using the *in silico* mechanistic computational model to predict the *in vitro* adrenocortical steroid concentrations using H296R cells. This capability could be useful to help define mechanisms of actions for poorly characterized chemicals and mixtures in support of the H295R steroidogenesis screening system, and to screen drug candidates based on steroidogenic effects in the early phase of drug

EFFECTS OF ENDOCRINE ACTIVE CHEMICALS ON HPA AXIS

Feedback control system of hypothalamus-pituitary-adrenal (HPA) axis regulates synthesis and secretion of advence or an advence of a secret advence (TA), so and secretion of advence or advence (Aldo), cortisol (Cort), testosterone (T), estradiol (E2)) by release of corticotropin releasing hormone (CRH) from hypothalamus, and adrenocorticotropic hormone (ACTH) from pituitary

H295R CELL LINE

- · Established from human female adrenocortical carcinoma
- Maintains ability to secrete all major adrenocortical steroids
- Proposed as EPA screening assay for environmental chemicals capable of disrupting or modulating steroidogenesis
- Being evaluated to screen drug candidates based on steroidogenic effects in early phase of drug development

CELL PROLIFERATION EXPERIMENTS

- Incubate cells in medium for 72 hr
- Incubate cells in new medium + stimuli + carrier for 72 hr Collect samples at 0, 72, 96, 120, 144 hr
- Measure number of viable cells using cell viability analyzer

· Direct least-squares solution by linearization

STEROIDOGENESIS EXPERIMENTS

- Incubate cells in medium for 72 hr
- Start clock: Incubate cells in new medium + stimuli + carrier for 72 hr Metvrapone Study
- Baseline and two concentrations (1, 10 µM)
- Collect samples at 0. 8. 24. 48. 72 hr
- Measure cell and medium concentrations of E1 and E2 using ELISA and remaining 12 steroids using LC/MS/MS

Aminoalutethimide Study

- Baseline and one concentration (100 µM)
- Collect samples at 24, 48, 72 hr
- Measure cell and medium concentrations of 12 steroids except E1 and E2 using LC/MS/MS

STEROIDOGENESIS MODEL

- Mathematical model based on in vitro experimental design
- Two compartments: medium and H295R cells
- Two pathways: transport and metabolism
- First-order metabolic reaction rates
- Assumed guasi-equilibrium for steroid transport - rapid & reversible steroid transport between medium and cells
- First-order cholesterol transport rate
- Endocrine active chemicals: partition coefficient for transport, competitive enzyme inhibition

Equilibrium Equations: Transport Pathway

$$C_{x,\text{med}} = q_x C_{x,\text{cell}}$$

 q_x = equilibrium constant for steroid x

- $C_{x, \text{cell}} = \text{concentration of steroid } x \text{ in cells}$ $C_{x \text{ med}} = \text{concentration of steroid } x \text{ in medium}$
- Yields algebraic equations
- Decouples equations for steroids in medium from equations for steroids in cells
- simplify large inverse problem

 $U_{x,\text{cell}}$ = utilization rate of steroid x in cells

Competitive Enzyme Inhibition Equation

- v_i = overall metabolic reaction rate for reaction *i*
- k_i = first-order metabolic reaction rate for reaction *i*
- $k_{EAC,i}$ = enzyme inhibition constant of EAC for reaction *i*

Metyrapone Model

Aminoglutethimide Model

MODEL PARAMETERS

· Estimated parameters with data from metyrapone study

q.s	0.0129	Cortisol (CORT) Pathway	q 28	0.0377
q ₂₀	0.0052	q ₂₄	0.0604	q ₂₉	0.0400
q ₂₁	0.0411	q ₂₅	0.0211	q 30	0.0266
q ₂₂	0.0557	q ₂₆	0.0422	q ₃₁	0.0443
q ₂₃	0.0910	927	0.0675	q 32	0.0350

	Aldosterone (ALDO)			Metyrapone (MET)			Testosterone (T)		
Aldo				61.438	nM	Pathway			
	Pathway	12	R ₄₂	23.813	nM	84	7x10*	hr"	
k,	0.002	hr4	Cortise	I (CORT) P	athway	k,	8x10-4	hr	
k ₂	0.021	hr ⁴	k ₂	0.525	hr-1	k,	2.177	hr"	
k _s	0.535	hrit	k.	8.213	hr	k _{ii}	0.028	hr-1	
ket	4.590	hr4	- K	3x10-5	hr	K13	0.380	hr	
k _{ss}	0.409	hr ⁴	ko.	7.969	hr1	k14	4x10-4	hr4	
k _m	0.069	hr.4	R.r.	0.170	hr	k _{is}	0.059	hr4	
_								_	

CROSS VALIDATION

 Validated model with baseline data from aminoglutethimide study

DISCUSSION

- Dynamic behavior of model simulation and baseline data in medium correspond across both studies
- Mechanistic model can improve understanding of dose-response behavior for chemicals that alter activity of steroidogenic enzymes
- This capability could help define mechanisms of action for poorly characterized chemicals and mixtures in support of the H295R steroidogenesis screening system

Miyuki Breen was supported by the NCSU/EPA Cooperative Training Program in Environmental Sciences Research, Training Agreement CT833235-01-0 with North Carolina State University. This work was reviewed by the US EPA and approved for publication but does not necessarily reflect Agency policy

