

Upper Oconee Watershed Network (UOWN)

Volunteer monitoring (biology and chemistry) in streams in the Upper Oconee basin since 2000.

Drought in the Southeast

- The past 15 winters have been drier than the long-term average in Georgia (D. E. Stooksbury)
- The Intergovernmental Panel on Climate Change (IPCC) predicts that the likelihood of droughts will increase in the Southeastern U.S.

Macroinvertebrates as bioindicators

- Macroinvertebrates are relatively long lived, integrating the effects of local disturbance and pollution.
- Easy to collect and identify
- A cost effective way to measure water quality

How might drought affect stream invertebrate communities?

- Increases in stream temperature
- Decreases in dissolved oxygen
- Changes in chemical and nutrient concentrations
- Reductions in habitat volume

Study Sites – Upper Oconee river basin Clarke County, GA, USA

North Oconee

- Trail Creek
- Carr Creek
- Sandy Creek

Middle Oconee

- Hunnicutt Creek
- Brooklyn Creek
- Bear Creek
- McNutt Creek

Methods

Biological

- Macroinvertebrates collected 4X per year
- Scored using the "Save our Streams" biotic index

Chemical

Conductivity collected at each sampling event

Previous UOWN study

 Conductivity is a measure of dissolved ions in water and is indicative of pollution from chemicals and nutrients.

 Kominoski et al. (2007) showed conductivity to be a significant predictor of biotic index scores in streams in the upper Oconee basin.

Methods

Flow

- Downloaded long-term discharge data from www.usgs.gov - Middle Oconee in Jackson County, GA
- Downloaded flow mean, minimum, and maximum
- Calculated flow coefficient of variation (Flow CV) and # low flow days

Middle Oconee River 2000 – 2008

Model Building

- Multiple linear regression used to relate biotic index scores to predictor variables
 - Final set of variables: mean, flow CV, conductivity,# low flow days, and their squared values

 Best fit model selected using Akaike's Information Criterion corrected for small sample sizes (AICc)

Results – best fit model

Variable	Coefficient	SE	Lower CI	Upper CI
Conductivity	-3.76	1.28	-6.28	-1.24
Flow	10.08	2.26	5.61	14.55
Flow*Flow	-0.88	0.22	-1.31	-0.45
CV	6.24	5.78	-5.17	17.65
CV*CV	-3.43	2.83	-9.03	2.16

Results

- The steep response of the biotic index at low flows indicates that macroinvertebrates are sensitive to extremely low flows.
- The negative response of macroinvertebrates to conductivity indicates that macroinvertebrates are sensitive to pollution

 consistent with studies by Kominoski et al.
 (2007) and Roy et al. (2003).

Conclusions

- As we begin to experience longer, more frequent droughts in the Southeast, it is important to consider the effects of extreme low flows on stream biota.
- It is important to continue monitoring these streams in order to assess the long-term effects of drought on stream invertebrates.

Future analyses and data collection

 Incorporate flow monitoring into UOWN's quarterly sampling of the sites used in this study.

 Test whether urbanized sites have a different response to reduced flows than forested sites.

Acknowledgements

Bryan Nuse

Rachel Katz

Amy Trice

Rosemond Lab

UOWN board and volunteers

