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Scar tissue. A crisscross of roads and pits scars the surface of a former gold mine in Summitville, Colorado, while 
underground workings and tunnels allow acidic waste to drain into nearby watersheds. The Superfund site has cost more 
than $150 million in remediation efforts and remains incomplete. (Scott Fields, EHP 111, 154-161, 2003)



Although there is no good estimate of the cost to 
clean up abandoned mines, experts agree that in 
the United States alone the price tag reads tens of 
billions of dollars. 
(Scott Fields, EHP 111, 154-161, 2003)
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Available data don’t constrain the 
dose-response curve at relevant 

levels of exposure
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Biological mechanisms determine 
dose-response
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(Formal + intuitive modeling)
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Projects Supported by Core C

Project 1: Characterization of the pathways linking Ah receptor 
activation with altered B cell differentiation using an 
integrated experimental and computational modeling 
approach (Norb Kaminski).

Project 2: Dissecting the signaling network for Ah receptor-mediated 
B cell toxicity (Rusty Thomas).

Project 4: Influence of Ah receptor ligands on inflammatory 
responses: consequences for tissue injury and gene 
expression (Patty Ganey).



Experiments to understand
mechanisms of toxicity and
extrapolation issues

Computational
models

Computational modeling and lab 
experiments



Experiments to understand
mechanisms of toxicity and
extrapolation issues

Computational
models

Risk
assessment

Bridging to risk assessment



Outline

1. Risk assessment motivation
2. Biological determinants of dose-response
3. The role of computational models
4. Work-in progress example:  irreversible 

biochemical switches in the differentiation 
of B cells



Inhibition by TCDD of LPS-induced IgM



Hypothesis: Suppression of the primary humoral 
immune response by AhR agonists is mediated 
through changes in the B cell differentiation 
program 
– Norb Kaminski



Dioxin and B Lymphocyte Differentiation
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Approach

1. Adapt an existing PBPK model
2. Develop a new computational model of key aspects 

of the molecular mechanism of B cell 
differentiation

3. In the model, describe how AhR agonists interfere 
with the process

4. Iterate model refinement with laboratory 
experiments

5. Use the computational model to predict dose-
response
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Dioxin PBPK Model with Spleen
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Liver

Fat

Spleen

Dioxin PBPK Model with Spleen - Fitting long 
time-course rat data

Oral dose: 10 μg/kg

(Wang et al. ‘97)
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AP-1 activation

http://www.dartmouth.edu/~brenner/gene144-06/wasiuk.html
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MAPK time-course and bifurcation after 
a short pulse of PDGF

Input pulse
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Percentage LPS-activated Plasma Cells Over Time 
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LPS Dose Response at 72 h 
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LPS-activated IgM Secretion Over Time 
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LPS Dose Response at 72 h 
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TCDD and
AP-1 activation,
appropriate kinetic 
description?

http://www.dartmouth.edu/~brenner/gene144-06/wasiuk.html



Implications of alternative kinetics for 
TCDD dose-response

MAPK-like bifurcation
with noise Continuous with noise



-2
-1

0 
1 

2 

-2
-1

0 
1 

2 
0 
2 
4 
6 
8 
10

%
 P

la
sm

a 
C

el
ls

-2
-1

0 
1 

2 

-2
-1

0 
1 

2 
0 
2 
4 
6 
8 
10

%
 P

la
sm

a 
C

el
ls

-2
-1

0 
1 

2 

-2
-1

0 
1 

2 
0 
2 
4 
6 
8 
10

%
 P

la
sm

a 
C

el
ls

-2
-1

0 
1 

2 

-2
-1

0 
1 

2 
0 
2 
4 
6 
8 
10

%
 P

la
sm

a 
C

el
ls

Log TCDD 
(nM)

Log LPS 
(ug/ml)

0 h 24 h

48 h 72 h

Predicted Dose Response Surfaces 

Log TCDD 
(nM)

Log LPS 
(ug/ml)



Experiments to understand
mechanisms of toxicity and
extrapolation issues

Computational
models

The computational model is a bridge from 
research and risk assessment



Experiments to understand
mechanisms of toxicity and
extrapolation issues

Computational
models

Risk
assessment

The computational model is a bridge from 
research and risk assessment



R
es

po
ns

e
Accuracy

Dose

Interspecies



Summary

• Remediation is expensive, so accurate prediction of 
dose-response is important to help control costs.

• Dose-response is a function of biological mechanisms.
• Computational models of these mechanisms improve the 

efficiency of research and provide the capability for 
prediction.

• Example:  Prediction of dose-response for inhibition by 
AhR ligands of the terminal differentiation of B-cells.

• Need quantitative understanding of how TCDD-AhR
interacts with AP-1 and other sites in the B cell 
differentiation program
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